Defining regulatory requirements for water supply systems in Vietnam

Vestnik MGSU 1/2014
  • Deryushev Leonid Georgiyevich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Associated Professor, Department of Water Supply, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Pham Ha Hai - Moscow State University of Civil Engineering (MGSU) postgraduate student, Department of Water Supply, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Deryusheva Nadezhda Leonidovna - Moscow State University of Civil Engineering (MGSU) ostgraduate student, Department of Water Disposal and Aquatic Ecology, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 125-132

In the article the authors offer their suggestions for improving the reliability of the standardization requirements for water supply facilities in Vietnam, as an analog of building regulations of Russia 31.13330.2012. In Russia and other advanced countries the reliability of the designed water supply systems is usual to assess quantitatively. Guidelines on the reliability assessment of water supply systems and facilities have been offered by many researchers, but these proposals are not officially approved. Some methods for assessing the reliability of water supply facilities are informally used in practice when describing their quality. These evaluation methods are simple and useful. However, the given estimations defy common sense and regulatory requirements used by all the organizations, ministries and departments, for example, of Russia, in the process of allowances for restoration and repair of water supply facilities. Inadequacy of the water supply facilities assessment is shown on the example of assessing the reliability of pipeline system. If we take MTBF of specific length of the pipeline as reliability index for a pipeline system, for example, 5 km, a pipeline of the similar gauge, material and working conditions with the length of 5 m, according to the estimation on the basis of non-official approach, must have a value of MTBF 1000 times greater than with the length of 5 km. This conclusion runs counter to common sense, for the reason that all the pipes in the area of 5 km are identical, have the same load and rate of wear (corrosion, fouling, deformation, etc.). It was theoretically and practically proved that products of the same type in the same operating conditions (excluding determined impact of a person), work as an entity, which MTBF is equal to the average lifetime. It is proposed to take the average service life as a reliability indicator of a pipeline. Durability, but not failsafety of the pipe guarantees pipeline functioning. It is proved that not a specific pipeline length should be taken for an element of a pipeline system, but the repair area, which is in two sides limited by isolation valve and is completely disconnected for the time of recovery or any other need.

