DATABASE MODEL FORMATION FOR IMPROVING THE ORGANIZATIONAL AND TECHNOLOGICAL RELIABILITY OF MONOLITHIC CONSTRUCTION

Vestnik MGSU 9/2017 Volume 12
  • Bolotova Alina Sergeevna - Moscow State University of Civil Engineering (National Research University) (MGSU) Assistant, Department of Information Systems, Technology and Automation in Construction, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.

Pages 1061-1069

This article describes the scientific model information database of defects and irregularities identified in the organization of work in monolithic construction. Monolithic construction is a production system that consists of a number of random events. For each event a significant number of random factors are affected. The author examines and analyzes the characteristics of the technical failures that affect the organizational and technological reliability of building. Use of information technology makes it possible to calculate various indicators of operational efficiency of the process of detection and elimination of defects and failures of the production system. An important criterion in the process of sustainable development is the organizational and technological reliability (OTR), which describes the capabilities of the system to achieve the goal. The author generalized and systematized the available data. The author concludes that it is necessary to develop such organizational and technological solutions that will perform the work in a timely manner, with the required quality, without prejudice to the OTR of monolithic construction. Topicality of the article is due to the need in analysis of the organization of construction works and evaluation of the system of building control in the construction of monolithic reinforced concrete structures, with the aim of preventing the emergence of potential defects and irregularities in monolithic construction. Specialists in the field of risk analysis and assessment, experts and insurance companies, and organizations conducting the assessment can use the technique. Subject: organizational and technological reliability as a criterion for the quality of organization of monolithic construction, which affects the duration of work. Analysis of the interrelations between the index of OTR and technological defects and deviations in the production process by forming a database model has not been studied in detail until now. Materials and methods: for developing a technique for increasing the OTR, a general description of the object, its purpose and functions are presented. The indicators of the quality of the object and the characteristics affecting it are formed into an information database. Further, the parameters of factors and the range of their changes at which the normal functioning of the object is ensured are established. Results: using the method of expert assessments, the influence of the occurrence of certain undesirable events (failures) was quantified and the impact of these events on the achievement of the project objectives (duration of construction, cost, project quality) was assessed. The results of the analysis allow us to quickly assess the criticality of the violations identified, perform their ranking, and make corrective actions in the organization of production. The information presented in the database helps to quickly find the optimal technological solution that positively affects the time-saving. Conclusions: conducted analysis led to the conclusion that it is desirable to use the characteristics of the OTR of monolithic construction for the purposes of improving the quality of production processes and provided the information and the scientific basis necessary for improving the organization of production in civil engineering.

DOI: 10.22227/1997-0935.2017.9.1061-1069

Download

Using structural actions to improve organizationaland technological reliability of construction activities

Vestnik MGSU 3/2013
  • Zhavnerov Pavel Borisovich - Moscow State University of Civil Engineering (MGSU) postgraduate student, Department of Information Systems, Technologies and Automation in Civil Engineering, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Ginzburg Aleksandr Vital’evich - Moscow State University of Civil Engineering (MGSU) (National Research University) Doctor of Technical Sciences, Professor, chair, Department of Information Systems, Technologies and Automation in Construction, Moscow State University of Civil Engineering (MGSU) (National Research University), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 196-200

The process of construction is a complex probabilistic system characterized by complete (work stoppage) and partial failures reducing their intensity and causing failure to comply with the work performance schedule. Organizational and technological reliability (OTR) is an important criterion of successful operation of a construction company. In the construction industry, OTR represents the ability to maintain the operating parameters of a construction company within the pre-set values.Assimilation of advanced technologies, diversity of construction materials, multiplicity of contractors, a wide range of construction operations require improvements in their reliability, an adequate assessment of the cost of construction and a lower discrepancy between scheduled deadlines and practical delivery terms. OTR improvement in the construction industry is one of the main challenges for construction companies.

