INFLUENCE OF A ROUND CAP ON THE BEARING CAPACITY OF A LATERALLY LOADED PILE

Vestnik MGSU 4/2012
  • Buslov Anatoliy Semenovich - Gersevanov Research Institute of Bases and Underground Structures (NIIOSP) Doctor of Technical Science, Professor, Advisor Russian Academy of Architecture and Construction Sciences, chief research worker, Gersevanov Research Institute of Bases and Underground Structures (NIIOSP), 59 Ryazanskiy pr-t, Moscow, 109428, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Bakulina Aleksandra Aleksandrovna - Ryazan' Branch, Moscow State Open University named after V.S. Chernomyrdin , Ryazan' Branch, Moscow State Open University named after V.S. Chernomyrdin, 26/53 Pravo-Lybedskaya St., 390000, Ryazan', Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 63 - 68

Foundations of laterally loaded single piles are widely used as part of power transmission lines, wind power stations, highway structures, etc. Ongoing pressure applied to a laterally loaded pile, particularly at the ground level, causes the soil deformation characterized by the bulging of the soil surface.
In the majority of cases, the deformation strength of a pile depends on the front-face soil resistance, Horizontal beams, ground caps or rigid plates are used to increase the pile resistance. An effective method of pressure reduction contemplates the use of a rigid round cap at the front-face or upper level of the soil.
In this paper, the authors analyse the data to examine how a round cap installed at the ground level impacts the bearing capacity of a single pile.
This research based on the methodology developed by the authors demonstrates that a laterally loaded pile, supported by a rigid cap at the ground level, is exposed to increased resistance due to the following factors, including the passive pressure along the cap side that creates an unloading effect for a horizontally-loaded pile. The cap acts as a vertical soil rebuff creating an additional resistance moment; the horizontal shear of the cap causes supplementary lateral resistance of a pile.
The following initial geometric and elastic material properties of the single pile are applied: total length = 5.0 meters (3.0 m above and 2.0 m below the ground surface); pile diameter = 40 centimeters; circle plates of various diameters = 60; 70; 80 and 100 cm and their thickness = 20 cm. A lateral load is applied at various heights, , of 0.2; 1.0; 2.0 and 3.0 meters above the ground level.
Elastic properties of the soil are assumed to be constant at each point below the surface of the ground, they are listed below: bulk modulus of soil E=20 MPa; Poisson's ratio μ=0,37; unit Weight γ=18,5 kN/m; cohesion =0,05 MPa; angle of internal friction φ=20°.
The data has proven that cap-covered piles are substantially more economical (over 40 %) in terms of materials consumption rate if compared to constant cross-section piles (cap-free or broadening piles), all other factors being equal.

DOI: 10.22227/1997-0935.2012.4.63 - 68

References
  1. Normy proektirovaniya kontaktnoy seti [Overhead Contact System Design Standards]. 141-99. MPS RF. Moscow, 2001.
  2. Matus N.Yu. K raschetu gorizontal'no nagruzhennoy svai-kolonny s nizkim rostverkomogolovkom [About the Design of a Laterally Loaded Pile-Column with Deep Grid Pile Foundation]. OOO HT Project — Ukraina, Odessa, 8 p.
  3. Buslov A.S., Tulakov E.S. Raschet gorizontal'no nagruzhennykh odnostoechnykh opor po ustoychivosti [Stability Design of Laterally Loaded Single Footings]. Osnovaniya, fundamenty i mekhanika gruntov [Beddings, Foundations, and Soil Mechanics]. Moscow, 2004, no. 3, pp. 6—9.

Download

Numerical investigations of work of driven pile on claystones

Vestnik MGSU 2/2019 Volume 14
  • Sychkina Evgeniya N. - Perm National Research Polytechnic University (PNRPU) Candidate of Technical Sciences, Associate Professor of the Department of Construction Technology and Geotechnics, Perm National Research Polytechnic University (PNRPU), 29 Komsomolsky prospekt, Perm, 614990, Russian Federation.
  • Antipov Vadim V. - Perm National Research Polytechnic University (PNRPU) postgraduate student of Department of Construction Technology and Geotechnics, Perm National Research Polytechnic University (PNRPU), 29 Komsomolsky prospekt, Perm, 614990, Russian Federation.
  • Ofrikhter Yan V. - Perm National Research Polytechnic University (PNRPU) postgraduate student of Department of Construction Technology and Geotechnics, Perm National Research Polytechnic University (PNRPU), 29 Komsomolsky prospekt, Perm, 614990, Russian Federation.

Pages 188-198

Introduction. Reviewed the features of the work of the pile on Permian claystones with the help of numerical and field experiments, analytical calculations. Materials and methods. Numerical modeling was performed in the Plaxis 3D and Midas GTS NX software packages. Full-scale tests of driven piles are made in accordance with the requirements of GOST 20276-2012. The obtained results are compared with the results of analytical calculations according to SP 24.13330.2011. Results. The scientific novelty of the investigation consists in a comparative analysis of the results of numerical modeling of the interaction of a driving pile with claystones with the results of field tests and analytical calculations. Finite element analysis in software package Plaxis 3D using Hardening Soil model shows higher values of settlement (up to 6 times) in relation to stabilized settlement of full-scale pile tests. Calculations in the software package Midas GTS NX showed overestimated values of pile settlements in relation to full-scale pile tests (13-24 times). Analytical calculations in accordance with SP 24.13330.2011 also showed overestimated (up to 3 times) values of the maximum pile settlement in relation to the stabilized settlement during full-scale pile tests. Conclusions. The calculations by the finite element method in the package Plaxis 3D and Midas GTS NX, by the analytical method according to SP 24.13330.2011, show overestimated values of settlement in relation to the stabilized settlement of piles on claystones. Using the Linear-Elastic model for claystones in numerical calculations in Plaxis 3D provides a value close to the settlement of full-scale pile. However, the use of this model is not fully justified for claystones due to the presence of residual deformations and the nonlinear character of pile settlement during loading. Necessary to correct the existing numerical and analytical methods for calculating pile foundations on claystones. It is necessary to continue the work on the further generalization of the experience of arranging piles on weathered claystones in order to evaluate the long-term work of not only a single pile, but also a pile foundation.

DOI: 10.22227/1997-0935.2019.2.188-198

Download

The influence of concrete joints on the structural behavior

Vestnik MGSU 3/2014
  • Koyankin Aleksandr Aleksandrovich - Siberian Federal University (SibFU) Candidate of Technical Sciences, Associate Professor, Department of Building Structures and Control Systems, Siberian Federal University (SibFU), 79 Svobodny Avenue, Krasnoyarsk, 660041, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Beletskaya Valeriya Igorevna - Siberian Federal University (SFU) Master Degree student, Department of Engineering Structures and Controlled Systems, Siberian Federal University (SFU), 79 Svobodnyy Prospekt, Krasnoyarsk, 660041, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Guzhevskaya Anastasiya Igorevna - Siberian Federal University (SFU) Master Degree student, Department of Engineering Structures and Controlled Systems, Siberian Federal University (SFU), 79 Svobodnyy Prospekt, Krasnoyarsk, 660041, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 76-81

The buildings made of monolithic reinforced concrete currently enjoy great popularity. Along with a great number of advantages of monolithic building, which are repeatedly listed in the works of many authors, there are many unexplored issues which require detailed consideration. The technological concrete joints are among them. The joints are inevitable in the process of construction of almost any monolithic building and their quality affects the reliability of buildings and structures. Despite regular use of the concept of cold joint and clear instructions in building standards on the technology of joint production, most organizations do not follow the correct technology of concreting the elements. As a result, the strength and stiffness characteristics of the construction deteriorate, because the linkage value of new concrete with the old one is significantly lower than in monolith. In order to conduct experimental studies the reinforced concrete beams of rectangular section were produced. As a result of testing, it was determined that the presence of a concrete joint significantly reduces the stiffness and carrying capacity of the structures. It is confirmed by the fact that the received deflections of solid beams without joint are significantly lower than the deflections of beams with cold joint. It also noted that the deflections of the beams manufactured following the normative technology are lower, than the deflections of the beams, manufactured with violation of the rules. Basing on the obtained results, it was concluded, that more detailed study of the work of a construction with cold joints in concrete is required. The reason for it is in the changing for the worse of the strength and stiffness characteristics of structural element, which is made produced with a joint, while in the process of real designing, the monolith buildings are calculated as solid monolithic, without joints.

DOI: 10.22227/1997-0935.2014.3.76-81

References
  1. Sokolov M.E. Rekomendatsii po ratsional'nomu primeneniyu konstruktsiy iz monolitnogo betona dlya zhilykh i obshchestvennykh zdaniy [Recommendations for Rational Use of the Structures Made of Monolithic Concrete for Residential and Public Buildings]. Moscow, TsNIIEPzh Publ., 1983.
  2. Sigalov E.E., Protasov V.A. K opredeleniyu osrednennoy zhestkosti zhelezobetonnykh vnetsentrenno szhatykh stoek s uchetom treshchin v rastyanutykh zonakh [On the Rigidity Determination of Reinforced Concrete Off-centre Compressed Columns]. Beton i zhelezobeton [Concrete and Reinforced Concrete]. 1971, no. 2, pp. 34—36.
  3. Popova M.V. Nesushchaya sposobnost' i deformativnost' monolitnykh plit perekrytiy s uchetom obrazovaniya tekhnologicheskikh treshchin [Bearing Capacity and Deformability of Monolithic Floor Slabs with Account for Technological Cracks Formation]. Moscow, 2002, 186 p.
  4. Spaethe G. Die Siclierhcit tragender Baukonstruktionen. 1992, Springer Aufl age, 306 p.
  5. Eisenberger M., Bielak J. Finite Beams on Infi nite Two-parameter Elastic Foundations. Computers & Structures. 1992, vol. 42, no. 4, pp. 661—664. DOI: 10.1016/0045-7949(92)90133-K.
  6. Sokolov M.E. Issledovanie treshchinoobrazovaniya v monolitnykh zdaniyakh [Crack Formation Study in Monolithic Buildings]. Zhilishchnoe stroitel'stvo [Housing Construction]. 1978, no. 8, pp. 11—16.
  7. Gvozdev A.A. Treshchinostoykost' i deformativnost' obychnykh i predvaritel'no napryazhennykh zhelezobetonnykh konstruktsiy [Crack Resistance and Deformability of Usual and Prestressed Concrete Structures]. Moscow, Stroyizdat Publ., 1965.
  8. Gushcha Yu.P. Issledovanie shiriny raskrytiya normal'nykh treshchin [Width Study of Normal Cracks]. Prochnost' i zhestkost' zhelezobetonnykh konstruktsiy [Durability and Rigidity of Reinforced Concrete Structures]. Moscow, Stroyizdat Publ., 1971.
  9. Karpenko N.I. K postroeniyu obshchikh kriteriev deformirovaniya i razrusheniya zhelezobetonnykh elementov [On the Question of Developing General Criteria of Deformation and Destruction of Reinforced Concrete Elements]. Beton i zhelezobeton [Concrete and Reinforced Concrete]. 2002, no. 6, pp. 20—25.
  10. Razaqpur A., Shah K. Exact Analysis of Beams on Two-parameter Elastic Foundations. International Journal of Solids and Structures. 1991, vol. 27, no. 4, pp. 435—454. DOI: 10.1016/0020-7683(91)90133-Z.
  11. Pishchulev A.A. Sovershenstvovanie rascheta prochnosti normal'nykh secheniy izgibaemykh zhelezobetonnykh konstruktsiy s povrezhdennoy szhatoy zonoy betona [Improvement of Strength Calculation of the Normal Sections of Bending Reinforced Concrete Structures with the Damaged Compressed Concrete Area]. Samara, 2010, 192 p.
  12. Korenev B.G. Voprosy rascheta balok i plit na uprugom osnovanii [Questions of the Calculation of Beams and Slabs on Elastic Foundation]. Moscow, Gosstroyizdat Publ., 1954, 231 p.

Download

Methods of calculating the bearing capacity of eccentrically compressed concrete elements and suggestions for its improvement

Vestnik MGSU 3/2014
  • Starishko Ivan Nikolaevich - Vologda State University (VoGTU) Candidate of Technical Sciences, Associate Professor, Department of Motor Roads, Vologda State University (VoGTU), 15 Lenina str., Vologda, 160000, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 107-116

The proposed calculation method is specific in terms of determining the carrying capacity of eccentrically compressed concrete elements, in contrast to the calculation by error method, as in the existing regulations, where in the result of the calculation is not known what is the limit load the eccentric compression element can withstand. The proposed calculation method, the publication of which is expected in the next issue of the "Vestnik MGSU" the above mentioned shortcomings of the existing calculation methods, as well as the shortcomings listed in this article are eliminated, which results in the higher convergence of theoretical and experimental results of eccentrically compressed concrete elements strength and hence a high reliability of their operation.

