RESEARCH OF BUILDING MATERIALS

Settlement determination of operating moisture of autoclaved aerated concrete in different climatic zones

Vestnik MGSU 2/2015
  • Pastushkov Pavel Pavlovich - Research Institute for Building Physics of the Russian Academy of Architecture and Building Sciences (NIISF RAASN) Candidate of Technical Sciences, senior research worker, Research Institute for Building Physics of the Russian Academy of Architecture and Building Sciences (NIISF RAASN), 21 Lokomotivnyy proezd, Moscow, 127238, Russian Federation; +7 (495) 482-40-58; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Grinfel’d Gleb Iosifovich - National Association of Autoclaved Aerated Concrete Producers (NAAG) Executive Director, National Association of Autoclaved Aerated Concrete Producers (NAAG), 40 Oktyabr’skaya naberezhnaya, litera A, St. Petersburg, 193091, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Pavlenko Natal’ya Viktorovna - Moscow State Lomonosov University (Institute of Mechanics, MSU) Candidate of Technical Sciences, Associate Professor, senior engineer, Research Institute of Mechanics, Moscow State Lomonosov University (Institute of Mechanics, MSU), 1 Michurinskiy Prospekt, Moscow, 119192, Russian Federation; +7 (495) 939-52-82; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Bespalov Aleksey Evgen’evich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Associate Professor, Department of Soil Mechanics and Geotechnics, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7 (499) 183-34-38 (ext. 14-29); This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Korkina Elena Vladimirovna - Research Institute for Building Physics of the Russian Academy of Architecture and Building Sciences (NIISF RAASN) research worker, Research Institute for Building Physics of the Russian Academy of Architecture and Building Sciences (NIISF RAASN), 21 Lokomotivnyy proezd, Moscow, 127238, Russian Federation; +7 (495) 482-40-58; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 60-69

In the process of operation of buildings the moisture state of enveloping structures materials is changing depending on their construction features, properties of the material, temperature and moisture conditions in the premises, climatic conditions of the construction area. Moisture mode determines the operational properties of the enveloping structures of a building. It directly influences the thermal characteristics of enveloping structure and energy efficiency of the applied materials. The analysis of the methods for calculation of moisture behavior of enclosing structures is carried out. The research relevance of operational moisture of AAC is substantiated. Experimental studies and results of the sorption moisturizing and water vapor permeability of leading marks of aerated concrete are carried out. The authors offer the results of numerical calculations of the moisture behavior of aerated concrete in the walls with mark D400 with facade thermal insulation composite systems - with external plaster layers for different climatic zones of construction.