DOI: 10.22227/1997-0935.2013.3.196-200

References
  1. Sedykh Yu.I., Lazebnik V.M. Organizatsionno-tekhnologicheskaya nadezhnost’ zhilishchno-grazhdanskogo stroitel’stva [Organizational and Technological Reliability of Residential Construction]. Moscow, Stroyizdat Publ., 1989, 396 p.
  2. Batienkov V.T., Chernobrovkin G.Ya., Kirnev A.D. Tekhnologiya i organizatsiya stroitel’stva. Upravlenie kachestvom v voprosakh i otvetakh [Technology and Organization of Construction Activities. Quality Management in Questions and Answers]. Rostov-on-Don, Feniks Publ., 2007, 400 p.
  3. Ginzburg A.V. Avtomatizatsiya proektirovaniya organizatsionno-tekhnologicheskoy nadezhnosti stroitel’stva [Automated Design of Organizational and Technological Reliability of Construction Activities]. Moscow, SIP RIA Publ., 1999, 155 p.
  4. Sinenko S.A. Informatsionnaya tekhnologiya proektirovaniya organizatsii stroitel’nogo proizvodstva [Information Technology Applicable to Design of Construction Operations]. Moscow, NTO «Sistemotekhnika i informatika» publ., 1992, 258 p.

Download

Functional modeling of construction organization in emergency situations

Vestnik MGSU 10/2013
  • Fedoseeva Tatiana Aleksandrovna - Moscow State University of Civil Engineering (MGSU) Assistant, Department of Information Systems, Technologies and Automation in Construction, Moscow State University of Civil Engineering (MGSU), 26, Yaroslavskoye shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 272-277

The main purpose of construction organization (CO) is putting an object of a required quality into operation within the established time limit with the lowest labor and resources input. This aim remains relevant also in emergency situations. However, apart from the main tasks of CO in emergencies, there are additional challenges to stabilize and arrange construction works, reduce the impact of emergency situations and their results. Due to the lack of information about the domain objects in emergency situations the complexity of formulating and dealing with management problems increases. This provokes rebuilding of the manufacturing processes of a construction enterprise in order to adapt them to the new conditions and to optimize the results obtained in these conditions. Fast and efficient decisions based on the functional model of the components and processes will improve the efficiency of CO in emergency situations.The essence of the model proposed by the author is that the tasks of the CO are divided into conditional permanent and conditional variable. The functioning of conditional permanent tasks remain unchanged in emergency situations, but conditional variable depend on the emergency. Their composition is determined by the construction characteristics. The resulting sets of tasks are ranked by priority. A higher priority is assigned to the tasks of operational planning of the building production rehabilitation by restructuring the production processes disturbed in emergency situations.