DOI: 10.22227/1997-0935.2014.3.107-116

References
  1. SNiP 2.03.01—84*. Betonnye i zhelezobetonnye konstruktsii [Construction Norms and Regulations 2.03.01—84*. Concrete and Reinforced Concrete Structures]. Moscow, 2002, 76 p.
  2. SP 52-101—2003. Betonnye i zhelezobetonnye konstruktsii bez predvaritel'nogo napryazheniya armatury [Regulations 52-101—2003. Concrete and Reinforced Concrete Structures without Prestress of the Reinforcement]. Moscow, 2004, 53 p.
  3. Posobie po proektirovaniyu betonnykh i zhelezobetonnykh konstruktsiy iz tyazhelykh i legkikh betonov bez predvaritel'nogo napryazheniya armatury (k SNiP 2.03.01—84) [Guidebook on Concrete and Reinforced Concrete Structures Design Made of Heavy and Light Concretes without Prestress of the Reinforcement (to Construction Norms and Regulations 2.03.01—84)]. TsNIIPromzdaniy, NIIZhB Publ. Moscow, Stroyizdat Publ., 1986, 192 p.
  4. Posobie po proektirovaniyu betonnykh i zhelezobetonnykh konstruktsiy iz tyazhelogo betona bez predvaritel'nogo napryazheniya armatury (k SP 52-101—2003) [Guidebook on Concrete and Reinforced Concrete Structures Design Made of Heavy Concrete without Prestress of the Reinforcement (to Regulations 52-101—2003]. Moscow, TsNIIPromzdaniy Publ., 2005, 214 p.
  5. Baykov V.N., Sigalov E.E. Zhelezobetonnye konstruktsii. Obshchiy kurs [Reinforced Concrete Structures. Guidelines]. 6th edition. Moscow, BASTET Publ., 2009, 766 p.
  6. Bondarenko V.M., Bakirov R.O., Nazarenko V.G., Rimshin V.I. Zhelezobetonnye i kamennye konstruktsii [Reinforced Concrete and Masonry Structures]. 5th edition. Moscow, Vysshaya shkola Publ., 2008, 886 p.
  7. Tal' K.E., Chistyakov E.A. Issledovanie nesushchey sposobnosti gibkikh zhelezobetonnykh kolonn, rabotayushchikh po pervomu sluchayu vnetsentrennogo szhatiya [Research of the Bearing Capacity of Bending Reinforced Concrete Columns, Working on the First Case of Eccentric Compression]. Raschet zhelezobetonnykh konstruktsiy: trudy NIIZhB [Reinforced Concrete Structures Calculation: Works of the Scientific and Research Institute of Concrete and Reinforced Concrete]. Moscow, Gosstroyizdat Publ., 1963, no. 23, pp. 127—196.
  8. Chistyakov E.A. Osnovy teorii, metody rascheta i eksperimental'nye issledovaniya nesushchey sposobnosti szhatykh zhelezobetonnykh elementov pri staticheskom nagruzhenii: dissertatsiya doktorara tekhnicheskikh nauk [Fundamentals of the Theory, Calculation Methods and Experimental Research of the Bearing Capacity of the Compressed Reinforced Concrete Elements in Case of Static Loading. Dissertation of the Doctor of Technical Sciences]. Moscow, 1988, pp. 73—155.
  9. Baykov V.N., Gorbatov S.V. Nekotorye predposylki k raschetu zhelezobetonnykh elementov pri deystvii vnetsentrennogo szhatiya i poperechnogo izgiba v ortogonal'nykh ploskostyakh [Some Prerequisites to the Reinforced Concrete Elements Calculation under the Action of Eccentric Compression and Lateral Bending in Orthogonal Planes]. Zhelezobetonnye konstruktsii promyshlennogo i grazhdanskogo stroitel'stva: sbornik trudov Moskovskogo inzhenerno-stroitel'nogo instituta im. V.V. Kuybysheva [Reinforced Concrete Structures of Industrial and Civil Engineering: Collection of the Works of Moscow Engineering and Construction Institute named after V.V. Kuybyshev]. Moscow, 1981, no. 185, pp. 95—99.
  10. Rudakov V.N. Povyshenie nadezhnosti elementov konstruktsiy pri osevom i radial'nom szhatii [Raising the Reliability of the Structure's Elements in Case of Axial Compression and Radial Compression]. Ekspluatatsiya i remont zdaniy i sooruzheniy gorodskogo khozyaystva: sbornik nauchykh trudov [Operation and Repairs of the Buildings of the Municipal Services]. Kiev, ICDO Publ., 1994, pp. 157—165.
  11. Veretennikov V.I., Bulavitskiy M.S. Utochnenie kriteriya massivnosti sterzhnevykh elementov iz tyazhelogo betona s uchetom izmeneniya ikh masshtabnogo faktora k nachalu ekspluatatsii zdaniy i sooruzheniy [Refi nement of the Solidness Criteria of the Axial Elements Made of Heavy Concrete with Account for their Size Factor Change before the Beginning of the Buildings and Structures Operation]. Beton i zhelezobeton [Concrete and Reinforced Concrete]. 2013, no. 1, pp. 27—30.
  12. Bulavytskyi M., Veretennykov V., Dolmatov A. Technological Factors, Arising under Vertical Members of the Skeleton-type In-situ Buildings Production and Infl uence of Some Onto Strength and Deformation Characteristics of Concrete. Beton — zhizneutverzhdayushchiy vybor stroitel'stva: sbornik dokladov 7-go Mezhdunarodnogo Kongressa [Concrete — Reassuring Choice of Construction: Collection of the Reports of the 7th International Congress]. Dundee, Scotland, 8-10 July 2008, p. 10.
  13. Veretennikov V.I., Bulavits'kiy M.S. Doslidzhennya neodnoridnosti betonu po ob’ºmu vertikal'nikh monolitnikh elementiv [Research of Concrete Inhomogeniety in Size of the Vertical Monolithic Elements]. Resursoekonomni materiali, konstruktsi¿, budivli ta sporudi: zbirnik naukovikh prats' [Resource Saving Materials, Constructions, Buildings and Structures: Collection of Scientific Works]. Rovno, 2008, no. 18 part 1. Nats. univ. vodnogo gospodarstva ta prirodokoristuvannya Publ., p. 142—147.
  14. Veretennykov V.I., Yugov A.M., Dolmatov A.O., Bulavytskyi M.S., Kukharev D.I., Bulavytskyi A.S. Concrete Inhomogeneity of Vertical Cast-in-Place Elements in Skeleton-Type Buildings. Proceedings of the 2008 Architectural Engineering National Conference “Building Integration Solutions”. September 24-27, 2008, Denver, Colorado, USA., AEI of the ASCE.
  15. Starishko I.N. Varianty i sluchai, predlagaemye dlya raschetov vnetsentrenno szhatykh elementov [Variants and Cases, Offered for the Calculations of the Eccentric Compressed Elements]. Beton i zhelezobeton [Concrete and Reinforced Concrete]. 2012, no. 3, pp. 14—20.
  16. Starishko I.N. Sovershenstvovanie teorii raschetov vnetsentrenno szhatykh zhelezobetonnykh elementov putem sovmestnogo resheniya uravneniy, otrazhayushchikh ikh napryazhenno-deformirovannoe sostoyanie [Improving Theory of Eccentrically Compressed Concrete Elements Calculations by Solving the Equations that Refl ect their Stress-strain State]. Vestnik grazhdanskikh inzhenerov [Proceedings of Civil Engineers]. 2012, no. 5(34), pp. 72—81.
  17. Toryanik M.S., editor. Primery rascheta zhelezobetonnykh konstruktsiy [Examples of the Calculation of Reinforced Concrete Structures]. Moscow, Stroyizdat Publ., 1979, 240 p.

Download

Methods for determining the carrying capacity of eccentrically compressed concrete elements

Vestnik MGSU 4/2014
  • Starishko Ivan Nikolaevich - Vologda State University (VoGTU) Candidate of Technical Sciences, Associate Professor, Department of Motor Roads, Vologda State University (VoGTU), 15 Lenina str., Vologda, 160000, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 59-69

The author presents the results of calculations of eccentrically compressed elements in the ultimate limit state of bearing capacity, taking into account all possiblestresses in the longitudinal reinforcement from the R
s to the R
sc, caused by different values of eccentricity longitudinal force. The method of calculation is based on the simultaneous solution of the equilibrium equations of the longitudinal forces and internal forces with the equilibrium equations of bending moments in the ultimate limit state of the normal sections. Simultaneous solution of these equations, as well as additional equations, reflecting the stress-strain limit state elements, leads to the solution of a cubic equation with respect to height of uncracked concrete, or with respect to the carrying capacity. According to the author it is a significant advantage over the existing methods, in which the equilibrium equations using longitudinal forces obtained one value of the height, and the equilibrium equations of bending moments - another. Theoretical studies of the author, in this article and the reasons to calculate specific examples showed that a decrease in the eccentricity of the longitudinal force in the limiting state of eccentrically compressed concrete elements height uncracked concrete height increases, the tension in the longitudinal reinforcement area gradually (not abruptly) goes from a state of tension compression, and load-bearing capacity of elements it increases, which is also confirmed by the experimental results. Designed journalist calculations of eccentrically compressed elements for 4 cases of eccentric compression, instead of 2 - as set out in the regulations, fully cover the entire spectrum of possible cases of the stress-strain limit state elements that comply with the European standards for reinforced concrete, in particular Eurocode 2 (2003).

DOI: 10.22227/1997-0935.2014.4.59-69

References
  1. SNiP 2.03.01—84*. Betonnye i zhelezobetonnye konstruktsii [Construction Norms and Regulations 2.03.01—84*. Concrete and Reinforced Concrete Structures]. Moscow, 2002.
  2. Posobie po proektirovaniyu betonnykh i zhelezobetonnykh konstruktsiy iz tyazhelogo betona bez predvaritel'nogo napryazheniya armatury (k SP 52-101—2003) [Guidance on Concrete and Reinforced Concrete Structures Design Made of Heavy Concrete without Prestress of Reinforcement (to the Requirements 52-101—2003)]. Moscow, TsNIIPromzdaniy Publ., 2005, 214 p.
  3. Posobie po proektirovaniyu betonnykh i zhelezobetonnykh konstruktsiy iz tyazhelykh i legkikh betonov bez predvaritel'nogo napryazheniya armatury (k SNiP 2.03.01—84) [Guidance on Concrete and Reinforced Concrete Structures Design Made of Heavy and Lightweight Concretes without Prestress of Reinforcement (to the Construction Requirements 2.03.01—84)]. Moscow, Stroyizdat Publ., 1986. 192 p.
  4. Mukhamediev T.A., Kuzevanov D.V. K voprosu rascheta vnetsentrenno szhatykh zhelezobetonnykh elementov po SNiP 52—01 [To the Problem of Calculating Reinforced Concrete Beam Columns]. Beton i zhelezobeton [Concrete and Reinforced Concrete]. 2012, no. 2, pp. 21—23.
  5. Karakovskiy M.B. Programma «OM SNiP Zhelezobeton» dlya rascheta zhelezobetonnykh konstruktsiy po SP 63.13330.1012 [Program “OM SNiP Zhelezobeton” for Calculating Reinforced Concrete Structures According to Requirements 63.13330.1012]. Beton i zhelezobeton [Concrete and Reinforced Concrete]. 2013, no. 1, pp. 23—26.
  6. Bambura A.N., Sazonova N.R. Osobennosti rascheta kolonn vysotnogo zdaniya, usilennykh pri rekonstruktsii zhelezobetonnymi oboymami [Peculiarities of Calculating Columns of High-rise Building Reinforced by Concrete Collars in the Process of Reconstruction]. Beton i zhelezobeton — puti razvitiya: 2-ya Vserossiyskaya (Mezhdunarodnaya) konferentsiya po betonu i zhelezobetonu [Concrete and Reinforced Concrete — Ways of Development: the 2nd All-Russian (International) Conference on Concrete and Reinforced Concrete]. Moscow, NIIZhB Publ., 2005, vol. 2, pp. 328—333.
  7. Mordovskiy S.S. Raschet vnetsentrennogo szhatykh zhelezobetonnykh elementov s primeneniem diagramm deformirovaniya [Calculation of Reinforced Concrete Beam Columns Using the Deformation Diagrams]. Beton i zhelezobeton [Concrete and Reinforced Concrete]. 2012, no. 2, pp. 11—15.
  8. Bolgov A.N., Ivanov S.N., Kuzevanov D.V., Fatkullin V.V. Osobennosti metodiki rascheta kolonn, usilennykh kompozitnymi materialami [Features of Calculation Method for the Columns Reinforced by Composite Materials]. Beton i zhelezobeton [Concrete and Reinforced Concrete]. 2012, no. 1, pp. 14—17.
  9. Starishko I.N. Metodika rascheta nesushchey sposobnosti vnetsentrenno szhatykh zhelezobetonnykh elementov: analiz i predlozheniya po ee sovershenstvovaniyu [Methods of Calculating the Bearing Capacity of Eccentrically Compressed Concrete Elements and Suggestions for its Improvement]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2014, no. 3, pp. 107—116.
  10. Starishko I.N. Varianty i sluchai, predlagaemye dlya raschetov vnetsentrenno szhatykh elementov [Variants and Cases, Offered for the Calculations of the Eccentric Compressed Elements]. Beton i zhelezobeton [Concrete and Reinforced Concrete]. 2012, no. 3, pp. 14—20.
  11. Starishko I.N. Osobennosti predlagaemoy metodiki rascheta vnetsentrenno szhatykh zhelezobetonnykh elementov s prakticheskim resheniem zadach [Features of the Offered Method for Calculating Reinforced Concrete Beam Columns with the Practical Tasks Solution]. Beton i zhelezobeton [Concrete and Reinforced Concrete]. 2012, no. 4, pp. 9—14.
  12. Starishko I.N. Sovershenstvovanie teorii raschetov vnetsentrenno szhatykh zhelezobetonnykh elementov putem sovmestnogo resheniya uravneniy, otrazhayushchikh ikh napryazhenno-deformirovannoe sostoyanie [Improving Theory of Eccentrically Compressed Concrete Elements Calculations by Solving the Equations that Reflect their Stress-strain State]. Vestnik grazhdanskikh inzhenerov [Proceedings of Civil Engineers]. 2012, no. 5(34), pp. 72—81.
  13. Eurocode 2: Design of Concrete Structures-Part 1-1: General Rules and Rules for Buildings. European Committee for Standardization, 2002, 226 p.

Download

Peculiarities of stress distribution in beamless floor plate as a result of prestressing forces

Vestnik MGSU 9/2014
  • Kremnev Vasiliy Anatol'evich - LLC "InformAviaKoM" Director General, LLC "InformAviaKoM", 2 Pionerskaya str., Korolev, Moscow Region, 141074, Russian Federation; +7 (495) 645-20-62; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Kuznetsov Vitaliy Sergeevich - Mytishchi Branch, Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Professor, Department of Architectural and Construction Design, Mytishchi Branch, Moscow State University of Civil Engineering (MGSU), 50 Olimpiyskiy prospect, Mytishchi, Moscow Region, 141006, Russian Federation; +7 (495) 583-07-65; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Talyzova Yulia Aleksandrovna - Mytishchi Branch, Moscow State University of Civil Engineering (MGSU) Assistant Lecturer, Department of Architectural and Construction Design, Mytishchi Branch, Moscow State University of Civil Engineering (MGSU), 50 Olimpiyskiy prospect, Mytishchi, Moscow Region, 141006, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 48-53

The article discusses the features of the stress state of the plate of capitalless girderless overlapping as a result of force of prestressed reinforcement, where the reinforcement used is high-strength reinforcement in flexible shell of "Monostrend" type. The peculiarity of specific design solution is a diagonal arrangement of prestressed reinforcement with heads fixed at the outer edges of the columns. The purpose of this arrangement of the prestressed reinforcement is deflection reduction of the central area of a plate and reduction of the width of cracks on the lower surface in the bay and on the upper surface of the support areas. The article shows the distribution of normal stresses of existing loads in the plane plate. The stress distribution over the thickness of the plate was assumed uniform. In order to establish design size of a section in diagonal direction it is possible to set the variables x and y and then calculate the coordinates of stress distribution curves in the concrete as a result of compression by prestress force. The authors offer diameter values of equal stresses in case of 4 and 8 K7O ropes. The method of calculating prestressing losses of concrete creep are offered.

