Home Vestnik MGSU Library Vestnik MGSU 2015/7

Vestnik MGSU 2015/7

DOI : 10.22227/1997-0935.2015.7

Articles count - 16

Pages - 157

ARCHITECTURE AND URBAN DEVELOPMENT. RESTRUCTURING AND RESTORATION

Problemsof preservation and use of historical buildingsin the modern urban architecture

  • Pankratova Anna Alekseevna - Ryazan Institute (branch) of the Moscow Polytechnic University (RI(f) MPU); Department of Design of Buildings and Structures, Moscow State University of Civil Engineering (National Research University) (MGSU) Architect, Department of Architecture and Urban Planning; senior lecturer; Postgraduate Student, Ryazan Institute (branch) of the Moscow Polytechnic University (RI(f) MPU); Department of Design of Buildings and Structures, Moscow State University of Civil Engineering (National Research University) (MGSU), 9 Lenina sq., Rybnoe, 391110, Ryazan oblast; 26/53 Right-Lybidska str., Ryazan, 390000, Russian Federation; 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Solov’ev Aleksey Kirillovich - Moscow State University of Civil Engineering (MGSU) Doctor of Technical Sciences, Professor, Department of Architecture of Civil and Industrial Buildings, member, Academie Europeenne des Sciences, des Arts et des Lettres, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 7-16

Historical architectural buildings carry features of different culture layers, it exhibits specific character of places and urban matrix, play leading role in cultural succession of different epochs. Investigation, use and the existence itself of historical objects in the modern city architecture is a factor of national identity formation. Lack of due attention to the problem of historical buildings preservation will have a negative impact on the material and spiritual spheres of human life. That’s why preservation of historical architectural environment of the city is one of the most important tasks of the contemporary society. The authors analyzed technical, law and urban planning aspects of historical buildings’ functioning in the conditions of developing construction in the central city areas and constant increase of structural, economical, hygienic requirements to buildings. The technical state and possibilities of adjusting the buildings-monuments, which have preservation category, and buildings without such status are compared, as well as their role in cohesive architectural environment formation.