DOI: 10.22227/1997-0935.2013.10.272-277

References
  1. Volkov A.A. Kompleksnaya bezopasnost' zdaniy i sooruzheniy v usloviyakh ChS: formal'nye osnovaniya situatsionnogo modelirovaniya [Integrated Safety of Buildings and Structures in Emergency Situations: Formal Foundations of Situational Modeling]. Obsledovanie, ispytanie, monitoring i raschet stroitel'nykh konstruktsiy zdaniy i sooruzheniy: Sbornik nauchnykh trudov [Inspection, Testing, Monitoring and Calculation of Constructions and Structures: Collection of Works]. Moscow, ASV Publ., 2010, pp. 55—62.
  2. Volovik M.V., Ershov M.N., Ishin A.V., Lapidus A.A., Lyang O.P., Telichenko V.I., Tumanov D.K., Fel'dman O.A. Sovremennye voprosy tekhnologicheskikh i organizatsionnykh meropriyatiy na stroitel'nom proizvodstve [Contemporary Issues of Technological and Organizational Measures for Building Production]. Tekhnologiya i organizatsiya stroitel'nogo proizvodstva [Technology and Organization of the Construction Industry]. 2013, no. 2(3), pp. 12—17.
  3. Il'in N.I., Novikova E.V., Demidov N.N. Situatsionnye tsentry. Opyt, sostoyanie, tendentsii razvitiya [Situational centers. Experience, State and Trends of Development]. Moscow, MediaPress Publ, 2011.
  4. Volkov A.A, Lebedev V.M. Proektirovanie sistemokvantov rabochikh operatsiy i trudovykh stroitel'nykh protsessov v srede informatsionnykh tekhnologiy [Designing of the System Quanta of Working Operations and Labor Building Processes in the IT environment]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2010, no. 2, pp. 293—296.
  5. Volkov A.A. Intellekt zdaniy: formula [Intelligence of Buildings: Formula]. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering]. 2012, no. 3, pp. 54—57.
  6. Volkov A.A. Gomeostat stroitel'nykh ob"ektov. Chast' 3. Gomeostaticheskoe upravlenie [Homeostat of Construction Projects. Part 3. Homeostatic Management]. Stroitel'nye materialy, oborudovanie, tekhnologii XXI veka [Building Materials, Equipment, Technologies of the 21st century]. 2003, no. 2, pp. 34—35.
  7. Volkov A.A., Yarulin R.N. Avtomatizatsiya proektirovaniya proizvodstva remontnykh rabot zdaniy i inzhenernoy infrastruktury [Computer-Aided Design of Repairs of Buildings and the Engineering Infrastructure]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2012, no. 9, pp. 234—240.
  8. Volkov A.A., Sedov A.V., Chelyshkov P.D., Sukneva L.V. Geograficheskaya informatsionnaya sistema (atlas) al'ternativnykh istochnikov energii [Atlas: Geographic Information System of Alternative Sources of Energy]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2013, no.1, pp. 213—217.
  9. Volkov A. Building Intelligence Quotient: Mathematical Description. Applied Mechanics and Materials (Trans Tech Publications, Switzerland). 2013, vol. 409—410, pp. 392—395.
  10. Volkov A.A., Ignatov V.P. Myagkie vychisleniya v modelyakh gomeostata stroitel'nykh ob"ektov [Soft Computing of the Homeostat Models of Buildings] Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2010, no. 2. pp. 279—282.
  11. Volkov A.A. Udalennyy dostup k proektnoy dokumentatsii na osnove sovremennykh telekommunikatsionnykh tekhnologiy [Remote Access to Project Documents on the Basis of Advanced Telecommunications Technologies]. Stroitel'nye materialy, oborudovanie, tekhnologii XXI veka [Building Materials, Equipment, Technologies of the 21st century]. 2000, no 4, p. 23.
  12. Ginzburg A.V., Kagan P.B. SAPR organizatsii stroitel'stva [CAD in Construction Organization]. SAPR i grafika [CAD and Graphics]. 1999, no. 9, pp. 32—34.

Download

Operation algorithm of the information system of improving organizational and technological reliability of construction projects using energy efficient technologies

Vestnik MGSU 10/2016
  • Ginzburg Aleksandr Vital’evich - Moscow State University of Civil Engineering (MGSU) (National Research University) Doctor of Technical Sciences, Professor, chair, Department of Information Systems, Technologies and Automation in Construction, Moscow State University of Civil Engineering (MGSU) (National Research University), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Ryzhkova Anastasiya Igorevna - Moscow State University of Civil Engineering (MGSU) (National Research University) postgraduate student, Department of Information Systems, Technologies and Automation in Construction, Moscow State University of Civil Engineering (MGSU) (National Research University), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 112-119

The main source for the development of construction projects with energy-efficient technologies in use is investments. The traditional approaches of risk management: insurance, diversification and redundancy only raise the cost of the construction project, which has a negative impact on the investor’s decision to invest. In order to solve this problem an information system has been developed, which is based on the principle of insightful analysis of the potential “pure” risks and a list of recommendations of risk management. This tool allows identifying all the weaknesses of a construction project, improving the organizational and technological reliability, and imparting an understanding to the investor / a customer of the resources required for the project implementation.

DOI: 10.22227/1997-0935.2016.10.112-119

Download

ASSESSMENT OF ORGANIZATIONAL AND TECHNOLOGICAL RELIABILITY OF INDUSTRIAL CONSTRUCTION ENTERPRISES

Vestnik MGSU 3/2012
  • Gazaryan Robert Kamoevich - Moscow State University of Civil Engineering (MSUCE) , Moscow State University of Civil Engineering (MSUCE), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Chulkov Vitaliy Olegovich - Moscow State Academy of Communal Services and Construction (MSUCSC) , Moscow State Academy of Communal Services and Construction (MSUCSC), 30 Srednyaya Kalitnikovskaya St., Moscow, 109029, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Grabovyy Kirill Petrovich - Moscow State University of Civil Engineering (MSUCE) , Moscow State University of Civil Engineering (MSUCE), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Kulakov Kirill Yurevich - Moscow State University of Civil Engineering (MSUCE) , Moscow State University of Civil Engineering (MSUCE), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 218 - 222