DOI: 10.22227/1997-0935.2014.9.48-53

References
  1. Rukovodstvo po proektirovaniyu zhelezobetonnykh konstruktsiy s bezbalochnymi perekrytiyami [Design Guidelines for Reinforced Concrete Structures with Beamless Floor]. Moscow, Stroyizdat Publ., 1979, 63 p.
  2. Pogrebnoy I.O., Kuznetsov V.D. Bezrigel'nyy predvaritel'no napryazhennyy karkas s ploskim perekrytiem [Beamless Prestressed Frame with Flat Roof]. Inzhenerno-stroitel'nyy zhurnal [Engineering and Construction Journal]. 2010, no. 3, pp. 52—55.
  3. Karpenko N.I. Obshchie modeli mekhaniki zhelezobetona [General Models of Reinforced Concrete Mechanics]. Moscow, Stroyizdat Publ., 1996, 416 p.
  4. Beglov A.D., Sanzharovskiy R.S. Teoriya rascheta zhelezobetonnykh konstruktsiy na prochnost' i ustoychivost' : Sovremennye normy i Evrostandarty [Theory of Strength and Stability Calculation of Reinforced Concrete Structures]. Moscow, Saint Petersburg, ASV Publ., 2006, 221 p.
  5. Vol'mir A.S. Gibkie plastinki i obolochki [Flexible Plates and Shells]. Moscow, Gosudarstvennoe izdatel’stvo tekhniko-teoreticheskoy literatury Publ., 1956, 419 p.
  6. Muttoni A. Conception et dimensionnement de la precontrainte. Ecole Polytechnique federale de Lausanne, Ann?e acad?mique 2011—2012, 35 p. Available at: http://i-concrete.epfl.ch/cours/epfl/pb/2012/Pr%C3%A9sentations/ponts-1-P-2012-05-08.pdf/. Date of access: 22.01.2014.
  7. Sitnikov S.L., Miryushenko E.F.; patent holder S.L. Sitnikov. Pat. 2427686 RF, MPK E04C 5/10. Sposob izgotovleniya predvaritel'no napryazhennykh zhelezobetonnykh konstruktsiy i monostrend. ¹ 2009132979/03 ; zayavl. 02.09.2009 ; opubl. 27.08.2011. Byul. ¹ 24 [Russian Patent 2427686 RF, MPK E04C 5/10. Method of Manufacturing Prestressed Reinforced Concrete Structures and Monostrends. No. 2009132979/03 ; notice 02.09.2009 ; publ. 27.08.2011. Bulletin no. 24.]. 8 p.
  8. Spasojevic A., Burdet O., Muttoni A. Applications structurales du beton fiber ultra-hautes performances aux ponts. EPFL, Laboratoire de Construction en beton, 2008, 60 p. Available at: http://ibeton.epfl.ch/Publications/2008/Spasojevic08b.pdf/. Date of access: 22.01.2014.
  9. Tikhonov I.N. Armirovanie elementov monolitnykh zhelezobetonnykh zdaniy : Posobie po proektirovaniyu [Reinforcement of the Elements of Monolithic Reinforced Concrete Buildings]. Moscow, NITs Stroitel'stvo Publ., 2007, 168 p.
  10. Wieczorek M. Influence of Amount and Arrangement of Reinforcement on the Mechanism of Destruction of the Corner Part of a Slab-Column Structure. Prosedia Engineering. 2013, vol. 57, pp. 1260—1268. Available at: http://www.sciencedirect.com/science/article/pii/S1877705813008928. Date of access: 22.02.2014. DOI: http://dx.doi.org/10.1016/j.proeng.2013.04.159.
  11. Vatin N.I., Ivanov A.D. Sopryazhenie kolonny i bezrebristoy beskapitel'noy plity perekrytiya monolitnogo zhelezobetonnogo karkasnogo zdaniya [Connection of a Column and Non-ribbed Capitalless Slab of Monolithic Reinforced Concrete Frame Building]. Saint Petersburg, SPbODZPP Publ., 2006, 82 p. Available at: http://www.engstroy.spb.ru/library/ivanov_kolonna_i_perekrytie.pdf. Date of access: 22.01.2014.
  12. Samokhvalova E.O., Ivanov A.D. Styk kolonny s bezbalochnym beskapitel'nym perekrytiem v monolitnom zdanii [The Joint of a Column and Beamless Capitalless Floor in Monolithic Building]. Inzhenerno-stroitel'nyy zhurnal [Engineering and Construction Journal]. 2009, no. 3. Available at: http://engstroy.spb.ru/index_2009_03/samohvalova_styk.pdf. Date of access: 22.01.2014.
  13. Bezukhov N.I. Osnovy teorii uprugosti, plastichnosti i polzuchesti [Fundamentals of Elasticity and Creep Theory]. 2nd edition, Moscow, Vysshaya shkola Publ., 1968, 512 p.
  14. Altenbach H., Huang C., Naumenko K. Creep-damage Predictions in Thinwalled Structures by Use of Isotropic and Anisotropic Damage Models. The Journal of Strain Analisys for Engineering Design. 2002, vol. 37, no. 3, pp. 265—275. http://dx.doi.org/10.1243/0309324021515023.
  15. Altenbach H., Morachkovsky O., Naumenko K., Sychov A. Geometrically Nonlinear Bending of Thin-walled Shells and Plates under Creep-damage Conditions. Archive of Applied Mechanics. 1997, vol. 67, no. 5, pp. 339—352. DOI: http://dx.doi.org/10.1007/s004190050122.

Download

Analysis of strength of monolithic beamless floors using the limitequilibrium method

Vestnik MGSU 7/2013
  • Kuznetsov Vitaliy Sergeevich - Mytishchi Branch, Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Professor, Department of Architectural and Construction Design, Mytishchi Branch, Moscow State University of Civil Engineering (MGSU), 50 Olimpiyskiy prospect, Mytishchi, Moscow Region, 141006, Russian Federation; +7 (495) 583-07-65; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Talyzova Yulia Aleksandrovna - Mytishchi Branch, Moscow State University of Civil Engineering (MGSU) Assistant Lecturer, Department of Architectural and Construction Design, Mytishchi Branch, Moscow State University of Civil Engineering (MGSU), 50 Olimpiyskiy prospect, Mytishchi, Moscow Region, 141006, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 51-58

The authors present features of the strength analysis of monolithic beamless floors, obtained using the limit equilibrium method. This method consists in the following procedure: a monolithic plate bends and breaks in the limit equilibrium under a uniformly distributed load. The influence of various combinations and dimensions of column sections on bending moments are considered. The influence of cross-sectional dimensions of columns on values of effective forces is analyzed in detail. The general equation to solve the strength problems of monolithic plates, having regular grids of columns exposed to continuous uniform loads, is derived and solved by the authors. This expression can be applied to calculate the span and support moments and to establish optimal reinforcement of plates. Results of calculations are presented in graphs that make it possible to derive interesting findings.

DOI: 10.22227/1997-0935.2013.7.51-58

References
  1. Timoshenko S.P., Voynovskiy-Kriger S. Plastinki i obolochki [Plates and Shells] Moscow, 1959, pp. 274—283.
  2. Nikonorov S.V., Tarasova O.A. Tekhnologiya rannego nagruzheniya monolitnykh perekrytiy pri ispol’zovanii balochno-stoechnoy opalubki [Technology of Early Loading of Monolithic Slabs Using Rack-girder Formwork]. Inzhenerno-stroitel’nyy zhurnal [Civil Engineering Journal]. 2010, no. 4. Available at: http://www.engstroy.spb.ru. Date of access: Dec. 5, 2012.
  3. Soudki Kh., El-Sayed A.K., Vanzwolc T. Strengthening of Concrete Slab-column Connections Using CFRP Strips. Journal of King Saud University Engineering Sciences. January 2012, vol. 24, no. 1, pp. 25—33. Available at: http://www. sciencedirect.com. Date of access: Apr. 10, 2013.
  4. Zenunovica D., Folic R. Models for Behavior Analysis of Monolithic Wall and Precast or Monolithic Floor Slab Connections. Engineering Structures. July 2012, vol. 40, pp. 466—478. Available at: http://www. sciencedirect.com. Date of access: Apr. 10, 2013.
  5. Dorfman A.E., Levontin L.N. Proektirovanie bezbalochnykh beskapitel’nykh perekrytiy [Design of Beamless Cap-free Floors]. Moscow, Stroyizdat Publ., 1975, pp. 11—22, 36—46.
  6. Shtaerman M.Ya., Ivyanskiy A.M. Bezbalochnye perekrytiya [Beamless Floors]. Moscow, 1953, pp. 47—64.
  7. Zolotkov A.S. Vibratsionnye ispytaniya fragmentov monolitnykh zdaniy do razrusheniya [Vibration Testing of Fragments of Monolithic Buildings to Fracture]. Inzhenerno-stroitel’nyy zhurnal [Civil Engineering Journal]. 2012, no 1. Available at: http://www.engstroy.spb.ru. Date of access: Dec. 5, 2012.
  8. Wieczorek M. Influence of Amount and Arrangement of Reinforcement on the Mechanism of Destruction of the Corner Part of a Slab-Column Structure. Proñedia Engineering. 2013, vol. 57, pp. 1260—1268. Available at: http://www. sciencedirect.com. Date of access: Apr. 10, 2013.
  9. Malakhova A.N. Usilenie monolitnykh plit perekrytiy zdaniy stenovoy konstruktivnoy sistemy [Strengthening Monolithic Slabs of Buildings Having Wall Structural Systems]. Nauchno-prakticheskiy Internet zhurnal «Nauka. Stroitel’stvo. Obrazovanie» [Science and Practical Journal “Science, Construction, Education”]. 2012, no. 4. Available at: http://www.nso-journal.ru. Date of access: March 31, 2013.
  10. Pogrebnoy I.O., Kuznetsov V.D. Bezrigel’nyy predvaritel’no napryazhennyy karkas s ploskim perekrytiem [Beamless Pre-stressed Frame Having a Flat Slab]. Inzhenerno-stroitel’nyy zhurnal [Civil Engineering Journal]. 2010, no 3. Available at: http://www.engstroy.spb.ru. Date of access: Dec. 5, 2012.
  11. Samokhvalova E.O., Ivanov A.D. Styk kolonny s bezbalochnym beskapitel’nym perekrytiem v monolitnom zdanii [Juncture of a Column and Beamless Cap-free Floors in a Monolithic Building]. Inzhenerno-stroitel’nyy zhurnal [Civil Engineering Journal]. 2009, no 3. Available at: http://www.engstroy.spb.ru. Date of access: Dec. 5, 2012.

Download

Experimental study of the operation of the bolt joint of a bearerwith a column in precast-monolithic ceiling

Vestnik MGSU 5/2015
  • Koyankin Aleksandr Aleksandrovich - Siberian Federal University (SibFU) Candidate of Technical Sciences, Associate Professor, Department of Building Structures and Control Systems, Siberian Federal University (SibFU), 79 Svobodny Avenue, Krasnoyarsk, 660041, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Mitasov Valeriy Mikhaylovich - Novosibirsk State University of Architecture and Civil Engineering (Sibstrin) (FGBOU VPO NGASU) Doctor of Technical Sciences, Professor, chair, Department of Reinforced Concrete Structures, Novosibirsk State University of Architecture and Civil Engineering (Sibstrin) (FGBOU VPO NGASU), 113 Leningradskaya str., Novosibirsk, 630008, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 27-35

Precast-monolithic construction is becoming an increasingly popular form of housing. The wide distribution of this type of construction is explained by the possibility to successfully combine the advantages of precast and monolithic construction, at the same time reducing their disadvantages. Though there is a significant lack of data, including experimental data, for objective assessment of the stress-strain state of precast-monolithic floor structures. In order to investigate the structural reliability of the bolt joint of a bearer with a column in a precast-monolithic building a series of experimental investigations were carried out in the laboratory of testing the building structures of the Siberian Federal University.One of the main conclusions is that the bolt joint of a bearer with a column is characterized by sufficient rigidity, crack resistance and bearing capacity. The results of the given work have proved the data obtained in previously conducted investigations on a fragment of a precast-monolithic ceiling.

DOI: 10.22227/1997-0935.2015.5.27-35

References
  1. Mordich A.I., Belevich V.N., Simbirkin V.N., Navoy D.I., Mironov A.N., Raychev V.P., Chubrik A.I. Effektivnye konstruktivnye sistemy mnogoetazhnykh zhilykh domov i obshchestvennykh zdaniy (12…25 etazhey) dlya usloviy stroitel’stva v Moskve i gorodakh Moskovskoy oblasti, naibolee polno udovletvoryayushchie sovremennym marketingovym trebovaniyam [Efficient Structural Systems of Multi-Storey Residential Buildings and Public Buildings (12...25 floors) for Construction in Moscow and the Moscow Region Cities, which Best Meet Modern Marketing Requirements]. Minsk, NIEPUP «Institut BelNIIS» Publ., 2002, 117 p. (In Russian)
  2. Shembakov V.A. Sborno-monolitnoe karkasnoe domostroenie: rukovodstvo k prinyatiyu resheniya [Precast-Monolithic Frame Construction. A Guide to Making Decisions]. 2nd edition. Cheboksary, 2005, 119 p. (In Russian)
  3. Unifitsirovannaya sistema sborno-monolitnogo bezrigel’nogo karkasa KUB 2.5. Vypusk 1-1 [Unified System of Precast-Monolithic Girderless Frame KUB 2.5. Issue 1-1]. Moscow, Stroyizdat Publ., 1990, 49 p. (In Russian)
  4. Nikitin N.V., Franov P.I., Timonin E.M. Rekomendatsii po proektirovaniyu konstruktsiy ploskogo sborno-monolitnogo perekrytiya «Sochi» [Recommendations for structural design of flat precast-monolithic slabs “Sochi”]. 3rd edition, revised and enlarged. Moscow, Stroyizdat Publ., 1975, 34 p. (In Russian)
  5. Kazina G.A. Sovremennye zhelezobetonnye konstruktsii seysmostoykikh zdaniy [Modern Reinforced Concrete Structures of Earthquake-Resistant Buildings]. Moscow, VNIIS Publ., 1981, 25 p. (In Russian)
  6. Selivanov V.N., Selivanov S.N. Patent. 2107784 RF, MPK E04G23, E04G21, E04B1/35. Sposob vozvedeniya, vosstanovleniya ili rekonstruktsii zdaniy, sooruzheniy i sposob izgotovleniya stroitel’nykh izdeliy i konstruktsiy iz kompozitsionnykh materialov, preimushchestvenno betonov, dlya vozvedeniya, vosstanovleniya ili rekonstruktsii zdaniy, sooruzheniy [Russian Patent 2107784 RF, MPK E04G23, E04G21, E04B1/35. Method of Constructing, Repair or Reconstruction of Buildings, Structures and Method of Producing Building Products and Structures of Composite Materials]. Zayavka № 96124582/03; zayavl. 30.12.1996; opubl. 27.03.1998 [Notice no. 96124582/03; appl. 30.12.1996; publ. 27.03.1998]. (In Russian)
  7. Mordich A.I., Kuchikhin S.N., Belevich V.N., Simbirkin V.N. Patent 2226593 RF, MPK E04B1/18. Zhelezobetonnyy sborno-monolitnyy karkas mnogoetazhnogo zdaniya [Russian Patent 2226593 RF, MPK E04B1/18. Reinforced Concrete Precast-Monolithic Frame of a Multistoreyed Building]. Zayavka № 2002118292/03; zayavl. 08.07.2002; opubl. 10.04.2004 [Notice no. 2002118292/03; appl. 08.07.2002; publ. 10.04.2004]. Patent holder “Institut BelNIIS”. (In Russian)
  8. Mustafin I.I. Patent 2281362 RF, MPK E04B1/20. Sborno-monolitnyy zhelezobetonnyy karkas mnogoetazhnogo zdaniya «Kazan’-XXIv» [Russian Patent 2281362 RF, MPK E04B1/20. Precast-Monolithic Reinforced Concrete Frame of a Multistoreyed Building “Kazan-21 c.”]. Zayavka № 2004139244/03; zayavl. 27.12.2004; opubl. 10.08.2006. Byul. № 22 [Notice no. 2004139244/03; appl. 27.12.2004; publ. 10.08.2006. Bulletin no. 22]. 14 p. (In Russian)
  9. Mordich A.I. Sborno-monolitnye i monolitnye karkasy mnogoetazhnykh zdaniy s ploskimi raspornymi perekrytiyami [Precast-Monolithic and Monolithic Frames of Multistoreyed Buildings with Flat Brace Floor]. Montazhnye i spetsial’nye raboty v stroitel’stve [Building and Special Works in Construction]. 2001, no. 8—9, pp. 10—14.
  10. Sakhnovskiy K.V. Zhelezobetonnye konstruktsii [Reinforced Concrete Constructions]. 8th edition. Moscow, Gosstroyizdat Publ., 1960, 840 p. (In Russian)
  11. Mordich A.I. Belevich V.N., Simbirkin V.N., Navoy D.I. Opyt prakticheskogo primeneniya i osnovnye rezul’taty naturnykh ispytaniy sborno-monolitnogo karkasa BelNIIS [Experience of Practical Application and the Main Results of Field Studies of the Precast-Monolithic Frame BelNIIS]. BST: Byulleten’ stroitel’noy tekhniki [BST: Bulletin of Construction Technologies]. 2004, no. 8, pp. 8—12. (In Russian)
  12. Koprivitsa B. Primenenie karkasnoy sistemy IMS dlya stroitel’stva zhilykh i obshchestvennykh zdaniy [Application of Frame System IMS for Constructing Residentialand Public Buildings]. Zhilishchnoe stroitel’stvo [Housing Construction]. 1984, no. 1, pp. 30—32. (In Russian)
  13. Mordich A.I., Sadokho V.E., Podlipskaya I.I., Taratynova N.A. Sborno-monolitnye prednapryazhennye perekrytiya s primeneniem mnogopustotnykh plit [Precast-Monolithic Prestressed Slabs Using Hollow Core Slabs]. Beton i zhelezobeton [Concrete and Reinforced Concrete]. 1993, no. 5, pp. 3—6. (In Russian)
  14. Weber H., Bredenbals B., Hullman H. Bauelemente mit Gittertragern. Institut fur Industrialisierung des Buens. Hannover, 1996, 24 p.
  15. Bausysteme mit Gittertragern. Fachgruppe Betonbauteile mit Gittertragern im BDB. Bonn, 1998, 40 p.
  16. Janti F. Sborno-monolitnyy karkas «Delta» [Precast-Monolithic Frame “Delta”]. Prospekt kompanii «Deltatek OY» [Circular of the Company “Deltatek OY”]. 1998, 6 p. (In Russian)
  17. Dimitrijevic R. A Prestressed «Open» System from Jugoslavia. Système «ouvert» précontraint yougoslave. Batiment Informational, Building Research and Practice. 1978, vol. 6, no. 4, pp. 244, 245—249. Nauchno-tekhnicheskiy referativnyy sbornik TsINIS [Science and Technical Abstract Collection of the Central Institute of Scientific Information on Construction]. 1979, vol. 14, no. 3, pp. 8—12.
  18. Pessiki S., Prior R., Sause R., Slaughter S. Review of Existing Precast Concrete Gravity Load Floor Framing System. PCI Journal. 1995, vol. 40, no. 2, pp. 52—67.
  19. Schwerm D., Jaurini G. Deskensysteme aus Betonfertigteilen. Informationsstelle Beton-Bauteile. Bonn, 1997, 37 p.
  20. Mitasov V.M., Koyankin A.A. Rabota diska sborno-monolitnogo perekrytiya [Operation of a Floor Slab of a Precast-Monolithic Floor]. Izvestiya vysshikh uchebnykh zavedeniy. Stroitel’stvo [News of Higher Educational Institutions. Construction]. 2014, no. 3, pp. 103—110. (In Russian)