DOI: 10.22227/1997-0935.2014.1.125-132

References
  1. Regulations 31.13330.2012. Vodosnabzhenie. Naruzhnye seti i sooruzheniya «Aktualizirovannaya redaktsiya SNiP 2.04.02—84» (utv. Prikazom Minregiona Rossii ot 29.12.2011 ¹ 635/14) [Water Supply. External Supply Lines and Constructions “Revised Edition of Construction Regulations 2.04.02—84” (Approved by the Directive of the Ministry of Regional Development of Russia 29.12.2011 ¹ 635/14]. Moscow, 2012.
  2. Regulations 32.13330.2012. Kanalizatsiya. Naruzhnye seti i sooruzheniya. «Aktualizirovannaya redaktsiya SNiP 2.04.03—85» (utv. Prikazom Minregiona Rossii ot 29.12.2011 ¹ 635/11) [Conduit. External Supply Lines and Constructions “Revised Edition of Construction Regulations 2.04.02—85” (Approved by the Directive of the Ministry of Regional Development of Russia 29.12.2011 ¹ 635/11). Moscow, 2012.
  3. RF Government Regulation from 16.02.2008 # 87 (Edition from 08.08.2013) «O sostave razdelov proektnoy dokumentatsii i trebovaniyakh k ikh soderzhaniyu» (s izmeneniyami i dopolneniyami, vstupayushchimi v silu s 01.01.2014) [On the Composition of the Chapters of Planning Documentation and Requirements to their Content].
  4. TCVN Vietnam 33—2006. Water Supply — Distribution System and Facilities — Design Standard.
  5. GOST 27.002—89. Nadezhnost' v tekhnike. Terminy i opredeleniya [All Union State Standard 27.002—89. Reliability of Technology. Terms and Definitions]. Moscow, 1989.
  6. GOST R 53480—2009. Nadezhnost' v tekhnike. Terminy i opredeleniya [All Union State Standard R 53480—2009. Reliability of Technology. Terms and Definitions]. Moscow, 2009.
  7. GOST 27.003—83. Vybor i normirovanie pokazateley nadezhnosti [All Union State Standard 27.003—83. Choice and Standardization of Reliability Index]. Moscow, 2009.
  8. Methodical Guidelines 3-69. Metodika vybora nomenklatury normiruemykh pokazateley nadezhnosti tekhnicheskikh ustroystv [Choice Procedure of the List of Standardized Reliability Index of Technical Devices]. Moscow, 1970.
  9. Gnedenko B.V., Belyaev Yu.K., Solov'ev A.D. Matematicheskie metody v teorii nadezhnosti [Mathematical Methods in the Reliability Theory]. Moscow, Nauka Publ., 1965.
  10. Barlou R., Proshan F. Matematicheskaya teoriya nadezhnosti [Mathematical Reliability Theory]. Moscow, Sovetskoe radio Publ., 1969, pp. 36—37.
  11. Skotnikov Yu.A. Statistika povrezhdeniy vodoprovodnykh setey [Statistics of Water Supply Systems Damages]. Problemy nadezhnosti sistem vodosnabzheniya: Tezisy dokladov Vsesoyuznoy konferentsii po nadezhnosti sistem vodosnabzheniya [Problems of Water Supply Systems Reliability: Reports of All-Union Conference on Water Supply Systems Reliability]. Moscow, 1973, pp. 53—60.
  12. Normy amortizatsionnykh otchisleniy na polnoe vosstanovlenie osnovnykh fondov narodnogo khozyaystva SSSR: Postanovlenie Soveta Ministrov SSSR 22.10.1990 g. ¹ 1072 [Norms of Amortization on Full Recovery of the Main Funds of National Economy of the USSR from 22.10.1990 ¹ 1072]. Available at: http://www.consultant.ru/document/cons_doc_LAW_1927/?frame=2. Date of access: 15.11.2013.
  13. ASTM D2992—96. Standard Practice for Obtaining Hydrostatic or Pressure Design Basis for Fiberglass (Glass-Fiber-Reinforced Thermosetting-Resin) Pipe and Fittings. Available at: http://www.astm.org/DATABASE.CART/HISTORICAL/D2992-96E1.htm. Date of access: 20.11.2013.
  14. Abramov N.N. Nadezhnost' sistem vodosnabzheniya [Reliability of Water Supply Systems]. Moscow, Stroyizdat Publ., 1979.
  15. Deryushev L.G., Minaev A.V. Otsenka nadezhnosti sistem vodosnabzheniya [Reliability Estimation of Water Supply Systems]. Vodosnabzhenie i sanitarnaya tekhnika [Water Supply and Sanitary Engineering]. 1988, no. 11, pp. 4—5.
  16. Deryushev L.G. Pokazateli nadezhnosti truboprovodnykh sistem vodosnabzheniya i vodootvedeniya [Reliability Index of Water Supply and Water Disposal Systems]. Vodosnabzhenie i sanitarnaya tekhnika [Water Supply and Sanitary Engineering]. 2000, no. 12, pp. 6—9.
  17. Herz R.K. Protsess stareniya i neobkhodimost' vosstanovleniya vodoprovodnykh setey [Ageing Processes and Rehabilitation Needs of Drinking Water Distribution Networks]. AKVA Publ., 1996, no. 9, pp. 6—8.
  18. Haviland R.P. Inzhenernaya nadezhnost' i raschet na dolgovechnost' [Engineering Reliability and Long Life Design]. Moscow, Energiya Publ., 1966.

