Home Vestnik MGSU Library Vestnik MGSU 2013/9 Analytical description of the coefficient of demagnetization for chains of cores of granulesin the filter matrix of a magnetic separator

RESEARCH OF BUILDING MATERIALS

Analytical description of the coefficient of demagnetization for chains of cores of granulesin the filter matrix of a magnetic separator

  • Sandulyak Anna Aleksandrovna - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Associate Professor, Associate Professor, Department of Construction Materials; 7 (499) 183-32-29, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoye shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 62-69

Particle capturing efficiency inside the filter matrix of a magnetic separator used in the treatment of ceramic suspensions, minerals, condensates, other liquids and gas depends immediately on the intensity of its magnetization capacity. Chains of granules of a filter matrix represent effective magnetization channels. Demagnetization intensity influences the magnetization intensity of the whole filter matrix and its separate chains that are also considered as magnetization channels. The pattern of calculation of demagnetization factor N (coefficient of demagnetization) for such channel magnets is of utmost academic interest, and this pattern is provided in this article. The author provides values for demagnetization factor N for quasi solid cores ofchains of granules having with various lengths L and diameters d (metal concentra-tion 0.78—0.99), if magnetized by the field having the intensity of Н =18–175 kА/m. It isproven that the values of N and √ L / d have an exponential relation.Earlier, the author identified that the values of N for the porous media having a cylindrical form depend on the ratio of the length of magnet L to its diameter D . It is proven that the values of N and those of √ L / D also have an exponential relation. Therefore, this reciprocal conformity of relations in respect of the demagnetization factor for samples of the granulated medium (consisting of chains of magnets-channels) and for cores of magnets-channels (having different porosity values) has confirmed the similarity of the demagnetization factor for magnets having substantial and high concentration of the ferromagnetic material. The analytical description (the formula) of the coefficient of demagnetization of channel cores is provided in the article.