Download

Burst strength analysis for a plate of girderless capitelless floor

Vestnik MGSU 10/2014
  • Kremnev Vasiliy Anatol'evich - LLC "InformAviaKoM" Director General, LLC "InformAviaKoM", 2 Pionerskaya str., Korolev, Moscow Region, 141074, Russian Federation; +7 (495) 645-20-62; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Kuznetsov Vitaliy Sergeevich - Mytishchi Branch, Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Professor, Department of Architectural and Construction Design, Mytishchi Branch, Moscow State University of Civil Engineering (MGSU), 50 Olimpiyskiy prospect, Mytishchi, Moscow Region, 141006, Russian Federation; +7 (495) 583-07-65; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Talyzova Yulia Aleksandrovna - Mytishchi Branch, Moscow State University of Civil Engineering (MGSU) Assistant Lecturer, Department of Architectural and Construction Design, Mytishchi Branch, Moscow State University of Civil Engineering (MGSU), 50 Olimpiyskiy prospect, Mytishchi, Moscow Region, 141006, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 34-40

The paper presents calculations of the punching girderless monolithic slab with transverse reinforcement under the action of a concentrated force in accordance with the applicable regulations. The authors specify the circumstances that may limit the use of the certain sizes of spans of beamless floors. The influence of various factors on ensuring the strength of the joints of columns and ceiling is obserced, such as the class of the concrete slab thickness, the presence of transverse reinforcement. In this paper the calculations of the burst strength were performed for girderless slabs of the thickness 20, 21 , 22, 23, 24 and 25 cm of concrete classes B15, B20, B25, B30 and columns of square section with the side b = 30 cm. The cells of 5 × 5, 6 × 6, 7 × 7, 8 × 8, 9 × 9 m were analized. Bending moments were not taken into account. The utmost bursting effort for various classes of concrete slab thickness and the absence or presence of transverse reinforcement were discovered. The limiting uniformly distributed loads for plates with different grid of columns were calculated. It was found out that in case of the size of the cells up to 5 x 5 m inclusively, you can use all the above concrete classes and slab thicknesss. But in case of the cells of 9 x 9 m and more the use of overlap without capitals is problematic because of the impossibility to ensure the burst strength without special design solutions. Some of contemporary ways to expand the use of overlap without capitals are: the use of high-strength concretes, application of stiff reinforcement in the area of joint of stiff reinforcement, fiber reinforcement and the use of prestressed reinforcement.

DOI: 10.22227/1997-0935.2014.10.34-40

References
  1. Pogrebnoy I.O., Kuznetsov V.D. Bezrigel'nyy predvaritel'no napryazhennyy karkas s ploskim perekrytiem [Beamless Prestressed Frame with flat S;ab]. Inzhenerno-stroitel'nyy zhurnal [Civil Engineering Journal]. 2010, no. 3. Pp. 52—55. Available at: http://engstroy.spb.ru/index_2010_03/pogrebnoy_prednapryazheniye.pdf. Date of access: 5.12.2014. (in Russian)
  2. Karpenko N.I. Obshchie modeli mekhaniki zhelezobetona [General Models of Reinforced Concrete Mechanics]. Moscow, Stroyizdat Publ., 1996, 413 p. (in Russian)
  3. Beglov A.D., Sanzharovskiy R.S. Teoriya rascheta zhelezobetonnykh konstruktsiy na prochnost' i ustoychivost'. Sovremennye normy i Evrostandarty [Theory of Strength and Stability Calculation for Reinforced Concrete Structures. Modern Norms and European Standards]. Saint Petersburg, SPbGASU Publ.; Moscow, ASV Publ., 2006, 221 p. (in Russian)
  4. Vol'mir A.S. Gibkie plastinki i obolochki [Flexible Plates and Shells]. Moscow, GITTL Publ. 1956, 420 p. (in Russian)
  5. Miroslaw Wieczorek. Influence of Amount and Arrangement of Reinforcement on the Mechanism of Destruction of the Corner Part of a Slab-Column Structure. Proсedia Engineering. 2013, vol. 57, pp. 1260—1268. Available at: http://www.sciencedirect.com. Date of access: 5.12.2014. DOI: http://dx.doi.org/10.1016/j.proeng.2013.04.159.
  6. Vatin I.N., Ivanov A.D. Sopryazhenie kolonny i bezrebristoy beskapitel'noy plity perekrytiya monolitnogo zhelezobetonnogo karkasnogo zdaniya [Pairing of Columns And Slabs Without Edges And Without Capitals Monolithic In A Reinforced Concrete Frame Building]. Saint Petersburg, 2006, 82 p. Available at: http://www.engstroy.spb.ru/library/ivanov_kolonna_i_perekrytie.pdf. Date of access: 22.01.2014. (in Russian)
  7. Samokhvalova E.O., Ivanov A.D. Styk kolonny s bezbalochnym beskapitel'nym perekrytiem v monolitnom zdanii [Joint of Columns with Beamless Noncap Overlap in a Monolithic Building]. Inzhenerno-stroitel'nyy zhurnal [Civil Engineering Journal]. 2009, no. 3, pp. 33—37. Available at: http://www.engstroy.spb.ru/index_2009_03/samohvalova_styk.pdf. Date of access: 22.01.2014. (in Russian)
  8. Rukovodstvo po proektirovaniyu zhelezobetonnykh konstruktsiy s bezbalochnymi perekrytiyami [Guidelines for the Design of Concrete Structures with Beamless Floors ]. Moscow, Stroyizdat Publ., 1979, 50 p. (in Russian)
  9. Tikhonov I.N. Armirovanie elementov monolitnykh zhelezobetonnykh zdaniy [Reinforcement of the Elements of Monolithic Reinforced Concrete Buildings]. Moscow, NIIZhB im. A.A. Gvozdeva Publ., 2007,168 p. (in Russian)
  10. Bezukhov N.I. Osnovy teorii uprugosti, plastichnosti i polzuchesti [Fundamentals of the Theory of Elasticity and Creep]. Moscow, Vysshaya shkola Publ., 1968, 512 p. (in Russian)
  11. Zenunovica D., Folic R. Models for Behavior Analysis of Monolithic Wall and Precast or Monolithic Floor Slab Connections. Engineering Structures. July 2012, vol. 40, pp. 466—478. Available at: http://www.sciencedirect.com/science/article/pii/S0141029612001241. Date of access: 10.01.2014. DOI: http://dx.doi.org/10.1016/j.engstruct.2012.03.007.
  12. Soudki K., El-Sayed A.K., VanZwolc T. Strengthening of Concrete Slab-Column Connections Using CFRP Strips. Journal of King Saud University — Engineering Sciences. January 2012, vol. 24, no. 1, pp. 25—33. Available at: http://www.sciencedirect.com/science/article/pii/S1018363911000559. Date of access: 10.04.2013.
  13. Paillé J.-M. Eurocode. Calcul des structures en béton. Guide d'application. Paris, Afnor, Eyrolles, octobre 2013, 718 p. Available at: http://www.editions-eyrolles.com/Livre/9782212137330/calcul-des-structures-en-beton. Date of access: 10.01.2014.
  14. Altenbach H., Huang C., Naumenko K. Creep-damage Predictions in Thin-Walled Structures by Use of Isotropic and Anisotropic Damage Models. The journal of Strain Analysis for Engineering Design. 2002, vol. 37, no. 3, pp. 265—275. DOI: http://dx.doi.org/10.1243/0309324021515023.
  15. Altenbach H., Morachkovsky O., Naumenko K., Sychov A. Geometrically Nonlinear Bending of Thin-Walled Shells and Plates under Creep-Damage Conditions. Archive of Applied Mechanics. 1997, vol. 67, no. 5, pp. 339—352. DOI: http://dx.doi.org/10.1007/s004190050122.

Download

RESULTS OF EXPERIMENTAL STUDIES OF THE INFLUENCE OF THE MAIN FACTORS ON THE BEARING CAPACITY ACROSS A SLOPING SECTION IN BENDING CONCRETE BEAMS OF RECTANGULAR AND T-SECTION

Vestnik MGSU 7/2016
  • Starishko Ivan Nikolaevich - Vologda State University (VoGTU) Candidate of Technical Sciences, Associate Professor, Department of Motor Roads, Vologda State University (VoGTU), 15 Lenina str., Vologda, 160000, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 18-35

The author considers the results of experimental studies of the influence of some factors on the sloping section bearing capacity. These factors are: the value of the relative distance from the support to the load line (shear span) depending on the quantity of transverse reinforcement and the shape of the cross section of the elements; the size of compression flange overhang in T-section beams; the prestress rate of the transverse reinforcement. The author specifies the types of fracture across sloping sections of T-section beams.