DOI: 10.22227/1997-0935.2015.2.60-69

References
  1. Aksoezen M., Daniel M., Hassler U., Kohler N. Building Age as an Indicator for Energy Consumption. Energy and Buildings. January 2015, vol. 87, pp. 74—86. DOI: http://dx.doi.org/10.1016/j.enbuild.2014.10.074.
  2. Mamontov A.A., Yartsev V.P., Strulev S.A. Analiz vlazhnosti razlichnykh utepliteley v ograzhdayushchikh konstruktsiyakh zdaniya pri ekspluatatsii v otopitel’nyy period [Moisture Analisys of Various Insulations and Building Enveloping Structures during Operation in Heating Season]. Academia. Arkhitektura i stroitel’stvo [Academia. Architecture and Construction]. 2013, no. 4, pp. 117—119. (In Russian)
  3. Jelle B.P. Traditional, State-of-the-art and Future Thermal Building Insulation Materials and Solutions — Properties, Requirements and Possibilities. Energy and Buildings. 2011, vol. 43, no. 10, pp. 2549—2563. DOI: http://dx.doi.org/10.1016/j.en¬build.2011.05.015.
  4. Grinfel’d G.I., Kuptaraeva P.D. Kladka iz avtoklavnogo gazobetona s naruzhnym utepleniem. Osobennosti vlazhnostnogo rezhima v nachal’nyy period ekspluatatsii [Setting of Aerated Concrete with Outer Thermal Insulation. Features of Moisture Mode in the Initial Period of Operation]. Inzhenerno-stroitel’nyy zhurnal [Magazine of Civil Engineering]. 2011, no. 8 (26), pp.41—50. (In Russian)
  5. Chernyshov E.M., Slavcheva G.S. Vlazhnostnoe sostoyanie i zakonomernosti proyavleniya konstruktsionnykh svoystv stroitel’nykh materialov pri ekspluatatsii [Moisture Condition and Regularities of Construction Properties Manifestation of Construction Materials in the Process of Operation]. Academia. Arkhitektura i stroitel’stvo [Academia. Architecture and Construction]. 2007, no. 4, pp. 70—77. (In Russian)
  6. Al-Homoud M.S. Performance Characteristics and Practical Applications of Common Building Thermal Insulation Materials. Building and Environment. 2005, vol. 40, no. 3, pp. 353—366. DOI: http://dx.doi.org/10.1016/j.buildenv.2004.05.013.
  7. Pastushkov P.P. Chislennoe i eksperimental’noe issledovanie okhlazhdeniya ograzhdayushchey konstruktsii posle vykly¬ucheniya otopleniya [Numerical and Experimental Investigation of the Cooling of Building Envelopes after Turning off the Heating System]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2011, no. 7, pp. 312—318. (In Russian)
  8. Gagarin V.G., Kozlov V.V. O trebovaniyakh k teplozashchite i energeticheskoy effektivnosti v proekte aktualizirovannoy re¬daktsii SNiP «Teplovaya zashchita zdaniy» [About Requirements to the Thermal Performance and Energy Efficiency in the Project of Actualized SNIP “Thermal Performance Of The Buildings”]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2011, no. 7, pp. 59—66. (In Russian)
  9. Gagarin V.G., Pastushkov P.P. Kolichestvennaya otsenka energoeffektivnosti energosberegayushchikh meropriyatiy [Quantitative Estimation of the Energy Efficiency of Energy Saving Measures]. Stroitel’nye materialy [Construction Materials]. 2013, no. 6, pp. 7—9. (In Russian)
  10. SP 50.13330.2012. Aktualizirovannaya redaktsiya SNiP 23-02—2003 «Teplovaya zashchita zdaniy» [Requirements SP 50.13330.2012. Revised Edition of SNiP 23-02—2003 “Thermal Insulation of Buildings”]. Moscow, Minregion Rossii Publ., 2012, 100 p. (In Russian)
  11. Perekhozhentsev A.G., Gruzdo I.Yu. Issledovanie diffuzii vlagi v poristykh stroitel›nykh materialakh [Investigation of Moisture Diffusion in Porous Construction Materials]. Vestnik Volgogradskogo gosudarstvennogo arkhitekturno-stroitel’nogo univer¬sitetata. Seriya: Stroitel’stvo i arkhitektura [Internet-Vestnik VolgGASU. Series: Architecture and Construction]. 2014, no. 35 (54), pp. 116—120. (In Russian)
  12. Kornienko S.V. Temperaturno-vlazhnostnyy rezhim i teplozashchitnye svoystva ograzhdayushchikh konstruktsiy s kraevymi zonami [Temperature and Moisture Mode and Thermal Insulation Properties of the Enveloping Structures with Boundary Zones]. Vestnik Volgogradskogo gosudarstvennogo arkhitekturno-stroitel’nogo universitetata. Seriya: Stroitel’stvo i arkhitektura [Internet-Vestnik VolgGASU. Series: Architecture and Construction]. 2014, no. 35 (54), pp. 62—69. (In Russian)