DOI: 10.22227/1997-0935.2013.9.62-69

References
  1. Sandulyak A.V. Model' namagnichivaniya poristoy sredy [Model of Magnetization of the Porous Medium]. Zhurnal tekhnicheskoy fiziki [Journal of Applied Physics]. 1982, vol. 52, no. 11, pp. 2267—2269.
  2. Sandulyak A.V., Sandulyak A.A., Ershova V.A. Krivaya namagnichivaniya granulirovannoy sredy s pozitsiy modeli pokanal'nogo namagnichivaniya (novyy podkhod) [Granulated Media Magnetization Curve Simulated Using the Channel-by-channel Magnetization Model (a New Approach)]. Doklady Akademii nauk [Reports of the Academy of Sciences]. 2007, vol. 413, no. 4, pp. 469—471.
  3. Sandulyak A.V., Sandulyak A.A., Ershova V.A. K voprosu o modeli pokanal'nogo namagnichivaniya granulirovannoy sredy (s radial'nym profilem pronitsaemosti kvazisploshnogo kanala) [On the Issue of the Model of Channel-by-channel Magnetization of the Granulated Media (Having a Radial Profile of Permeability of the Quasi-continuous Channel)]. Zhurnal tekhnicheskoy fiziki [Journal of Applied Physics]. 2009, vol. 79, no. 5, pp. 140—143.
  4. Sandulyak A.A., Ershova V.A., Ershov D.V., Sandulyak A.V. O svoystvakh «korotkikh» granulirovannykh magnetikov s neuporyadochennymi tsepochkami granul: pole mezhdu granulami [On the Properties of “Short” Granulated Magnets Having Irregular Chains of Granules: Field between Granules]. Fizika tverdogo tela [Physics of Solids]. 2010, vol. 52, no. 10, pp. 1967—1974.
  5. Meylikhov E.Z., Farzetdinova R.M. Obobshchennaya teoriya srednego polya dlya reshetochnykh magnitnykh sistem i ferromagnetizm poluprovodnikov s magnitnymi primesyami [Generalized Theory of the Mean Field for Latticed Magnetic Systems of Ferromagnetism of Semiconductors Having Magnetic Admixtures]. Fizika tverdogo tela [Physics of Solids]. 2005, vol. 47, no. 6, pp. 1085—1091.
  6. Komogortsev S.V., Iskhakov R.S. Krivaya namagnichivaniya i magnitnye korreyatsii v nanotsepochke ferromagnitnykh zeren so sluchaynoy anizotropiey [Magnetization Curve and Magnetic Correlations in the Nano-scale Chain of Ferromagnetic Grains Having Random Anisotropy]. Fizika tverdogo tela [Physics of Solids]. 2005, vol. 47, no. 3, pp. 480—486.
  7. Andreenko A.S., Berezovets V.A., Granovskiy A.B. Inversnoe magnitosoprotivlenie v magnitnykh granulirovannykh kompozitakh (FeCoB)-(Al2O3) [Inverse Resistance to Magnetization inside Magnetic Granulated Composites (FeCoB)-(Al2O3)]. Fizika tverdogo tela [Physics of Solids]. 2003, vol. 45, no. 8, pp. 1446—1449.
  8. Zubarev A.Yu. Reologicheskie svoystva polidispersnykh magnitnykh zhidkostey. Vliyanie tsepochechnykh agregatov. [Rheological Properties of Polydisperse Magnetic Liquids. Influence of Chain Aggregates]. Zhurnal eksperimental'noy i teoreticheskoy fiziki [Journal of Experimental and Theoretical Physics]. 2001, vol. 120, no. 1(7), pp. 94—103.
  9. Granovskiy A.B., Bykov I.V., Gan'shina E.A. Magnitorefraktivnyy effekt v magnitnykh nanokompozitakh [Magnetorefractive Effect in Magnetic Nano-scale Composites]. Zhurnal eksperimental'noy i teoreticheskoy fiziki [Journal of Experimental and Theoretical Physics]. 2003, vol. 123, no. 6, pp. 1256—1265.
  10. Kashevskiy B.E., Prokhorov I.V. Magnitoforeticheskiy potentsial tsepochki ferromagnitnykh sharov v odnorodnom pole [Magnitophoresis Potential of a Chain of Ferromagnetic Balls in the Homogeneous Field]. Inzhenerno-fizicheskiy zhurnal [Journal of Engineering and Physics]. 2003, vol. 76, no. 4, pp. 30—35.
  11. Meylikhov E.Z., Farzetdinova R.M. Osnovnoe sostoyanie reshetok ferromagnitnykh granul s magnitodipol'nym vzaimodeystviem [Principal State of Lattices of Ferromagnetic Granules Exposed to Magnetic Dipolar Interaction]. Zhurnal eksperimental'noy i teoreticheskoy fiziki [Journal of Experimental and Theoretical Physics]. 2002, vol. 121, no. 4, pp. 875—883.
  12. Zubarev A.Yu., Iskakova L.Yu. K teorii fizicheskikh svoystv magnitnykh zhidkostey s tsepochechnymi agregatami [On the Theory of Physical Properties of Magnetic Liquids Having Chain Aggregates]. Zhurnal eksperimental'noy i teoreticheskoy fiziki [Journal of Experimental and Theoretical Physics]. 1995, vol. 107, no. 5, pp. 1534—1551.
  13. Yurishchev M.A. Magnitnaya vospriimchivost' kvaziodnomernykh superantiferromagnetikov Izinga. Approksimatsii tsepochechnymi klasterami. [Magnetic Susceptibility of Ising Quazi-one-dimensional Super Ferrous Magnets. Approximations by Chain Clusters]. Zhurnal eksperimental'noy i teoreticheskoy fiziki [Journal of Experimental and Theoretical Physics]. 2005, vol. 128, no. 6 (12), pp. 1227—1242.
  14. Sandulyak A.V., Sandulyak A.A., Ershova V.A. Razmagnichivayushchiy faktor granulirovannogo magnetika (fil'truyushchey matritsy) kak zhguta kanalov namagnichivaniya [Demagnetization Factor of the Granulated Magnet (Filter Matrix) as the Strap of Magnetization Channels]. Izvestiya MGTU «MAMI» [News of Moscow State Technical University “MAMI”]. 2011, no. 1(11), pp. 210—216.
  15. Mattei J.-L., Le Floc'h M. Percolative Behaviour and Demagnetizing Effects in Disordered Heterostructures. Journal of Magnetism and Magnetic Materials. 2003, no. 257, pp. 335—345.
  16. Gorkunov E.S., Zakharov V.A., Chulkina A.A., and Ul’yanov A.I. Internal Demagnetization Factor for Porous Ferromagnets in Remagnetization Process. Russian Journal of Nondestructive Testing. 2004, vol. 40, no.1, pp. 1—7.
  17. Kifer I.I. Ispytaniya ferromagnitnykh materialov [Testing of Ferromagnetic Materials]. Moscow, Energiya Publ., 1969, 360 p.
  18. Chen D.-X., Pardo E., Sanchez A. Fluxmetric and Magnetometric Demagnetizing Factors for Cylinders. Journal of Magnetism and Magnetic Materials. 2006, no. 306, pp. 135—146.

Download