DOI: 10.22227/1997-0935.2016.7.18-35

References
  1. SNiP 2.03.01—84*. Betonnye i zhelezobetonnye konstruktsii [Construction Norms and Regulations SNiP 2.03.01—84*. Concrete and Reinforced Concrete Structures]. Moscow, 2002. (In Russian)
  2. SNiP ll-21—75. Betonnye i zhelezobetonnye konstruktsii [Construction Norms and Regulations SNiP ll-21—75. Concrete and Reinforced Concrete Structures]. Moscow, Stroyizdat Publ., 1976, 89 p. (In Russian)
  3. SP 63.13330.2012. Osnovnye polozheniya. Aktualizirovannaya redaktsiya SNiP 52-01—2003 [Requirements SP 63.13330.2012. Basic Provisions. Revised Edition of Construction Norms SNiP 52-01—2003]. Moscow, 2012, 147 p. (In Russian)
  4. SP 35.13330.2011. Mosty i truby. Aktualizirovannaya redaktsiya SNiP 2.05.03—84* [Requirements SP 35.13330.2011. Bridges and Pipes. Revised Edition of Construction Norms SNiP 2.05.03—84*]. Moscow, 2011, 346 p. (In Russian)
  5. Ignatavichus Ch. Issledovanie prochnosti zhelezobetonnykh pryamougol’nykh i tavrovykh balok po naklonnomu secheniyu : avtoreferat dissertatsii … kandidata tekhnicheskikh nauk [Strength Analysis of Reinforced Concrete Rectangular and T-Section Beams across Sloping Section : Abstract of the Dissertation of the Candidate of Technical Sciences]. Vilnius, 1973, 15 p. (In Russian)
  6. Starishko I.N. Faktory, opredelyayushchie nesushchuyu sposobnost’ predvaritel’no-napryazhennykh izgibaemykh zhelezobetonnykh elementov na priopornykh uchastkakh : dissertatsiy … kandidata tekhnicheskikh nauk [The Factors Determining the Bearing Capacity of Prestressed Bending Reinforced Concrete Elements on Supporting Areas : Dissertation of the Candidate of Technical Sciences]. Moscow, 1984, 245 p. (In Russian)
  7. Starishko I.N., Zalesov A.S., Sigalov E.E. Nesushchaya sposobnost’ po naklonnym secheniyam predvaritel’no-napryazhennykh izgibaemykh zhelezobetonnykh elementov [Bearing Capacity of Prestressed Bending Reinforced Concrete Elements Across Sloping Sections]. Izvestiya vuzov. Stroitel’stvo i arkhitektura [News of Higher Educational Institutions. Construction and Architecture]. 1976, no. 4, pp. 21—26. (In Russian)
  8. Zalesov A.S., Il’in O.F., Titov I.A. Soprotivlenie zhelezobetonnykh balok deystviyu poperechnykh sil [Shear Force Strength of Reinforced Concrete Beams]. Napryazhennoe sostoyanie pered razrusheniem. Novoe o prochnosti zhelezobetona [Stress State before Fracture. New on Reinforced Concrete Strength]. Moscow, 1977, pp. 76—93. (In Russian)
  9. Zalesov A.S. Soprotivlenie zhelezobetonnykh elementov pri deystvii poperechnykh sil. Teoriya, novye metody rascheta prochnosti : avtoreferat dissertatsii … doktora tekhnicheskikh nauk [Strength of Reinforced Concrete Elements under Action of Shear Forces : Abstract of the Dissertation of the Candidate of Technical Sciences]. Moscow, 1980, 46 p. (In Russian)
  10. Sigalov E.E., Starishko I.N. Vliyanie predvaritel’nogo napryazheniya na prochnost’ po naklonnym secheniyam zhelezobetonnykh izgibaemykh elementov [Influence of Prestress on the Strength across Sloping Sections of reinforces Concrete Bending Elements]. Zhelezobetonnye konstruktsii promyshlennogo i grazhdanskogo stroitel’stva : sbornik trudov MISI im. V.V. Kuybysheva № 185 [Reinforced Concrete Structures of Industrial and Civil Engineering : Collection of Works of MISI named after Kuybyshev V.V. no. 185]. Moscow, 1981, pp. 108—116. (In Russian)
  11. Zalesov A.S., Mail’yan R.L., Sheina S.G. Prochnost’ elementov pri poperechnom izgibe s prodol’nymi szhimayushchimi silami vysokogo urovnya [Strength of Elements in Case of Lateral Bending with Hogh Level Lateral Compressing Forces]. Beton i zhelezobeton [Concrete and Reinforced Concrete]. 1984, no. 3, pp. 34—35. (In Russian)
  12. Zalesov A.S., Starishko I.N. Vliyanie prednapryazheniya na prochnost’ elementov po naklonnym secheniyam [Influence of Prestress on the Strength of Elements across Sloping Sections]. Beton i zhelezobeton [Concrete and Reinforced Concrete]. 1987, no. 8, pp. 24—25. (In Russian)
  13. Panyukov E.F., Alekseenko V.N. Vliyanie poperechnogo armirovaniya i plecha sreza na razrushenie zhelezobetonnykh balok posle vozdeystviya pozhara [Influence of Transverse Reinforcement and Shear Shoulder on Fracture of Reinforced Concrete Beams after Fire]. Obespechenie ognestoykosti zdaniy i sooruzheniy pri primenenii novykh materialov i konstruktsiy : materialy seminara MDNTP [Providing Fire Resistance of Buildings and Structures when Applying New Materials and Structures : Materials of the Seminar of MDNTR]. Moscow, 1988, pp. 124—130. (In Russian)
  14. Starishko I.N. Napryazhenno-deformirovannoe sostoyanie i nesushchaya sposobnost’ izgibaemykh predvaritel’no-napryazhennykh zhelezobetonnykh elementov na priopornykh uchastkakh [Stress-Strain State and Bearing Capacity of Prestress Bending Reinforced Concrete Elements on Supporting Areas]. Izvestiya vuzov. Stroitel’stvo i arkhitektura [News of Higher Educational Institutions. Construction and Architecture]. 1990, no. 5, pp. 116—120. (In Russian)
  15. Zalesov A.S., Panyukov E.F., Alekseenko V.N. Prochnost’ zhelezobetonnykh balok pri deystvii poperechnykh sil posle pozhara [Strength of Reinforced Concrete Beams under Transverse Loads after Fire]. Beton i zhelezobeton [Concrete and Reinforced Concrete]. 1990, no. 10, pp. 8—9. (In Russian)
  16. Starishko I.N. Raschet poperechnoy armatury v zhelezobetonnykh elementakh [Calculation of Transverse Reinforced Concrete in Reinforced Concrete Elements]. Beton i zhelezobeton [Concrete and Reinforced Concrete]. 1990, no. 10, p. 34. (In Russian)
  17. Morozov A.N. Raschet prochnosti gazobetonnykh konstruktsiy na deystvie poperechnykh sil [Strength Calculation of Aerated Concrete Structures]. Beton i zhelezobeton [Concrete and Reinforced Concrete]. 1991, no. 5, pp.13—14. (In Russian)
  18. Starishko I.N. Rabota prodol’noy armatury v naklonnoy treshchine [Operation of Transverse Reinforcement in Inclined Crack]. Beton i zhelezobeton [Concrete and Reinforced Concrete]. 1991, no. 5, pp. 15—17. (In Russian)
  19. Starishko I.N. Napryazhenno-deformirovannoe sostoyanie, problemy i perspektivy zhelezobetonnykh konstruktsiy pri odno-, dvukh- i trekhosnom predvaritel’nom napryazhenii armatury [Stress-Strain State, Problems and Prospects of Reinforced Concrete Structures in Case of Uni-, Bi- and Triaxial Prestress of Reinforcement]. Stroitel’stvo v XXI veke. Problemy i perspektivy : materialy Mezhdunarodnoy nauchno-prakticheskoy konferentsii posvyashchennoy 80-letiyu MGSU-MISI (g. Moskva, 5—7 dekabrya 2001 g.) [Construction in the 21st Century. Problems and Prospects : Materials of the International Science and Practice Conference Dedicated to 80th Anniversary of MGSU-MISI (Moscow, December 5—7, 2001)]. Moscow, MGSU Publ., 2001, pp. 399—414. (In Russian)
  20. Starishko I.N. Issledovanie vliyaniya kolichestva poperechnoy armatury, velichiny predvaritel’nogo napryazheniya v prodol’noy armature i razmerov svesov szhatykh polok v zhelezobetonnykh balkakh pryamougol’nogo i tavrovogo profilya na ikh nesushchuyu sposobnost’ po naklonnym secheniyam [Study of the Influence of Transverse Reinforcement Quantity, Prestress Volume in Transverse Reinforcement and Overhang Size of Compression Flanges in Reinforced Concrete Beams of Rectangular and T-Section on Their Bearing Capacity Along Sloping Sections]. Beton i zhelezobeton — puti razvitiya : sbornik trudov II Vserossiyskoy (Mezhdunarodnoy) konferentsii po betonu i zhelezobetonu: v 5-ti knigakh (g. Moskva, 5—9 sentyabrya 2005 g.) [Concrete and Reinforced Concrete — Ways of Development : Collection of Works of the 2nd All-Russian (International) Conference on Concrete and Reinforced Concrete: in 5 Volumes (Moscow, September 5—9, 2005)]. Moscow, Informpoligraf Publ., 2005, vol. 5, pp. 463—475. (In Russian)
  21. Bashirov Kh.Z., Fedorov V.S., Kolchunov V.I., Chernov K.M. Prochnost’ zhelezobetonnykh konstruktsiy po naklonnym treshchinam tret’ego tipa [Strength of Reinforced Concrete Structures Along Inclined Cracks of the Third Type]. Vestnik grazhdanskikh inzhenerov [Proceedings of Civil Engineers]. 2012, no. 5 (34), pp. 50—54. (In Russian)
  22. Silant’ev A.S. Eksperimental’nye issledovaniya vliyaniya prodol’nogo armirovaniya na soprotivlenie izgibaemykh zhelezobetonnykh elementov bez poperechnoy armatury po naklonnym secheniyam [Experimental Investigations of Transverse Reinforcement Influence on Strength of Bending Reinforced Concrete Elements without Transverse Reinforcement along Sloping Sections]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. 2012, no. 1, pp. 58—61. (In Russian)
  23. Gordon V.A., Kravtsova E.A. Sobstvennye chastoty i formy izgibnykh kolebaniy balki s treshchinoy [Natural Frequences and Forms of Flexural Vibrations of a Beam with a Crack]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2014, no. 3, pp. 50—58. (In Russian)

Download

IDENTIFICATION OF THICKNESS OF A COMPOSITE MATERIAL AS PART OF THE QM GLUED CONNECTION OF WOODEN ELEMENTS

Vestnik MGSU 8/2012
  • Linkov Nikolay Vladimirovich - Moscow State University of Civil Engineering Candidate of Technical Sciences, Department of Timber and Plastic Structures 8 (495) 287-49-14, ext. 31-11, Moscow State University of Civil Engineering, 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 125 - 130

The principal objective of the research project is to identify the thickness of an advanced
composite adhesive material used as part of a glued connection of wooden surfaces. The active
ingredients of the proposed adhesive material include an epoxy matrix and a glass fiber fabric. The
author has analyzed the bearing capacity and deformability of the proposed connection in relation
to the thickness of the composite material. The author used the methodology of assessment of the
bearing capacity of wooden structures developed by professor Yu.M. Ivanov. For the purposes of
development of optimal parameters of the "QM Glued" connection, the author identified the optimal
ratio of b, or width of the surface of connected elements, and the thickness of the composite material:
t = 1/40 b.

DOI: 10.22227/1997-0935.2012.8.125 - 130

References
  1. Lin’kov N.V. Nesushchaya sposobnost’ derevyannykh balok sostavnogo secheniya na soedinenii «KM-Vkladysh» [Bearing Capacity of Composite Sections of Wooden Beams If Connected Using the “CM-Liner” Method]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2011, no. 1, pp.161—167.
  2. Shilin A.A., Pshenichnyy V.A., Kartuzov D.V. Usilenie zhelezobetonnykh konstruktsiy kompozitsionnymi materialami [Strengthening of Reinforced Concrete Structures by Composite Materials]. Moscow, Stroyizdat Publ., 2004.
  3. Shilin A.A., Pshenichnyy V.A., Kartuzov D.V. Vneshnee armirovanie zhelezobetonnykh konstruktsiy kompozitsionnymi materialami [Outside Reinforcement of Reinforced Structures by Composite Materials]. Moscow, Stroyizdat Publ., 2007.
  4. Blaschko M. and Zilch K. Rehabilitation of Concrete Structures with CFRP Strips Glued into Slits. Proceedings of the 12th International Conference on Composite Materials. Paris, 1999, July 5-9.
  5. Arduini M., Nanni A., Romagnolo M. Performance of Decommissioned Reinforced Concrete Girders Strengthened with Fiber-reinforced Polymer Laminates. ACI Structural Journal. September-October, 2002, pp. 652—659.
  6. Vasil’ev V.V., Protasov V.D., Bolotin. Vasil’ev V.V., Tarnopol’skiy Yu.M., editors. Kompozitsionnie materialy [Composite Materials]. Moscow, Mashinostroenie Publ., 1990.
  7. Rekomendatsii po ispytaniyu soedineniy derevyannykh konstruktsiy [Recommendations for the Testing of Connections of Wooden Structures]. Moscow, Stroyizdat Publ., 1980.
  8. Blaschko M., Niedermeier R., Zilch K. Saadatmanesh H. and Ehsani, M.R., editors. Bond Failure Modes of Flexural Members Strengthened with FRP. Proceedings of Second International Conference on Composites in Infrastructures, Tucson, Arizona, 1998, pp. 315—327.
  9. Lin’kov, N.V., Filimonov E.V. Modelirovanie sredstvami PK SCAD soedineniya derevyannykh elementov kompozitsionnym materialom na osnove epoksidnoy matritsy i steklotkani [Modeling of Wooden Elements Connected by a Composite Material Based on Epoxy Matrix and Fiberglass Using PC SCAD Software]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2009, Special Issue no. 1, pp. 50—53.
  10. Lin’kov N.V., Filimonov E.V. Prochnost’ i deformativnost’ kompozitsionnogo materiala na osnove epoksidnoy matritsy i steklotkani [Strength and Deformability of the Composite Material Based on the Epoxy Matrix and Fiberglass]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2010, no. 1, pp. 235—243.

Download

Suction piles in thepresent-day hydraulic engineering

Vestnik MGSU 9/2013
  • Levachev Stanislav Nikolaevich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Professor, Department of Hydraulic Engineering Construction, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Khaletskiy Valentin Stanislavovich - Moscow State University of Civil Engineering (MGSU) master student, Department of Hydraulic Engineering Structures; +7 (915) 343–81–73., Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 86-94

Presently, offshore projects have moved to a new level. Advanced technologies are employed to develop those oil and gas deposits that were inaccessible in the past. SPAR and FPSO platforms are used to develop deposits at a depth of over 2,000 meters. Versatile technologies, including suction piles, represent a major factor of successful implementation of these projects.Renewable energy sources arouse more interest. Wind energy is a most ambitions area of research. Wind farms may be installed along the coastline or a shelf. Today many offshore projects are implemented using renewable energy sources. Presently, wind power generators represent sophisticated structures having blades with a diameter of up to 150 m. One of the main objectives is to have them strongly attached to the seabed. Suction piles are often used to solve this task. Suction piles minimize the work at sea, and they are used to install both fixed and floating platforms. The authors consider modern constructions used in similar projects and present the history of suction piles and their use in different offshore projects. The authors also analyze the most recent developments in the area of anchor design for suction piles.The area of research covered in the article is highly relevant. Anchors and foundations based on suction piles can be widely used to develop offshore projects in Russia.

DOI: 10.22227/1997-0935.2013.9.86-94

References
  1. Dean E.T.R. Offshore Geotechnical Engineering. Principles and Practice. 2010, pp. 296—297, 299, 405—407.
  2. Andersen K.H., Jostad H.P. Exploration and Production – Oil and Gas Review 2007. Suction Anchor Technology’s Contribution to Offshore Oil Recovery, pp. 54—55.
  3. Havard Devold Oil and Gas Production Handbook. 2006, pp. 9—11.
  4. Thomsen J.H., Forsberg T., Bittner R. Proceedings of the 26th International Conference on Offshore Mechanics and Arctic Engineering. Offshore Wind Turbine Foundations – the Cowi Experience. 2007, pp. 7—8.
  5. Henderson A.R., Patel M.H. On the Modeling of a Floating Offshore Wind Turbine. Wind Energy Journal. 2003, pp. 53—86.
  6. Musial W., Butterfield S., Boone A. Feasibility of Floating Platform Systems for Wind Turbines. 2004, pp. 2—7.
  7. Yong Bai, Qiang Bai. Subsea Structural Engineering. 2010, pp. 130—131.

Download

BEARING CAPACITY OF A HORIZONTALLY LOADED SINGLE PILE SUPPORT WITH SLEEPERS

Vestnik MGSU 9/2015
  • Buslov Anatoliy Semenovich - Moscow State University of Mechanical Engineering (UMech) Doctor of Technical Science, Professor, Advisor, Russian Academy of Architecture and Construction Sciences, Department of Industrial and Civil Engineering, Moscow State University of Mechanical Engineering (UMech), 22 Pavla Korchagina Str., Moscow, 129626, Russian Federation.
  • Mokhovikov Evgeniy Sergeevich - Ryazan Institute (branch) of Moscow State University of Mechanical Engineering (UMech) senior lecturer, Department of Architecture and Urban Planning, Ryazan Institute (branch) of Moscow State University of Mechanical Engineering (UMech), 26/53 Pravo-lybedskaya str., Ryazan, 390000, Russian Federation.