Download

MODERNIZATION OF WATER SUPPLY SYSTEM BASING ON OPTIMIZATION OF HYDRAULIC PARAMETERS IN CASE OF ACCIDENTS ON MAIN LINES

Vestnik MGSU 10/2015
  • Shcherbakov Vladimir Ivanovich - Voronezh State University of Architecture and Civil Engineering (VGASU) Doctor of Technical Sciences, Professor, Department of Hydraulics, Water Supply and Water Disposal, Voronezh State University of Architecture and Civil Engineering (VGASU), 84 20-letiya Oktyabrya str., Voronezh, 394006, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Nguyen Huy Cuong - Voronezh State University of Architecture and Civil Engineering (VGASU) postgraduate student, Department of Hydraulics, Water Supply and Water Disposal, Voronezh State University of Architecture and Civil Engineering (VGASU), 84 20-letiya Oktyabrya str., Voronezh, 394006, Russian Federation.

Pages 115-126

In the large cities of Vietnam there is a serious problem of providing the drinking water of good quality to population and industry in the required quantity and with sufficient pressure. Chaotic building in certain areas has resulted in the formation of quite complex water systems, consisting of large main pipelines and a plurality of dead ends. Because of insufficient water pressure in the water network, the majority of consumers have to install individual reservoirs and tanks on the roofs of the buildings. The uneven water withdrawal from the network and its irrational use violates the hydraulic regime of water supply and distribution. The authors offer a water supply scheme with the accompanying transit flow lines with pipes of smaller diameter which allow providing the required amount of water and increasing the pressure on the ring. Hydraulic calculations of ring network were made using the software program WaterGEMS V8i for the worst case of the system of water supply. The plots of the water supply network show an increase in diameter of pipes is required, which greatly reduces pressure losses and ensures a reliable supply of water to the consumer. In order to solve the problem of optimal power flow, a scheme of water supply with associated main pipelines with smaller diameter was created. Laying of main pipelines accompanied by parallel lines connected to them provide better hydraulic conditions, reduce the pressure loss in the piping and shortens power consumption.

