Today, an enormous number of research papers by foreign and domestic authors cover the research into vibration of plates. Despite this variety, oscillation of transversely isotropic plates remains understudied. The most substantial contribution into this area of research was made by S.A. Ambartsumyan, V.V. Bolotin, E.J. Brunelle, and M. Levinson. The author provides the summary of a frequency equation describing self-excited oscillations of a transversely isotropic plate resting on the strain foundation, if one edge of the plate is rigidly fixed and the other three edges are hinged. The problem was solved using the approximate method employed to derive the frequency equation needed to identify self-excited oscillations of the plate. The formulas, derived by the author and designated for the identification of frequencies of free transverse vibrations of the plate, are suitable for practical application; they may be applied for the identification of the nature of dependence between natural frequencies of the plate and its geometry.

Key words: transversely isotropic plate, self-excited vibrations, rigidly fixed, hinged.

References

5. Egorychev O.A., Egorychev O.O., Zapol’nova E.V. *Sobstvennye kolebaniya transversal’no-izotropnoy plastiny, lezhashchey na deformiruemom osnovanii, odin kray kotoroy uprugo zakreplen, a tri drugikh sharnirno operty* [Self-excited Oscillations of a Transversely Isotropic Plate Resting on the Strained Foundation Bed, if One of the Plate Edges Is Flexibly Fixed, while the Three Other Edges Are Hinged]. *Vestnik MGSU* [Proceedings of Moscow State University of Civil Engineering]. 2012, no. 11, pp. 45—55.

About the authors:

Egorychev Oleg Aleksandrovich — Doctor of Technical Sciences, Professor, Professor, Department of Theoretical Mechanics and Aerodynamics, *Moscow State University of Civil Engineering* (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; egorichevoa@gmail.com; +7 (499) 183-24-01;

Stepanov Roman Nikolaevich — Candidate of Technical Sciences, Associate Professor, Department of Theoretical Mechanics and Aerodynamics, *Moscow State University of Civil Engineering* (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; mstepanov@gmail.com; +7 (499) 183-24-01;

Zapol’nova Evgeniya Valer’evna — postgraduate student, Department of Theoretical Mechanics and Aerodynamics, *Moscow State University of Civil Engineering* (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; jenzapolnova@yandex.ru; +7 (499) 183-24-01.

For citation: Egorychev O.A., Egorychev O.O., Zapol’nova E.V. *Sobstvennye kolebaniya transversal’no-izotropnoy plastiny, lezhashchey na deformiruemom osnovanii, odin kray kotoroy uprugo zakreplen, a tri drugikh sharnirno operty* [Self-excited Oscillations of a Transversely Isotropic Plate, One Edge of Which Is Rigidly Fixed and the Other Three Edges Are Hinged, if the Plate Rests on the Strain Foundation]. *Vestnik MGSU* [Proceedings of Moscow State University of Civil Engineering]. 2013, no. 7, pp. 27—32.