Pages 51-60

The supports of a overhead wiring used in transport take up substantial loads both because of wires and constructions holding them and wind, dynamic and other extraordinary impacts. In case of using single-member piles a question about their stability appears. For this reason different sleepers constructions are used. In order to improve the bearing capacity of horizontally loaded single pile supports of the contact systems used in urban, road and rail transport, power lines, etc.., it is recommended to use sleepers as horizontally laid under the ground in the depth of support beams. The calculation methods for different support sleepers of different lengths and cross sections are not well investigated. The proposed calculation method allows determining the carrying capacity of horizontally loaded bearings with soil pieces of different structural dimensions and their location in the soil, which allows choosing the best option for cost and material consumption. The calculations offered by the authors prove the efficiency of sleepers use in order to increase the bearing capacity of horizontally loaded piles and the possibility to chose their size.

DOI: 10.22227/1997-0935.2015.9.51-60

References
  1. Goroshkov Yu.I., Bondarev N.A. Kontaktnaya set’ [Overhead Wiring]. 2nd edition, revised. Moscow, Transport Publ., 1981, 400 p. (In Russian)
  2. Glushkov G.I. Raschet sooruzheniy, zaglublennykh v grunt [Calculation of Structures Buried in the Ground]. Moscow, Stroyizdat Publ., 1977, 295 p. (In Russian)
  3. Gudushauri I.I., Dzhioev L.N. Issledovanie fundamentov opor liniy elektroperedachi v neskal’nykh gruntakh [Investigation of Pile Foundations of Power Lines in Soil]. Moscow, Leningrad, Gosenergoizdat Publ., 1963, pp. 50—68. (In Russian)
  4. Buslov A.S., Bakulina A.A. Vliyanie kol’tsevogo ushireniya na nesushchuyu sposobnost’ gorizontal’no nagruzhennoy monosvaynoy opory [Effect of a Round Cap on the Bearing Capacity of a Laterally Loaded Pile]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering], 2012, no. 4, pp. 63—68. (In Russian)
  5. Bakulina A.A. Issledovanie nesushchey sposobnosti odnostoechnykh opor s ukrepleniem verkhnego sloya grunta pri gorizontal’nykh nagruzkakh [Investigation of the Bearing Capacity of One Member Supports with Strengthening the Upper Soil Layer at Horisontal Loadings]. Aktual’nye problemy razvitiya nano- mikro- i optoelektroniki : trudy Vserossiyskoy konferentsii s elementami nauchnoy shkoly dlya molodezhi [Current Development Problems of Nano, Micro and Optoelectronics : the Works of All-Russian Conference with Elements of Scientific School for the Youth]. Ryazan, RITs RGRTU Publ., 2010, pp. 171—174. (In Russian)
  6. Buslov A.S. Rabota svay na gorizontal’nuyu nagruzku za predelami uprugosti v svyaznykh gruntakh [Operation of Piles in Case of Horizontal Loads beyond Elasticity in Cohesive Soils]. Tashkent, FAN Publ., 1979, 106 p. (In Russian)
  7. Berezantsev V.G. Raschet odinochnykh svay i svaynykh kustov na deystvie gorizontal’nykh sil [Calculation of Horizontal Impacts on Single Piles and Pile Groups]. Moscow, Voenizdat Publ., 1946, 51 p. (In Russian)
  8. Kobrinets V.M., Barchukova T.N. Metod rascheta po deformatsiyam gruntovogo osnovaniya gorizontal’no nagruzhennogo fundamenta iz korotkoy svai-kolonny [Calculation Method for the Deformations of Horizontally Loaded Soil Foundation of a Short Pile-Column]. Budivel’ni konstruktsii : zb. nauk. prats’ [Building Structures : Collection of Scientific Articles]. Kiev, DP NDIBK Publ., 2008, no. 71, book 1, pp. 463—469. (In Russian)
  9. Laletin N.V. Raschet svaynykh ankerov na deystvie gorizontal’noy sily [Calculation of the Horizontal Impact on Pile Anchors]. Sbornik trudov Voronezhskogo inzhenerno-stroitel’nogo instituta [Collection of Papers of the Voronezh Engineering and Construction Institute]. Voronezh, 1964, no. 10, vol. 1, pp. 119—133. (In Russian)
  10. Broms B.B. Lateral Resistance of Piles in Cohesive Soils. Journal of the Soil Mechanics and Foundations Division. Proceedings of the American Society of Civil Engineers. 1964, vol. 90, no. 2, pp. 27—63.
  11. Angel’skiy D.V. K raschetu svaynykh osnovaniy na gorizontal’nuyu nagruzku [To the Calculation of Pile Foundations in Case of Horizontal Loadings]. Trudy MADI [Works of Moscow Automobile and Road Construction University]. Moscow, Gostransizdat Publ., 1937, no. 7, pp. 41—49. (In Russian)
  12. Mironov B.B. K raschetu odinochnykh svay i vysokikh svaynykh rostverkov na deystvie gorizontal’nykh sil [To the Calculation of Single Piles and High Pile Foundation Frames in Case of Horizontal Impacts]. Trudy LIIZhTa [Works of Leningrad Institute of Engineers of Railway Transport]. Leningrad, 1963, no. 207, pp. 112—156. (In Russian)
  13. Poulos H.G. The Behavior of Laterally Loaded Piles. Part I: Single Piles. ASCE Journal of the Soil Mechanics and Foundation Engineering Division. 1971, vol. 97, no. 5, pp. 711—731.
  14. Snitko N.K., Chernov V.K. Deformatsionnyy raschet i ustoychivost’ szhato-izognutykh svay [Deformation Calculation and Stability of Beam Piles]. Mekhanika gruntov, osnovaniya i fundamenty : sbornik trudov LISI [Soil Mechanics, Bases and Foundations : Collection of Works of Leningrad Engineering and Construction Institute]. Leningrad, 1976, no. 1 (116), pp. 8—14. (In Russian)
  15. Annenkov A.P. O vliyanii ugla naklona svai na nesushchuyu sposobnost’ fundamentov [On the Influence of Slope Angle of a Pile on the Bearing Capacity of Foundations]. Stroitel’nye konstruktsii, osnovaniya i fundamenty : Mezhvuzovskiy sbornik nauchnykh trudov [Building Structures, Bases and Foundations : Interuniversity Collection of Scientific Works]. Perm’, 1976, no. 179, pp. 36—38. (In Russian)
  16. Dobrovol’skiy K.I. Ispytanie svay i gruntov probnoy nagruzkoy v svyazi s raschetom nizkikh svaynykh rostverkov [Test of Piles and Soils with a Test Load while Calculating Low Pile Foundation Frames]. Tiflis : Zakavkazskiy institut inzhenerov putey soobshcheniya Publ., 1935, 198 p. (In Russian)
  17. Buslov A.S., Mokhovikov E.S. Vliyanie lezhney na peremeshcheniya gorizontal’no nagruzhennykh fundamentov opor kontaktnoy seti [Influence of Solepieces on the Displacements of Horizontally Loaded Support Bases of a Contact System]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2014, no. 8, pp. 44—53. (In Russian)

Download

Settlement and bearingcapacity of long pile

Vestnik MGSU 5/2015
  • Ter-Martirosyan Armen Zavenovich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Associate Professor, Department of Soil Mechanics and Geotechnies, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Ter-Martirosyan Zaven Grigor’evich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Science, Professor of the Department of Soil Mechanics and Geotechnics, Main Researcher at the Research and Education Center “Geotechnics”, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Trinh Tuan Viet - Moscow State University of Civil Engineering (MGSU) postgraduate student, Department of Soil Mechanics and Geotech- nies, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Luzin Ivan Nikolaevich - Moscow State University of Civil Engineering (MGSU) postgraduate student, Department of Soil Mechanics and Geotechnies, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 52-61

When a long pile is interacting with the soil, the combined force applied to the pile head is distributed among the side face and the pile toe inhomogeneously. The toe gets not more than 30 % from the general force, which doesn’t let using the reserves of the bearing capacity of relatively firm soil under the fifth pile. Account for the depth of the pile toe and the dead load of the soil allows increasing the bearing capacity of the soil under the pile toe and decrease the pile settlement in general. For the quantitative estimation of these factors it is necessary to solve the task on the interaction of the rigid long pile with the surrounding soil, which includes under the pile toe, which is absolutely rigid round stamp.The article presents the formulation and analytical solution to a quantification of the settlement of a circular foundation with the due account for its depth, basing on the development of P. Mindlin’s studies as well as the interactions between a long rigid pile and surrounding soils, including under pile toe.It is proposed to compare the estimated value of stresses under the heel of pile with the initial critical load for the round foundation to check the condition that the estinated value is less than the intial critical one.

DOI: 10.22227/1997-0935.2015.5.52-61

References
  1. Nadai A. Theory of Flow and Fracture of Solids. Vol. 1. New York, McGraw-Hill, 1950, 572 p.
  2. Florin V.A. Osnovy mekhanicheskikh gruntov [Fundamentals of Mechanical Soil].
  3. Vol. 1. Moscow, Gosstroyizdat Publ., 1959, 356 p. (In Russian)
  4. Telichenko V.I., Ter-Martirosyan Z.G. Vzaimodeystvie svai bol’shoy dliny s nelineyno deformiruemym massivom grunta [Interaction between Long Piles and the Soil Body Exposed to Non-Linear Deformations]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2012, no. 4, pp. 22—27. (In Russian)
  5. Ter-Martirosyan Z.G., Nguen Zang Nam. Vzaimodeystvie svay bol’shoy dliny s neodnorodnym massivom s uchetom nelineynykh i reologicheskikh svoystv gruntov [Interaction between Long Piles and a Heterogeneous Massif with Account for Non-linear and Rheological Properties of Soils]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2008, no. 2, pp. 3—14. (In Russian)
  6. Ter-Martirosyan Z.G., Trinh Tuan Viet. Vzaimodeystvie odinochnoy dlinoy svai s osnovaniem s uchetom szhimaemosti stvola svai [Interaction between a Single Long Pile and the Bedding with Account for Compressibility of the Pile Shaft]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2011, no. 8, pp. 104—111. (In Russian)
  7. Mattes N.S., Poulos H.G. Settlement of Single Compressible Pile. Journal SoilMech. Foundation ASCE. 1969, vol. 95, no. 1, pp. 189—208.
  8. Ter-Martirosyan Z.G., Ter-Martirosyan A.Z., Sidorov V.V. Nachal’noe kriticheskoe davlenie pod podoshvoy kruglogo fundamenta i pod pyatoy buronabivnoy svai kruglogo secheniya [Initial Critical Stresses under the Sole of Round Foundation and under the Circular Bored Pile Toe]. Estestvennye i tekhnicheskie nauki [Journal Natural and Technical Sciences]. 2014, no. 11—12 (78), pp. 372—376. (In Russian)
  9. Bartolomey A.A., Omel’chak I.M., Yushkov B.S. Prognoz osadok svaynykh fundamentov [Forecasting the Settlement of Pile Foundation]. Moscow, Stroyizdat Publ., 1994, 384 p. (In Russian)
  10. Coyle H.M., Reese L.C. Load Transfer for Axially Loaded Piles in Clay. Journal Soil Mechanics and Foundation Division, ASCE. March1996, vol. 92, no. 2, pp. 1—26.
  11. Randolph M.F., Wroth C.P. Analysis of Deformation of Vertically Loaded Piles. Journal of the Geotechnical Engineering Division, American Society of Civil Engineers. 1978, vol. 104, no. 12, pp. 1465—1488.
  12. Van Impe W.F. Deformations of Deep Foundations. Proc. 10th Eur. Conf. SM & Found. Eng., Florence. 1991, vol. 3, pp. 1031—1062.
  13. Ter-Martirosyan Z.G. Mekhanika gruntov [Soil Mechanics]. Moscow, ASV Publ., 2009, 550 p. (In Russian)
  14. Prakash S., Sharma H.D. Pile Foundation in Engineering Practice. John Wiley & Sons, 1990, 768 p.
  15. Malyshev M.V., Nikitina N.S. Raschet osadok fundamentov pri nelineynoy zavisimosti mezhdu napryazheniyami i deformatsiyami v gruntakh [Calculation of the Base Settlements in Non-Linear Relation between Stresses and Displacements of Soil]. Osnovaniya, fundamenty i mekhanika gruntov [Bases, Foundations and Soil Mechanics]. 1982, no. 2, pp. 21—25. (In Russian)
  16. Joseph E.B. Foundation Analysis and Design. McGraw-Hill, Inc, 1997, 1240 p.
  17. Ter-Martirosyan Z.G., Strunin P.V., Trinh Tuan Viet. Szhimaemost’ materiala svai pri opredelenii osadki v svaynom fundamente [The Influence of the Compressibility of Pile Material in Determining the Settlement of Pile Foundation]. Zhilishchnoe stroitel’stvo [Housing Construction]. 2012, no. 10, pp. 13—15. (In Russian)
  18. Hansen J.B. Revised and Extended Formula for Bearing Capacity. Bulletin 28. Danish Geotechnical Institute, Copenhagen, 1970, pp. 5—11.
  19. Vijayvergiya V.N. Load-Movement Characteristics of Piles. Proc. Port 77 conference, American Society of Civil Engineers, Long Beach, CA, March 1977, pp. 269—284.
  20. Booker J., Poulos H.G. Analysis of Creep Settlement of Pile Foundation. Journal Geotechnical Engineering division. ASCE. 1976, vol. 102, no. 1, pp. 1—14.
  21. Poulos H.G., Davis E.H. Pile Foundation Analysis and Design. New York, John Wiley and Sons, 1980, 397 p.
  22. Seed H.B., Reese L.C. The Action of Soft Clay along Friction Piles. Trans., ASCE. 1957, vol. 122, no. 1, pp. 731—754.