DOI: 10.22227/1997-0935.2015.10.115-126

References
  1. Những quả 'bom' tấn chênh vênh trên nóc tập thể xập xệ // zing.vn. Available at: http://news.zing.vn/Nhung-qua-bom-tan-chenh-venh-tren-noc-tap-the-xap-xe-post461545.html. Date of access: 13.09.2015.
  2. Shcherbakov V.I. Gorodskoy vodoprovod [City Water Supply System]. Voronezh, VGASU Publ., 2000, 240 p. (In Russian)
  3. Eletskikh V.L., Shcherbakov V.I. Voda i lyudi : Istoriya i den’ segodnyashniy [Water and People : The History and Today]. Voronezh, Tvorcheskoe ob”edinenie «Al’bom» Publ., 2004, 248 p. (In Russian)
  4. TCVN 33—2006. WaterSupply — Distribution System and Facilities — Design Standard. 2006, 190 p.
  5. Shcherbakov V.I., Nguen H.C. K raschetu sistemy vodosnabzheniya rayona Tkhu Dyk g. Khoshimin [Calculation of Water Supply of the District Thu Duc in Ho Chi Minh City]. Nauchnyy vestnik Voronezhskogo gosudarstvennogo arkhitekturno-stroitel’nogo universiteta. Vysokie tekhnologii. Ekologiya [Scientific Herald of the Voronezh State University of Architecture and Civil Engineering. Hightech. Ecology]. 2015, no. 1, pp. 155—159. (In Russian)
  6. Shcherbakov V.I., Nguen Kh.K. Problemy vodosnabzheniya krupnykh gorodov V’etnama [Problems of Water Supply in Large Cities of Vietnam]. Nauchnyy vestnik Voronezhskogo gosudarstvennogo arkhitekturno-stroitel’nogo universiteta. Stroitel’stvo i arkhitektura [Scientific Herald of the Voronezh State University of Architecture and Civil Engineering. Construction and Architecture]. 2015, no. 2, pp. 49—56. (In Russian)
  7. Larock B.E., Jeppson R.W., Watters G.Z. Hydraulics of Pipeline Systems. Florida, CRC Press LLC, 2000, 533 p.
  8. Menon E.S., Menon P.S. Working Guide to Pumps and Pumping Stations. Oxford, Linacre House, Jordan Hill, 2010, 283 p.
  9. American Water Works Association. Computer Modeling of Water Distribution Systems M32. Printed in the United States of America. 2005, 159 p.
  10. Adrien N.G. Computational Hydraulics and Hydrology. CRC Press LLC, Florida, 2004, 449 p.
  11. Bentley WaterGEMS V8i. Watertown. CT 06795 USA, 2012. Available at: http://www.bentley.com/en-US/Products/WaterGEMS/how-to-get.htm/. Date of access: 15.07.2015.
  12. Nguen H.C. Raschet i proektirovanie vodoprovodnykh setey na WaterCAD [Calculation and Design of Water Distribution Networks in the WaterCAD]. Nauchnyy vestnik Voronezhskogo gosudarstvennogo arkhitekturno-stroitel’nogo universiteta. Student i nauka [Scientific Herald of the Voronezh State University of Architecture and Civil Engineering. Student and Science]. 2008, no. 4, pp. 131—134. (In Russian)
  13. Sumithra R.P., Nethaji V.E., Amaranath J. Feasibility Analysis and Design of Water Distribution System for Tirunelveli Corporation Using Loop and Watergems. International Journal on Applied Bioengineering, Sathyabama University, Chennai, India. 2013, vol. 7, no. 1, pp. 61—71.
  14. Shcherbakov V.I., Panov M.Ya., Kvasov I.S. Analiz, optimal’nyy sintez i renovatsiya gorodskikh sistem vodosnabzheniya i gazosnabzheniya [Analysis, Optimal Synthesis and Renovation of City Water Supply and Gas Supply Systems]. Voronezh, VGASU Publ., 2001, 291 p. (In Russian)
  15. Panov M.Ya., Levadnyy A.S., Shcherbakov V.I., Stogney V.G. Modelirovanie, optimizatsiya i upravlenie sistemami podachi i raspredeleniya vody [Modeling, Optimization and Control of Water Supply and Distribution Systems]. Voronezh, VGASU Publ., 2005, 489 p. (In Russian)
  16. Walski T.M. Advanced Water Distribution Modeling and Management. Bentley Institute Press, 2003, 751 p.
  17. Barnard T., Durrans R., Lowry S., Meadows M. Computer Application in Hydraulic Engineering. 7th ed. Bentley Institute Press, 2006, 645 p.
  18. Panov M.Ya., Petrov Yu.F., Shcherbakov V.I. Modeli upravleniya funktsionirovaniem sistem podachi i raspredeleniya vody [Management Models of Functioning of Water Supply and Distribution Systems]. Voronezh, VGASU Publ., 2012, 272 p. (In Russian)
  19. Panov M.Ya., Shcherbakov V.I., Kvasov I.S. Modelirovanie vozmushchennogo sostoyaniya gidravlicheskikh sistem slozhnoy konfiguratsii na osnove printsipov energeticheskogo ekvivalentirovaniya [Simulation of the Perturbed State of Hydraulic Systems with Complex Configuration Based on the Principles of Energy Equivalenting]. Izvestiya Rossiyskoy akademii nauk. Energetika [News of the Russian Academy of Sciences. Energetics]. 2002, no. 6, pp. 130—137. (In Russian)
  20. Panov M.Ya., Shcherbakov V.I., Kvasov I.S. Metodologiya faktornogo analiza vodoraspredeleniya i vodopotrebleniya [Methodology of Factor Analysis of Water Allocation and Water Demand]. Izvestiya vysshikh uchebnykh zavedeniy. Stroitel’stvo [News of Higher Educational Institutions. Construction]. 2001, no. 5, pp. 82—87. (In Russian)
  21. Matynenko G.N., Panov M.Ya., Shcherbakov V.I., Davydov I.P. Optimal’nyy sintez gidravlicheskikh truboprovodnykh sistem v oblasti operativnogo upravleniya [Optimum Synthesis of Hydraulic Piping Systems in the Area of Operational Management]. Izvestiya vysshikh uchebnykh zavedeniy. Stroitel’stvo [News of Higher Educational Institutions. Construction]. 2004, no. 2, pp. 78—83. (In Russian)
  22. Adichai Pornorommin, Lipiwattanakarn Surachai, Chittaladakorn Suwatana. Numerical Simulation of Water Distribution System of Thungmahamek Branch, Bangkok, Thailand. International Symposium on Asian Simulation and Modeling 2007. Chiang Mai, Thailand, 2007, pp. 161—168.
  23. Pornprommin A., Lipiwattanakarn S., Chittaladakorn S. Water Distribution Network Analysis for DM A Design of Ladpra o Branch, Bangkok, Thailand. International Symposium on Managing Water Supply for Growing Demand. Bangkok, Thailand, 2006, pp. 45—50.

