Home Vestnik MGSU Library Vestnik MGSU 2014/4 Design of ultra-lightweight concrete: towards monolithic concrete structures

RESEARCH OF BUILDING MATERIALS

Design of ultra-lightweight concrete: towards monolithic concrete structures

  • Yu Qing Liang - Eindhoven University of Technology PhD, Assistant Professor, Department of the Built Environment, Eindhoven University of Technology, Den Dolech 2, 5612 Az Eindhoven, the Netherlands; +31 40-247 2371; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Spiesz Przemek - Eindhoven University of Technology PhD, University Teacher, Department of the Built Environment, Eindhoven University of Technology, Den Dolech 2, 5612 Az Eindhoven, the Netherlands; +31 40-247 5904; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Brouwers Jos - Eindhoven University of Technology PhD, Professor, Department of the Built Environment, Eindhoven University of Technology, Den Dolech 2, 5612 Az Eindhoven, the Netherlands; +31 40-247 2930; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 98-106

This study addresses the development of ultra-lightweight concrete. A moderate strength and an excellent thermal conductivity of the lightweight concrete are set as the design targets. The designed lightweight aggregates concrete is targeted to be used in monolithic concrete façade structure, performing as both load bearing element and thermal insulator. The developed lightweight concrete shows excellent thermal properties, with a low thermal conductivity of about 0.12 W/(m·K); and moderate mechanical properties, with 28-day compressive strengths of about 10-12 N/mm
2. This combination of values exceeds, to the researchers’ knowledge, the performance of all other lightweight building materials. Furthermore, the developed lightweight concrete possesses excellent durability properties.

DOI: 10.22227/1997-0935.2014.4.98-106

References
  1. Chandra Berntsson L. Lightweight Aggregate Concrete Science, Technology and Applications. Standard publishers distributors. Delhi, India, 2003.
  2. Yu Q.L. Design of Environmentally Friendly Calcium Sulfate-based Building Materials. Towards and Improved Indoor Air Quality. PhD thesis. Eindhoven University of Technology, the Netherlands 2012.
  3. Brouwers H.J.H., Radix H.J. Self-compacting Concrete: Theoretical and Experimental Study. Cement Concrete Research. 2005, no. 35, pp. 2116—2136.
  4. Hunger M. An Integral Design Concept for Ecological Self-Compacting Concrete. PhD thesis. Eindhoven University of Technology, the Netherlands, 2010.
  5. H?sken G., Brouwers H.J.H. A New Mix Design Concept for Earth-moist Concrete: A Theoretical and Experimental Study. Cement and Concrete Research, 2008, no. 38, pp. 1246—1259.
  6. H?sken G. A Multifunctional Design Approach for Sustainable Concrete with Application to Concrete Mass Products. PhD thesis. Eindhoven University of Technology, the Netherlands, 2010.
  7. Zareef M.A.M.E. Conceptual and Structural Design of Buildings made of Lightweight and Infra-Lightweight Concrete, 2010.
  8. ACI Committee 213. Guide for Structural Lightweight-Aggregate Concrete. 2003.
  9. Loudon A.G. The Thermal Properties of Lightweight Concretes. International Journal of Cement Composites and Lightweight Concrete. 1979, no. 1, pp. 71—85.
  10. Neville A.M. Properties of Concrete. 4th ed. 1995.
  11. Alduaij J., Alshaleh K., Naseer Haque M., Ellaithy K. Lightweight Concrete in Hot Coastal Areas. Cement and Concrete Composites. 1999, no. 21, pp. 453—458.
  12. Top?u I.B., Uygunoglu T. Effect of Aggregate Type on Properties of Hardened Selfconsolidating Lightweight Concrete (SCLC). Construction and Building Materials, 2010, no. 24, pp. 1286—1295.
  13. Schauerte M., Trettin R. Neue Schaumbetone mit gesteigerten mechanischen ind physikalischen Eigenschaften. Bauhaus-Universitat Weimar. Weimar, Germany, 2012, pp. 2-0066—2-0072.
  14. Kan A., Demirboga R. A Novel Material for Lightweight Concrete Production, Cement and Concrete Composites. 2009, no. 31, pp. 489—495.
  15. Kralj D. Experimental Study of Recycling Lightweight Concrete with Aggregates Containing Expanded Glass. Process Safety and Environmental Protection. 2009, no. 87, pp. 267—273.
  16. Liu X., Chia K.S., Zhang M.H. Development of Lightweight Concrete with High Resistance to Water and Chlorideion Penetration. Cement and Concrete Composites. 2010, no. 32, pp. 757—766.
  17. Yu Q.L., Spiesz P., Brouwers H.J.H. Design of Ultra-lightweight Concrete: Towards Monolithic Concrete Structures. 1st International Conference on the Chemistry of Construction Materials, Berlin, 7-9 October 2013, Monograph. 2013, vol. 46, pp. 31—34. Available at: http://josbrouwers.bwk.tue.nl/publications/Conference108.pdf.

Download