Download

Introduction and development of soil thermal stabilization technologies at the objects of oil pumping station-2 (OPS-2) of

Vestnik MGSU 8/2014
  • Sapsay Aleksey Nikolaevich - JSC "Transneft'" Vice-President, JSC "Transneft'", 57 Bolshaya Polyanka str., Moscow, 119180, Russian Federation; +7 (495) 950-81-78; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Pavlov Vyacheslav Vladimirovich - OJSC "Giprotruboprovod" Chief Engineer, OJSC "Giprotruboprovod", 24, 1, Vavilov str, Moscow, 119334, Russian Federation; +7 (495) 950-86-50; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Kaurkin Vasiliy Dmitrievich - OJSC "Giprotruboprovod" branch "Moskvagiprotruboprovod" Candidate of Geological and Mineralogical Sciences, Chief Specialist, Department of Engineering Protection, OJSC "Giprotruboprovod" branch "Moskvagiprotruboprovod", 24, 1, Vavilov str, Moscow, 119334, Russian Federation; +7 (495) 950-87-51 (ext. 1481); This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Korgin Andrey Valentinovich - Moscow State University of Civil Engineering (MGSU) Doctor of Technical Sciences, Professor, Supervisor, Scientific and Educational Center of Constructions Investigations and Examinations, Department of Test of Structures, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 62-72

The article deals with the questions of designing the foundations for the Oil Pumping Station-2 site of “Kuyumba — Tayshet” trunk oil pipeline. The problems of choice and grounds for technical solutions are considered basing on the results of complex thermo-technical calculations.
The construction territory of OPS-2 site of “Kuyumba — Tayshet” trunk oil pipeline is characterized by complex engineering and geocryological conditions:
1) presence of permafrost soil on 80 % of the site area;
2) absence of sufficiently widespread rocky soils under designed buildings and constructions;
3) transition of loamy grounds into yield during thawing.
The buildings and facilities are designed on the basis of pile foundation type with high rigid foundation grill. The piles’ diameter is 325 mm and 426 mm, the total length of piles is 9—12 m. The full designed vertical loading, transferred to the pile, is ranging from 10.6 to 50.4 tf.
According to the results of the calculations, in order to provide the necessary bearing capacity of piles, securing the perception of transmitted designed loadings, the equivalent temperature of the soil along the side surface of piles (Te) should not be higher than –0,5 °C. Taking into account that the soil temperatures on the projected site mainly range from –0.1 to –0.3 °C, in order to lower their temperatures to the calculated values ventilated underground areas are arranged under the buildings and facilities and seasonally active cooling devices (soil thermal stabilizers) are installed.
Assembly technique and construction of ventilated underground areas with application of soil thermal stabilizers were developed earlier while designing the pipeline system “Zapolyarye — Oil Pumping Station Purpe”.
For confirmation of the accepted decisions forecasting thermotechnical calculations were performed with the use of a special computer program TermoStab 67-87, which allows simulating the changes of temperature regimes of the permafrost in the process of construction and operation of the facility.
As a result of thermo-technical calculations, in case of operation of ventilated underground areas only, in the foundation of the facilities at the OPS-2 site (without the application of thermal stabilizers) a reduction in temperature of frozen soils is predicted, however, the required design temperatures, necessary for providing the bearing capacity of piles (–0,5 °C on their side surfaces and below), in one cold season cannot be achieved. For the areas of the distribution of the confluent type of the permafrost the necessary temperatures are achieved only by the 5th year of operation, and for the areas of distribution of non-confluent type of permafrost such temperatures are not achieved even by the 10th year of operation. A joint operation of the ventilated underground areas and soil thermal stabilization systems is conductive to the reduction of soil temperature of the buildings and facilities’ foundations up to the required values, which secure the load-bearing capacity of piles for one cold season.

DOI: 10.22227/1997-0935.2014.8.62-72

References
  1. SP 22.13330.2011. Osnovaniya zdaniy i sooruzheniy [Requirements 22.13330.2011. Foundations for Buildings and Structures]. Minregion Rossii, Moscow, OAO «TsPP» Publ., 2011, 164 p.
  2. SP 24.13330.2011. Svaynye fundamenty [Requirements SP 24.13330.2011. Pile Foundations]. Minregion Rossii, Moscow, OAO «TsPP» Publ., 2011, 90 p.
  3. SP 25.13330.2012. Osnovaniya i fundamenty na vechnomerzlykh gruntakh [Requirements SP 25.13330.2012. Soil Bases and Foundations on Permafrost Soils]. Moscow, Minregion Rossii, 2012, 123 p.
  4. Rukovodstvo po proektirovaniyu osnovaniy i fundamentov na vechnomerzlykh gruntakh [Manual for Designing the Bases and Foundations on Permafrost Soils]. The Gersevanova Institute — Research Studies Institute of Foundations and Underground Structures, Moscow, Stroyizdat Publ., 1980, 305 p.
  5. McFadden T.T., Lawrense Bennett F. Construction in Cold Regions: A Guide for Planners, Engineers, Contractors, and Managers (Wiley Series of Practical Construction Guides). Wiley-Interscience; 1 edition, October 1991, 640 p.
  6. Tiratsoo J. Trans Alaska Pipeline System. Pipelines International, ISSUE 004, June 2010. Available at: http://pipelinesinternational.com/news/trans_alaska_pipeline_system/041523. Date of access: 05.04.2014.
  7. Modelling Tools Aid in Arctic Pipeline Design. Pipeline International Magazine. September 2009, pp. 48—49.
  8. Ershov E.D., editor. Osnovy geokriologii. Ch. 5. Inzhenernaya geokriologiya [Fundamentals of Geocryology. Part 5. Engineering Geocryology]. Moscow, MGU Publ., 1999, 526 p.
  9. Khrustalev L.N. Osnovy geotekhniki v kriolitozone [Fundamentals of Geotechnical Engineering in Permafrost]. Moscow, MGU Publ., 2005, 544 p.
  10. Karnaukhov N.N., Kushnir S.Ya., Gorelov A.S., Dolgikh G.M. Mekhanika merzlykh gruntov i printsipy stroitel'stva neftegazovykh ob"ektov v usloviyakh Severa [Frozen Soil Mechanics and Principles of Construction of Oil and Gas Facilities in the North Conditions]. Moscow, TsentrLitNefteGaz Publ., 2008, 430 p.
  11. Lisin Yu.V., Soshchenko A.E., Pavlov V.V., Korgin A.V., Surikov V.I. Tekhnicheskie resheniya po temperaturnoy stabilizatsii mnogoletnemerzlykh gruntov osnovaniy ob"ektov truboprovodnoy sistemy «Zapolyar'e — NPS "Pur-Pe" [Technical Solutions for Temperature Stabilization of Permafrost Grounds of the Objects of “Zapolyarye-OPS Purpe” Pipeline System]. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering]. 2014, no. 1, pp. 65—68.
  12. RSN 67—87. Inzhenernye izyskaniya dlya stroitel'stva. Sostavlenie prognoza izmeтeniy temperaturnogo rezhima vechnomerzlykh gruntov chislennymi metodami [RSN 67–87. Engineering Surveys for Construction. Forecasting Changes in Temperature Regime of Permafrost Soils Using Numerical Methods]. Moscow, Gosstroy RSFSR Publ., 1988, 40 p.
  13. Lisin Yu.V., Sapsay A.N., Pavlov V.V., Zotov M.Yu., Kaurkin V.D. Vybor optimal'nykh tekhnicheskikh resheniy po prokladke nefteprovoda dlya obespecheniya nadezhnoy ekspluatatsii truboprovodnoy sistemy «Zapolyar'e — NPS Purpe» na osnove prognoznykh teplotekhnicheskikh raschetov [The Choice of Optimal Technical Solutions on Oil Pipeline Laying for Ensuring Reliable Operation of the Pipeline System "Zapolyarye-OPS Purpe" on the Basis of Expected Thermo-Technical Calculations]. Transport i khranenie nefteproduktov i uglevodorodnogo syr'ya [Transport and Storage of Oil and Hydrocarbon Feedstock]. 2014, no. 1, pp. 3—7.
  14. Parkhaev G.V., Shchelokov V.K. Prognozirovanie temperaturnogo rezhima vechnomerzlykh gruntov na zastraivaemykh territoriyakh [Predicting a Temperature Regime of the Permafrost Soil on Built-up Territories]. Leningrad, Stroyizdat Publ., 1980, 112 p.
  15. Strizhkov S.N. Snizhenie tekhnogennogo vozdeystviya zdaniy i sooruzheniy na gruntovye osnovaniya i ikh geomonitoring v kriolitozone [Reduction of Technogenic Influence of Buildings and Facilities on the Soil Bases and their Geomonitoring in the Permafrost Zone]. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering]. 2013, no. 11, pp. 8—12.

Download

CALCULATION METHODS OF LATERALLY LOADED DRILLED SHAFTS IN ROCK

Vestnik MGSU 10/2015
  • Khokhlov Khokhlov Ivan Nickolaevich - Moscow State University of Civil Engineering (National Research University) (MGSU) postgraduate student, Department of Soil Mechanics and Geothechnics, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.

Pages 40-53

Today the design and calculation of pile foundations in rocks is poorly considered in the national regulatory and technical literature. It should be also noted that the need of taking into consideration the mechanical properties of rocky soils often occurs when designing structures for various purposes. The Requirements SP 24.13330.2011 “Pile foundations” in Appendix B (recommended) set out the calculation methodology of the combined effect of a horizontal force and torque of a single pile. The pile in this methodology is substituted by beam on an elastic foundation and the surrounding soil may be regarded as a linear-elastic deformable medium characterized by a coefficient of subgrade reaction. The manual for the design of pile foundations contains two calculation methods of piles for the combined effect of horizontal forces and torque (basic and tabular methods), which are based on considering the subgrade reaction on the side of a pile. Also this guide provides the guidance on calculation of single piles in rock under lateral loading. At the same time uniaxial compressive strength of intact rock is used as the main characteristics for rock massive. In general, the methods outlined in the manual are extensive explanation of the design methods with the examples of calculation, which is the development of the paragraph of the construction norms SNIP , which are now replaced by the actualized SP. In the analysis of the foreign experience of the design of drilled shafts in rock, there are three main groups of calculation methods of laterally loaded drilled shafts in rock: 1. Analytical methods based on the theory of elasticity; 2. Joint deformation of piles and soil with taking into account the non-linear subgrade reaction of soil (the so-called “p-y method”); 3. Numerical methods (FEM and DEM), which are implemented in a variety of special software computer systems. Among the first group of methods the following ones should be distinguished: Carter and Kulhawy (1992) and Zhang (2000). The “p-y” method was studied by Reese (1997). Poulos and Davis (1980) obtained solutions for piles using numerical methods. Randolph (1981) made a parametrical study of drilled shafts socketed into continuous elastic rock mass. The analysis of domestic and foreign calculation methods shows that there are no methods, which can be effectively applied both at the preliminary and detailed stage of the project. The majority of them require obtaining specific data, such as the coefficient of subgrade reaction along the length of the shaft or p-y deformation curves for a reliable estimation of shaft behavior in each case . However, today the materials on rock mechanics are accumulated and systematized, allowing to accurately enough determine the mechanical characteristics of the rock mass with a limited number of input data. Furthermore, the numerical modeling methods, having significant development and upgrading recently, can replace time-consuming and expensive field-testing. It is also worth considering that the numerical simulation can be effectively used on the stage of detailed calculations. In this preliminary study for the project design the use of numerical methods can be combined with the method of experimental design that allows getting the desired response function depending on several factors. Guided by this approach, the author carried out the study of the numerical models of laterally loaded drilled shafts in rock. Using 3D modeling and experimental design method the behavior of shafts was described depending on various factors. After processing of the results it is possible to obtain the parametric dependencies and nomograms. In this study, the parameters and the limits of their changes were chosen. In order to carry out the numerical experiment the matrix of experimental design was created that allows within the varied factors to obtain a mathematical relationship (response function) of bearing capacity of the shaft from three selected factors. The experiments and calculations allowed obtaining the dependence of bearing capacity of shaft from the set parameters: The checking of the adequacy of the equation shows the convergence of 2...9 % and it was conducted on the models with intermediate features within a selected factor space. The further processing and systematization of the obtained results is currently conducted, as well as the construction of nomograms after obtaining of parametric equations. The results of this study may be used for the preliminary assessment of the bearing capacity and deformation of laterally loaded drilled shafts in rocks. Using this technique it is also possible to reduce the number of field tests and increase their efficiency, reduce material consumption and the amount of shaft installation works, without decreasing of safety of the building.

DOI: 10.22227/1997-0935.2015.10.40-53

References
  1. Zertsalov M.G., Konyukhov D.S. O raschete svay v skal’nykh gruntakh [On Calculating Piles in Rock Soils]. Osnovaniya, fundamenty i mekhanika gruntov [Soil Mechanics and Foundation Engineering]. 2007. No. 1 (27). Pp. 8—12. (In Russian)
  2. Fedorovskiy V.G., Levachev S.N., Kurillo S.V., Kolesnikov Yu.M. Svai v gidrotekhnicheskom stroitel’stve [Piles in Hydraulic Engineering]. Moscow, ASV Publ., 2003, 240 p. (In Russian)
  3. Bezvolev S.G. Metodika opredeleniya koeffitsientov zhestkosti grunta pri raschete svay na gorizontal’nuyu nagruzku [Methods of Determining Soil Stiffness Coefficient at Calculating the Longitudinal Load of Piles]. Osnovaniya, fundamenty i mekhanika gruntov [Soil Mechanics and Foundation Engineering]. 2012, no. 2, pp. 8—12. (In Russian)
  4. Bakholdin B.V., Trufanova E.V. Nekotorye sravnitel’nye sopostavleniya rascheta svay na gorizontal’nuyu nagruzku s eksperimental’nymi dannymi [Some Comparisons of Longitudinal Load Calculation of Piles with Experimental Data]. Problemy mekhaniki gruntov i fundamentostroeniya v slozhnykh gruntovykh usloviyakh : trudy Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii, posvyashchennoy 50-letiyu BashNIIstroy [Issues of Soil Mechanics and Foundation Engineering in Complicated Soil Conditions : Works of International Science and Technical Conference Dedicated to the 50th Anniversary of BashNIIstroy]. Ufa, 2006, vol. 3, pp. 18—22. (In Russian)
  5. Shishov I.I., Doshkov A.G. Raschet svai na deystvie vertikal’noy i gorizontal’noy sil [Calculation of Vertical and Horizontal Loading of Piles]. Vestnik Yuzhno-Ural’skogo gosudarstvennogo universiteta. Seriya: Stroitel’stvo i arkhitektura [Proceedings of South Ural State University. Series: Construction and Architecture]. 2007, no. 22 (94), pp. 67—68. (In Russian)
  6. Zhang L. Drilled Shafts in Rock. Analysis and Design. A.A. Balkema publishers, 2004, 383 p.
  7. Rock-socketed shafts for highway structure foundations. Transportation research board executive committee. NCHRP Synthesis 360, Washington, D.C., 2006, 137 p.
  8. Meyer B., Reese C. Analysis of Single Piles under Lateral Loading. Researchreport 244-1. Center for Highway Research, The University of Texas in Austin, Dec. 1979, 145 p.
  9. Nusairat J., Liang R.Y., Engel R.L. Design of Rock Socketed Drilled Shafts. Ohio Department of Transportation Research Final Report FHWA/OH-2006/21, 2006, 398 p.
  10. Pells P.J.N. State of Practice for the Design of Socketed Piles in Rock. Proceedings, 8th Australia New Zealand Conference on Geomechanics. Hobart, 2006, pp. 307—327.
  11. To A.C., Ernst H., Einstein H.H. Lateral Load Capacity of Drilled Shafts in Jointed Rock. Journal of Geotechnical and Geoenvironmental Engineering. ASCE. Aug. 2003, pp. 711—726. DOI: http://dx.doi.org/10.1061/(ASCE)1090-0241(2003)129:8(711).
  12. Chong W.L., Haque A., Ranjit P.G., Shahinuzamman A. A Parametric Study of Lateral Load Behavior of Single Piles Socketed into Jointed Rock Mass. Australian Geomechanics. March 2011, vol. 46, no. 1, pp. 43—50.
  13. Hegazy Y.A., Gushing A.G., Lewis C.J. Driven Pile Capacity in Clay and Drilled Shaft Capacity in Rock after Field Load Tests. Proceedings: Fifth International Conference on Case Histories in Geotechnical Engineering. New York, April 13—17 2004, 8 p.
  14. Drilled Shafts: Construction Procedures and Design Methods. Publication No FHWA-IF-99-025, US department of transportation, August 1999, 790 p.
  15. Foundation Design and Construction. The government of the Hong-Kong special administrative region, GEO Publication No. 1/2006, 376 p.