Download

The requirements to reliability of water supply systems in Vietnam

Vestnik MGSU 9/2014
  • Deryushev Leonid Georgiyevich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Associated Professor, Department of Water Supply, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Pham Ha Hai - Moscow State University of Civil Engineering (MGSU) postgraduate student, Department of Water Supply, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 7-21

The recommendations for the development of additional regulatory requirements to reliability of water supply systems in Vietnam are offered. In current construction rules for design, the reliability of water supply systems of water facilities is not standardized. Water systems are classified into three categories, for which the conditions for performing functions in the process of water supply for consumers are formulated. It is not provided to assess the quality of these functions quantitatively. Adoption of design decisions without quantitative assessment of their quality is violating a systematic approach in carrying out construction and design works, which has formed in the global practice. As a result of the research of water supply facilities’ reliability in Vietnam and Russia, the reliability of the existing water supply facilities has been estimated. On the basis of mathematical methods for assessing the reliability of technical objects, the methods for assessing the reliability of water supply facilities and their systems has been justified and systematized. If there is lack of reliability and security requirements to the object of capital construction for design documentation development or such requirements are not established, the development and approval in the prescribed manner of special specifications should precede the documentation development. It is proposed to systematize the statistical data gathering on the reliability of the equipment and facilities of water supply systems by uniform rules. Any designed objects of water supply must have a quantitative estimate of the level of reliability. The outlined methods for assessing the reliability of water supply facilities and systems can be used in the formation of regulatory requirements for reliability in the design of water supply facilities in Vietnam.