  13. Gagarin V.G., Kozlov V.V. Matematicheskaya model’ i inzhenernyy metod rascheta vlazhnostnogo sostoyaniya ograzhday¬ushchikh konstruktsiy [Mathematical Model and Engineering Calculation Method of the Moisture State of Enveloping Structures]. Academia. Arkhitektura i stroitel’stvo [Academia. Architecture and Construction]. 2006, no. 2, pp. 60—63. (In Russian)
  14. Levchenko V.N., Grinfel’d G.I. Proizvodstvo avtoklavnogo gazobetona v Rossii: perspektivy razvitiya podotrasli [Production of Autoclaved Aerated Concrete in Russia: Subindustry Development Prospects]. Stroitel’nye materialy [Construction Materials]. 2011, no. 9, pp. 44—47. (In Russian)
  15. Grinfel’d G.I., Morozov S.A., Sogomonyan I.A., Zyryanov P.S. Vlazhnostnoe sostoyanie sovremennykh konstruktsiy iz av¬toklavnogo gazobetona v usloviyakh ekspluatatsii [Moisture State of Modern Constructions Made of Autoclave Aerated Concrete in Operation Conditions]. Inzhenerno-stroitel’nyy zhurnal [Magazine of Civil Engineering]. 2011, no. 2 (20), pp. 33—38. (In Russian)
  16. Semchenkov A.S., Ukhova T.A., Sakharov G.P. O korrektirovke ravnovesnoy vlazhnosti i teploprovodnosti yacheistogo beto¬na [On the Adjustment of Equilibrium Moisture and Thermal Conductivity of the Aerated Concrete]. Stroitel’nye materialy [Construction Materials]. 2006, no. 6, pp. 3—7. (In Russian)
  17. Schoch T., Kreft O. The Influence of Moisture on the Thermal Conductivity of AAC. 5th International Conference on Autoclaved Aerated Concrete “Securing a Sustainable Future”: Bydgoszcz, Poland, September, 14—17, 2011, pp. 361—370.
  18. Babkov V.V., Kuznetsov D.V., Gaysin A.M., Rezvov O.A., Samofeev N.S., Morozova E.V. Problemy ekspluatatsionnoy na¬dezhnosti naruzhnykh sten zdaniy na osnove avtoklavnykh gazobetonnykh blokov i vozmozhnosti ikh zashchity ot uvlazhneniya [Problems of Operational Reliability of Inner Walls of Buildings Based on Autoclaved Aerated Concrete Blocks and Possibilities of Their Protection from Moisture]. Inzhenerno-stroitel’nyy zhurnal [Magazine of Civil Engineering]. 2010, no. 8 (18), pp. 28—31. (In Russian)
  19. Vasil’ev B.F. Naturnye issledovaniya temperaturno-vlazhnostnogo rezhima zhilykh zdaniy [Field Studies of Temperature and Moisture Mode of Living Buildings]. Moscow, Gosstroyizdat Publ., 1957, 214 p. (In Russian)
  20. Rukovodstvo po raschetu vlazhnostnogo rezhima ograzhdayushchikh konstruktsiy zdaniy [Guidance on Moisture Mode Calculation of Enveloping Structures of Building]. Moscow, Stroyizdat Publ., 1984, 168 p. (In Russian)
  21. Slavcheva G.S., Chernyshov E.M., Korotkikh D.N., Kukhtin Yu.A. Sravnitel’nye ekspluatatsionnye teplozashchitnye khara¬kteristiki odno- i dvukhsloynykh stenovykh gazosilikatnykh konstruktsiy [Comparative Operational Thermal Insulation Properties of One- and Two-Wall Gas Silicate Structures]. Stroitel’nye materialy [Construction Materials]. 2007, no. 4, pp. 13—15. (In Russian)
  22. Bedov A.I., Babkov V.V., Gabitov A.I., Gajsin A.M., Rezvov O.A., Kuznecov D.V., Gafurova Je.A., Sinicin D.A. Konstruktivnye reshenija i osobennosti rascheta teplozaschity naruzhnyh sten zdanij na osnove avtoklavnyh gazobetonnyh blokov [Structural Solutions and Special Features of the Thermal Protection Analysis of Exterior Walls of Buildings Made of Autoclaved Gas-Concrete Blocks]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2012, no. 2, pp. 98—103. (In Russian)
  23. Pastushkov P.P., Lushin K.I., Pavlenko N.V. Otsutstvie problemy vypadeniya kondensata na vnutrenney poverkhnosti sten so skreplennoy teploizolyatsiey [Absence of Condensate Formation Problem on the Inner Surface of Walls with Fastened Thermal Isolation]. Zhilishchnoe stroitel’stvo [Housing Construction]. 2014, no. 6, pp. 42—44. (In Russian)

Download

Results 1 - 1 of 1