Download

Complex survey of the bridge over the structures of hydroelectric facility Ivankovo near Dubna(dam 21, power station 191)

Vestnik MGSU 11/2013
  • Mikhaylova Larisa Ivanovna - Moscow State University of Civil Engineering (MGSU) Leading engineer, laboratory of Inspection and Reconstruction of Buildings and Structures, Department of Testing of Structures, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Kunin Yuriy Saulovich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Professor, Chair, Department of Testing of Structures; +7 (495) 287-49-14, ext. 1331, 1150., Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Kotov Vyacheslav Ivanovich - Moscow State University of Civil Engineering (MGSU) Director, Laboratory of Examination and Testing of Structures at Department of Testing of Structures; +7 (495) 287-49-14, ext. 1331, 1150., Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 123-131

The article describes the results of a comprehensive survey of the bridge structure in Dubna. The survey was performed to determine the load capacity and maintainability of the bridge structures for the period prior to the repair, as well as to collect the information necessary to update the draft decision and the right strategy of major repairs. The growing needs of the city Dubna, which several times increased the operational loading of the bridge structures, and no major repairs since the construction, led to the need of restricting the traffic capacity of the only transportation artery. By the time of the survey in November 2011, contraflow over the bridge and the restricted traffic of more than 8 t was organized, which resulted in tense atmosphere in the city.The authors studied the historical data and design features of the supporting structures of the bridge. Particular attention was paid to the state of load-bearing structures of the bridge and their deformability. The strength characteristics were studied. The authors analyzed the results of calculations in order to determine the carrying capacity of the bridge structures with the test loads. It turned out that the carrying capacity of the bridge is sufficient for load accommodation. However, in accordance with the regulations, the bridge does not meet modern requirements for the travel width. It was recommended to maintain contraflow and to provide operational loads of the class H-10 (i.e. platoons with GVW of 10 t and the presence of a single vehicle in a platoon with GVW of 13 t) until the major repairs. After major repairs with restoration of bearings, waterproofing, water disposal system, replacing the bed, repair of the protective layer, it will be possible for single vehicles weighing up to 25 t to pass over the bridge.

DOI: 10.22227/1997-0935.2013.11.123-131

References
  1. Istoriya i issledovaniya [History and Investigations]. Moskva — Volga [Moscow — Volga river]. Available at: http://moskva-volga.ru. Date of access: 29.04.2013.
  2. Mitropol'skiy N.M. Metodologiya proektirovaniya mostov [The Methodology of Designing Bridges]. Moscow, 1958, 292 p.
  3. Kunin Yu.S., Kotov V.I., Mikhaylova L.I. Obsledovanie avtodorozhnogo mosta cherez plotinu ¹ 21 i Ivan'kovskuyu GES ¹191 po adresu Moskovskaya oblast', g. Dubna: nauchno-tekhnicheskoe zaklyuchenie [Complex Survey of the Road Bridge over the Dam ¹ 21 and Hydropower Unit of Ivankovo at Address Moscow Region, Dubna city: Scientific and Technological Opinions]. Moscow, 2011, p. 7.
  4. Bryus L. (Frantsiya) Treshchinoobrazovanie v zhelezobetonnykh konstruktsiyakh [Cracking in Reinforced Concrete Structures]. Materialy mezhdunarodnogo soveshchaniya po raschetu stroitel'nykh konstruktsiy [Works of International Conference on Calculating Building Structures]. Moscow, Gosstoyizdat Publ., 1961, p. 53.
  5. Fizdel' I.A. Defekty v konstruktsiyakh, sooruzheniyakh i metody ikh ustraneniya [Defects in Constructions, Structures and Methods of their Correction]. Moscow, Stroyizdat Publ., 1987, 196 p.
  6. Sakhnovskiy K.V. Zhelezobetonnye konstruktsii [Reinforced Concrete Structures]. Moscow, 1951, 839 p.
  7. Evgrafov K.G. Primenenie metoda rascheta konstruktsiy mostov po predel'nym sostoyaniyam [Application of the Method of Limit States in Bridge Design]. Materialy mezhdunarodnogo soveshchaniya po raschetu stroitel'nykh konstruktsiy [Works of the International Conference on Building Structures Calculation]. Moscow, Gosstoyizdat Publ., 1961, p. 153.
  8. Vasil'ev B.F., Bogatkin I.L., Zalesov A.S., Pan'shin L.L. Raschet zhelezobetonnykh konstruktsiy po prochnosti, deformatsiyam, obrazovaniyu i raskrytiyu treshchin [Calculation of Reinforced Concrete Structures in Respect of their Strength, Deformation and Crack Formation]. Moscow, Izdatelstvo Literatury po Stroitel'stvu Publ., 1965, 416 p.
  9. Grassniñk A., Gr?n E., Fiks V., Holzapfel V., Roter H. Preduprezhdenie defektov v stroitel'stve. Zashchita materialov i konstruktsiy [Prevention of Defects in Construction. Protection of Materials and Structures]. Moscow, Stroyizdat Publ., 1989, 216 p.
  10. Vasil'ev A.P., Balovnev V.I., Korsunskiy M.B. and others, editor Vasil'eva A.P. Remont i soderzhanie avtomobil'nykh dorog: spravochnik inzhenera-dorozhnika [Repair and Maintenance of Roads: the Handbook of Highway Engineer]. Moscow, Transport Publ., 1989, 287 p.

Download

CREEP AND LONG-TERM BEARING CAPACITY OF LONG PILES SUBMERGED INTO THE CLAY SOIL MASSIF

Vestnik MGSU 1/2013
  • Ter-Martirosyan Zaven Grigor’evich - Moscow State University of Civil Engineering (MGSU) +7 (499) 261-59-88, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Sidorov Vitaliy Valentinovich - National Research Moscow State University of Civil Engineering (National Research University) (MGSU) Candidate of Technical Sciences, Assistant Professor of the Department Soil Mechanics and Geotechnics, Researcher at the Research and Education Center «Geotechnics», National Research Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Ter-Martirosyan Karen Zavenovich - Moscow State University of Civil Engineering (MGSU) postgraduate student, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.

Pages 109-115

Interaction between long piles and the adjacent soil has a spatial and temporal nature. This phenomenon is based on a set of non-linear and rheological properties of soils. Distribution of lateral forces between the surface and the pile toe is heavily dependent on the above properties. The process of formation of the stress-strain state around the pile can demonstrate decaying, constant or progressive velocity depending on the rheological processes in the soil that may be accompanied by hardening and softening processes at one and the same time. These processes may be caused by destruction and restoration of ties between clay soil particles, soil compaction and de-compaction. Predominance of the process of hardening leads to damping, while predominance of the process of softening causes progressive destruction. Description of this multi-component process depends on the rheological model of the soil. This research is based on the modified rheological model originally designed by Maxwell. The authors consider solutions to the problem of quantification of the stressstrain state of soil around the pile and their interaction. This research makes it possible to project motion patterns of long piles over the time and evaluate the limit of their long-term bearing capacity.

DOI: 10.22227/1997-0935.2013.1.109-115

References
  1. Vyalov S.S. Reologicheskie osnovy mekhaniki gruntov [Rheological Fundamentals of Soil Mechanics]. Moscow, Vyssh. shk. publ.,1978, 442 p.
  2. Meschyan S.R. Eksperimental’nye osnovy reologii glinistykh gruntov [Experimental Fundamentals of Rheology of Clay Soils]. Moscow, 2008, 805 p.
  3. Ter-Martirosyan Z.G. Mekhanika gruntov [Soil Mechanics]. Moscow, ASV Publ., 2009, 550 p.
  4. Ter-Martirosyan Z.G., Nguen Zang Nam. Vzaimodeystvie svay bol’shoy dliny s neodnorodnym massivom s uchetom nelineynykh i reologicheskikh svoystv gruntov [Interaction between Long Piles and a Heterogeneous Massif with Account for Non-linear and Rheological Properties of Soils]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2008, no. 2, pp. 3—14.

Download

TESTING RESULTS DEMONSTRATED BY PULSE-DISCHARGE TECHNOLOGY PILES EXPOSED TO THE VERTICAL LOAD UNDER CONDITIONS OF SOFT SOILS OF TUNIS COASTAL AREA

Vestnik MGSU 5/2013
  • Eremin Valeriy Yakovlevich - MPO RITA Candidate of Technical Sciences, Director of Technology, MPO RITA, 8/1 Vereyskaya St., Moscow, 121357, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Znamenskiy Vladimir Valerianovich - Moscow State University of Civil Engineering (MGSU) Doctor of Technical Sciences, Professor, Professor, Department of Soil Mechanics, Beddings and Foundations, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Kharin Yuriy Ivanovich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Associate Professor, Associate Professor, Department of Soil Mechanics, Beddings and Foundations, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federa- tion.
  • Yudina Irina Mikhaylovna - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Associate Professor, Professor, Department of Soil Mechanics, Beddings and Foundations, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.

Pages 62-68

The paper is an overview of nationwide testing results demonstrated by pulse-discharge technology piles exposed to the vertical load under conditions of soft soils of Tunis coastal area. Bored cast-in=place piles are constructed through the employment of the pulse-discharge technology (PDT). In the construction norms of France, PDT piles are classified as bored piles, which are cast-in-place using a hollow stem auger; they are reinforced, and their diameter exceeds 25 centimeters. PDT piles are made through the application of high pressure to the surrounding soil in the course of concreting.Photos of testing facilities are provided in the paper. Graphs of cyclic and experi- mental load testing of piles, complying with the values of design loads for a 10-storey building under construction, are analyzed. The findings obtained by the authors have proven a considerable growth of the PDT pile bearing capacity in comparison with the analytical solutions obtained in accordance with Russian and French construction norms and regulations. It is pointed out that the results of pressuremeter testing can be reason- ably used in calculations as stated in the French norms. Negligible pile settlements and the high value of the bearing capacity of piles prove the expediency of employment of this technology in the course of construction of piles in the soft soils of the Tunis shoreline. It is concluded that further elaboration of the PDT pile calculation technique is required.

DOI: 10.22227/1997-0935.2013.5.62-68

References
  1. SP 24.13330.2011. Svaynye fundamenty. [Code of Practice 24.13330.2011. Pile Foundations]. Moscow, 2010, 85 p.
  2. TR 50-180—06. Tekhnicheskie rekomendatsii po proektirovaniyu i ustroystvu svaynykh fundamentov, vypolnyaemykh s ispol’zovaniem razryadno-impul’snoy tekhnologii dlya zdaniy povyshennoy etazhnosti (svai-RIT) [Technical Recommendations 50-180—06. Design and Construction of Pile Foundations for High-rise Buildings Using the Pulse-discharge Technology (PDT)]. Moscow, UITs “VEK” Publ., 2006, 68 p.
  3. Eremin V.Ya. Raschet visyachikh svay-RIT, izgotovlennykh po razryadno-impul’snoy tekhnologii [Analysis of Friction Pulse-discharge Piles]. Stroy klub [Construction Club]. 2001, no. 5-6, pp. 21—22.
  4. Roger Frank. Proektirovanie fundamentov po dannym ispytaniy pressiometrom Menara (IPM) [Design of Foundations Based on Menard Pressuremeter Testing Results]. Osnovaniya, fundamenty i mekhanika gruntov [Beddings, Foundations and Soil Mechanics]. 2009, no. 6, pp. 2—10.
  5. Roger Frank. Calcule des fondations superficielles et profondes. Presses Ponts et chauss?es, 2002, 138 p.
  6. Document Technique Unifi? (D.T.U. 13.20), Travaux de fondations profondes pour le b?timent, Chap. IV. Pieux for?s-ouits de fondations, piles colonnes. March 1966.
  7. Eurocode 7. Calcul g?otechnique. Partie 1. R?gles g?n?rales. XP ENV 1997-1 (P 91-250-1). AFNOR, Paris, December, 1996, 112 p.
  8. R?gle de justification des fondations sur pieux ? partir des r?sultats des essais pressiom?triques. LCPC-SETRA, Oct. 1985. Minist?re de l‘Urbanisme et des Transports, Direction des Routes, 32 p.
  9. NF P 94-150-1. Essai statique de pieu isol? sous un effort axial. Norme Fran?aise. AFNOR 1999.

Download

DESIGN OF STRUCTURAL ELEMENTS IN THE EVENT OF THE PRE-SET RELIABILITY, REGULAR LOAD AND BEARING CAPACITY DISTRIBUTION

Vestnik MGSU 10/2012
  • Tamrazyan Ashot Georgievich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Sciences, Professor, full member, Russian Engineering Academy, head of the directorate, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe Shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 109 - 115

Accurate and adequate description of external influences and of the bearing capacity of the structural material requires the employment of the probability theory methods. In this regard, the characteristic that describes the probability of failure-free operation is required. The characteristic of reliability means that the maximum stress caused by the action of the load will not exceed the bearing capacity.
In this paper, the author presents a solution to the problem of calculation of structures, namely, the identification of reliability of pre-set design parameters, in particular, cross-sectional dimensions. If the load distribution pattern is available, employment of the regularities of distributed functions make it possible to find the pattern of distribution of maximum stresses over the structure.
Similarly, we can proceed to the design of structures of pre-set rigidity, reliability and stability in the case of regular load distribution. We consider the element of design (a monolithic concrete slab), maximum stress which depends linearly on load . Within a pre-set period of time, the probability will not exceed the values according to the Poisson law.
The analysis demonstrates that the variability of the bearing capacity produces a stronger effect on relative sizes of cross sections of a slab than the variability of loads. It is therefore particularly important to reduce the coefficient of variation of the load capacity. One of the methods contemplates the truncation of the bearing capacity distribution by pre-culling the construction material.

DOI: 10.22227/1997-0935.2012.10.109 - 115

References
  1. Lychev A.S. Sposoby vychisleniya veroyatnosti otkaza v kompozitsii raspredeleniy prochnosti i nagruzki [Methods of Calculation of the Probability of Failure within the Framework of the Distribution of Strength and Load]. Trudy mezhdunarodnoy nauchno-tekhnicheskoy konferentsii [Collected works of the international scientific and technical conference]. Samara, 1997, pp. 33—37.
  2. Tichy M. In the Reliability Measure. Struct. Safety. 1988, vol. 5, pp. 227—232.
  3. Araslanov A.S. Raschet elementov konstruktsiy zadannoy nadezhnosti pri sluchaynykh vzaimodeystviyakh [Calculation of Structural Elements with the Pre-set Reliability If Exposed to Random Interactions]. Moscow, 1986, 268 p.
  4. Tamrazyan A.G. Otsenka riska i nadezhnosti nesushchikh konstruktsiy i klyuchevykh elementov — neobkhodimoe uslovie bezopasnosti zdaniy i sooruzheniy [Assessment of Risk and Reliability of Bearing Structures and Key Elements as the Necessary Condition of Safety of Buildings and Structures]. Vestnik TsNIISK [Bulletin of Central Research and Development Institute of Building Structures]. 2009, no. 1, pp. 160—171.
  5. JSO/TK 98 ST 2394. General Principles on Reliability for Structures. 1994, pp. 50.
  6. Rayzer V.D. Teoriya nadezhnosti v stroitel’nom proektirovanii [Theory of Reliability in Structural Design]. Moscow, ASV Publ., 1998, 304 p.

Download

Results 1 - 20 of 21
  • «
  •  Start 
  •  Prev 
  •  1 
  •  2 
  •  Next 
  •  End 
  • »