DOI: 10.22227/1997-0935.2014.9.7-21

References
  1. GOST 27.002—89. Nadezhnost' v tekhnike. Osnovnye ponyatiya. Terminy i opredeleniya [All-Union State Standard GOST 27.002—89. Reliability of Equipment. Basic Concepts. Terms and Definitions]. Nadezhnost' v tekhnike : sbornik GOSTov [Reliability of Equipment : Collection of All-Union State Standards]. Moscow, Publishing and Printing Complex «Izdatel'stvo standartov», 2002, pp. 9—32.
  2. GOST R 53480—2009. Nadezhnost' v tekhnike. Terminy i opredeleniya [All-Union State Standard GOST R 53480—2009. Reliability of Equipment. Terms and Definitions]. Moscow, Standartinform Publ., 2010, 32 p.
  3. Barlow R.E., Proschan F. Mathematical Theory of Reliability (Classics in Applied Mathematics). 1987, Society for Industrial and Applied Mathematics, 274 p.
  4. Bazovskiy I. Nadezhnost'. Teoriya i praktika [Reliability. Theory and Practice]. Moscow, Mir Publ., 1965, 374 p.
  5. Solov'ev A.D. Osnovy matematicheskoy teorii nadezhnosti [Fundamentals of Mathematical Reliability Theory]. Moscow, Znanie Publ., 1975, 103 p.
  6. Deryushev L.G., Minaev A.V. Otsenka nadezhnosti sistem vodosnabzheniya [Reliability Estimation for Water Supply Systems]. Vodosnabzhenie i sanitarnaya tekhnika [Water Supply and Sanitary Engineering]. 1988, no. 11, pp. 4—5.
  7. Deryushev L.G. Pokazateli nadezhnosti truboprovodnykh sistem vodosnabzheniya i vodootvedeniya [Reliability Indicators of Water Supply and Water Disposal Pipeline Systems]. Vodosnabzhenie i sanitarnaya tekhnika [Water Supply and Sanitary Engineering]. 2000, no.12, pp. 6—9.
  8. Gnedenko B.V., Belyaev Yu.K., Solov'ev A.D. Matematicheskie metody v teorii nadezhnosti [Mathematical Methods in Reliability Theory]. Moscow, Nauka Publ., 1965, 524 p.
  9. Primin O.G., Klimiashvili L.D. Metodika sbora i obrabotki statisticheskikh dannykh po otkazam otdel'nykh elementov sistemy podachi i raspredeleniya vody [Methods of Gathering and Processing Statistical Data on Separate Components Failure of Water Supply and Distribution System]. Voprosy nadezhnosti sistem vodosnabzheniya : sbornik trudov MISI [Problems of Reliability of Water Supply Systems : Collection of Works of Moscow Construction Engineering Institute]. Moscow, MISI Publ., 1978, no. 170, pp. 82—94.
  10. Primin O.G., Moiseev V.N. Opredelenie ob"emov vremennogo rezervirovaniya v rayonnykh sistemakh vodosnabzheniya s uchetom potoka otkazov ee elementov [Determination of Time Reservation Volume in Regional Water Supply Systems with Account for its Components Failure Flow]. Sovershenstvovanie sistem vodosnabzheniya g. Moskvy [Improving Water Supply Systems in Moscow]. Moscow, MVNIIproekt Publ., 1984, pp. 23—25.
  11. Herz R.K. Protsess stareniya i neobkhodimost' vosstanovleniya vodoprovodnykh setey [Ageing Processes and Need for Rehabilitation of Drinking Water Distribution Networks]. AKVA Publ., 1996, no. 9.
  12. Haviland R. Engineering Reliability and Long Life Design. D. Von Nostrand Co., Inc., New Jersey, 1964.
  13. Krutsenyuk I.Yu. Matematicheskaya model' prognozirovaniya kolichestvennykh kharakteristik protsessov funktsionirovaniya sistem vodosnabzheniya [Mathematical Prediction Model of Quantitative Characteristics of the Functioning Processes of Water Supply Systems]. Tezisy dokladov 61-y nauchno-tekhnicheskoy konferentsii [Paper Abstracts of the 61st Science and Technical Conference]. Novosibirsk, NGASU Publ., 2004, p. 122.
  14. Der Kiureghian A., Song J. Multi-scale Reliability Analysis and Updating of Complex Systems by Use of Linear Programming. Reliability Engineering & System Safety. 2008, vol. 93, no. 2, pp. 288—297. DOI: http://dx.doi.org/10.1016/j.ress.2006.10.022.
  15. Subramanian R., Anantharaman V. Reliability Analysis of a Complex Standby Redundant System. Reliability Engineering & System Safety. 1995, vol. 48, no. 1, pp. 57—70. DOI: http://dx.doi.org/10.1016/0951-8320(94)00073-W.
  16. Ostfeld A. Reliability Analysis of Water Distribution Systems. Journal of Hydroinformatics. 2004, no. 6, pp. 281—294.

Download

Results 1 - 3 of 3