In this article, the procedure of identification of organizational and technological reliability is described. This methodology is applicable both to separate functional areas and to all industrial enterprises. Its objective is to assess the expediency of reorganization. The objective of this scientific research is the substantiation of reorganization of an industrial enterprise. Multivariable models, or convolutions, were used as research methods. According to the RF law, industrial enterprises are divided into four functional areas, each of which is assessed on the basis of multiple criteria. Assessment of organizational and technological reliability requires a multi-parameter model. Its axes correspond to the number of evaluation criteria. The set of criteria designated for the assessment of organizational and technological reliability is identified on the basis of the homogeneity of trend indicators designated for centripetal and centrifugal models. The axes of a multi-parameter model represent real and benchmark values. The unit serves as the benchmark value; it is the maximal value of this parameter. The formula based on average values shall be used to determine the total value of the above parameters. The authors have also generated a model of organizational and technological reliability of industrial enterprises. It is noteworthy that assessment of organizational and technological reliability of an industrial enterprise requires a concentric multi-layer model developed through the application of the convolution method.

DOI: 10.22227/1997-0935.2012.3.218 - 222

References
  1. INFOGRAFIYa. Tom 1: Mnogourovnevoe infograficheskoe modelirovanie. Modul’nyy kurs lektsiy. Seriya «Infograficheskie osnovy funktsional’nykh sistem» [Infographics Vol. 1. Multilevel Infografical Modeling. Modular Course of Lectures]. Series of Infografical Foundations of Functional Systems. Edited by Chulkov V.O. SvR-ARGUS Publ., Moscow, 2007, 352 p.

Download

ARTIFICIAL INTELLIGENCE CAPABILITIES FOR INCREASING ORGANIZATIONAL-TECHNOLOGICAL RELIABILITY OF CONSTRUCTION

Vestnik MGSU 1/2018 Volume 13
  • Ginzburg Alexander Vital`evich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Sciences, Professor, Head of Information Systems, Technologies and Automation in Construction Department, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, 129337, Russian Federation.
  • Ryzhkova Anastasiya Igorevna - All Russia Public Organization “Delovaya Rossiya” Candidate of Technical Sciences, Senior Analyst, All Russia Public Organization “Delovaya Rossiya”, 7 Delegatskaya st., Moscow, 127473, Russian Federation.

Pages 7-13

The technology of artificial intelligence is actively being mastered in the world but there is not much talk about the capabilities of artificial intelligence in construction industry and this issue requires additional elaboration. As a rule, the decision to invest in a particular construction project is made on the basis of an assessment of the organizational and technological reliability of the construction process. Artificial intelligence can be a convenient quality tool for identifying, analyzing and subsequent control of the “pure” risks of the construction project, which not only will significantly reduce the financial and time expenditures for the investor’s decision-making process but also improve the organizational-technological reliability of the construction process as a whole. Subject: the algorithm of creation of artificial intelligence in the field of identification and analysis of potential risk events is presented, which will facilitate the creation of an independent analytical system for different stages of construction production: from the sketch to the working documentation and conduction of works directly on the construction site. Research objectives: the study of the possibility, methods and planning of the algorithm of works for creation of artificial intelligence technology in order to improve the organizational-technological reliability of the construction process. Materials and methods: the developments in the field of improving the organizational and technological reliability of construction were studied through the analysis and control of potential “pure” risks of the construction project, and the work was also carried out to integrate the technology of artificial intelligence into the area being studied. Results: An algorithm for creating artificial intelligence in the field of identification of potential “pure” risks of construction projects was presented. Conclusions: the obtained results are useful for working out practical steps for mastering the technology of artificial intelligence in order to improve the organizational and technological reliability of the construction process.

DOI: 10.22227/1997-0935.2018.1.7-13

Download

Results 1 - 6 of 6