DOI: 10.22227/1997-0935.2015.7.7-16

References
  1. Ikonnikov A.V. Iskusstvo, sreda, vremya : esteticheskaya organizatsiya gorodskoy sredy [Art, Environment, time : Esthetical Organization of the City Environment]. Moscow, Sovetskiy khudozhnik Publ., 1985, 336 p. (In Russian)
  2. Skopina M.V. Fenomen «mesta» i «ne-mesta» v postindustrial’nom gorode [Phenomenon of “Site” and “Non-site” in the Postindustrial City]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2013, no. 1, pp. 66—71. (In Russian)
  3. Cramer J., Breitling S. Architektur im Bestand: Planung, Entwurf, Ausfuhrung. Birkhäuser, Basel, Boston, Berlin, Birkhauser GmbH, 2007, 223 p.
  4. 361° Architecture & Identity. 361° Bureau. Landscape Architecture. 2013/14, no. 41, pp. 14—17.
  5. Meier H.-R., Wohlleben M. (Hrsg.). Bauten und Orte als Träger von Erinnerung. Die Erinnerungsdebatte und die Denkmalpflege. vdf Hochschulverlag AG an der ETH. Zürich, 2000, 230 p.
  6. Eckert H., Kleinmanns J., Reimers H. Denkmalpflege und Bauforschung. Sonderforschungsbereich 315, Universität Karlsruhe (TH), Karlsruhe. 2000. 214 p.
  7. Lisitsyna A.V. Istoriko-arkhitekturnaya sreda srednikh i malykh gorodov Nizhegorodskogo Povolzh’ya kak fenomen kul’turnogo naslediya [Historical Architectural Environment of Average and Small Cities of Nizhny Novgorod Volga Region as a Phenomenon of Cultural Heritage]. Arkhitekton: izvestiya vuzov [Architecton: Proceedings of Higher Education]. 2014, no. 45. Available at: http://archvuz.ru/2014_1/6. Date of access: 08.06.2015. (In Russian)
  8. Gribovskiy S.V., Lakhin Yu.Yu. Otsenka zdaniy-pamyatnikov [Estimation of Buildings-Monuments]. SMAO: samoreguliruemaya mezhregional’naya assotsiatsiya otsenshchikov [SMAO: Self-Regulating Transregional Assessor Association]. 2008. Available at: http://smao.ru/information/analytics/858. Date of access: 05.02.2015. (In Russian)
  9. Sheina S.G., Babenko L.L., Shumeev P.A. Metodika gradoekologicheskogo obespecheniya sokhraneniya pamyatnikov arkhitektury na osnove monitoringa sredy [Methods of City Ecological Provision of Architectural Monuments Preservation Based on Environmental Monitoring]. Inzhenernyy vestnik Dona: elektronnyy nauchnyy zhurnal [Engineering Proceedings of Don: Electronic Scientific Journal]. 2012, no. 4 (part 2). Available at: http://www.ivdon.ru/ru/magazine/archive/n4p2y2012/1252. Date of access: 08.06.2015. (In Russian)
  10. Titov A.L. Sovremennaya arkhitekturnaya sreda i ee vliyanie na povedenie cheloveka [Contemporary Architectural Enviironment and its Influence on Human Bahavior]. Arkhitekton: izvestiya vuzov [Architecton: Proceedings of Higher Education]. 2004, no. 6. Available at: http://archvuz.ru/2004_1/21. Date of access: 17.05.2015. (In Russian)
  11. Tkachev V.N. Anatomiya arkhitekturnoy kritiki: sovremennye aktsenty [Anatomy of Architectural Criticism: Modern Accents]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2013, no. 11, pp. 7—13. (In Russian)
  12. Ilovayskiy D.I. Istoriya Ryazanskogo knyazhestva [The History of Ryazan Duchy]. Moscow, Kuchkovo pole Publ., 2009, 320 p. (In Russian)
  13. Avdonin V.S., Akul’shin P.V., Geras’kin Yu.V., Kir’yanova E.A., Sokolov E.N. Istoriya odnoy gubernii. Ocherki istorii Ryazanskogo kraya 1778—2000 gg. [The Story of One Government. An Outline of Ryazan Area History of 1778—2000]. Ryazan’, Pressa Publ., 2000, 478 p. (In Russian)
  14. Kolesnikova V.I., editor. Svod pamyatnikov arkhitektury i monumental’nogo iskusstva Rossii. Ryazanskaya oblast’ : v 4 chastyakh [A List of Monuments of Architecture and Environmental Art of Russia. Ryazan Region : in 4 Parts]. Part 1. Moscow, Indrik Publ., 2012, 880 p. (A List of Monuments of History and Culture of Russia). (In Russian)
  15. Bahamon A., Campello A. Ultimate Landscape Design. Te Neues Pub Group. 2006, 527 p.
  16. Babina E.S. K voprosu o tsennosti pamyatnikov arkhitektury i istoricheskikh zdaniy pri ikh prisposoblenii v usloviyakh sovremennogo goroda [To the Question of the Value of Architectural Monuments and Historical Buildings at their Adjustment in the Conditions of the Modern City]. Arkhitekton: izvestiya vuzov [Architecton: Proceedings of Higher Education]. 2013, no. 2 (42). Available at: http://archvuz.ru/2013_2/7. Date of access: 13.05.2015.(In Russian)
  17. Spetsialisty zayavili o nedopustimosti prinyatiya novogo proekta okhrannykh zon istoricheskoy chasti Ryazani [Specialists Stated the Prohibition of Accepting the New Project on Protective Zones of the Historical Part оf Ryazan]. rzn.info : Ryazanskiy gorodskoy sayt [rzn.info : the Ryazan City Site]. Available at: http://www.rzn.info/news/2013/6/3/specialisty-zayavili-o-nedopustimosti-prinyatiya-novogo-proekta-ohrannyh-zon-istoricheskoy-chasti-ryazani.html?id=6. Date of access: 07.02.2015. (In Russian)
  18. Azatyan K.R., Engoyan A.R. Problemy integratsii starogo i novogo v protsesse razvitiya gorodskogo prostranstva [Integration Problems of the Old and the New in Urban Space Development]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2014, no. 6, pp. 7—16. (In Russian)
  19. Schittich Ch. (Hrsg.). Bauen im Bestand. Umnutzung, Ergänzung, Neuschöpfung. München. 2003, 176 p.
  20. Kuznetsova Ya.A. Printsipy organizatsii glavnykh ulits v usloviyakh sovremennogo goroda [Principles of Arrangement of Main Streets in the Present-day Urban Environment]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2013, no. 6, pp. 29—34. (In Russian)
  21. Romanova L.S., Malevich S.S. Adaptatsiya istoricheskoy zastroyki k sovremennym usloviyam. Iz opyta Tomskoy restavratsionnoy shkoly [Adjustment of Historical Buildings to New Conditions. From the Experience of Tomsk Restoration School]. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel’nogo universiteta [Vestnik of Tomsk State University of Architecture and Building]. 2013, no. 4, pp. 115—126. (In Russian)
  22. Waiz S. Auf Gebautem Bauen. Folio Verlag. Bozen. 2005, pp. 22—31.

Download

DESIGNING AND DETAILING OF BUILDING SYSTEMS. MECHANICS IN CIVIL ENGINEERING

Calculation of the three-layer shallow shell taking into account the creep of the middle layer

  • Andreev Vladimir Igorevich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Sciences, Professor, corresponding member of Russian Academy of Architecture and Construction Sciences, chair, Department of Strength of Materials, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Yazyev Batyr Meretovich - Rostov State University of Civil Engineering (RSUCE) Doctor of Technical Sciences, Professor, Chair, Depart- ment of Strength of Materials; +7 (863) 201-91-09, Rostov State University of Civil Engineering (RSUCE), 162 Sotsialisticheskaya St., Rostov-on-Don, 344022, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Chepurnenko Anton Sergeevich - Don State Technical University (DGTU) Candidate of Engineering Science, teaching assistant of the strength of materials department, Don State Technical University (DGTU), 162 Sotsialisticheskaya str., Rostov-on-Don, 344022; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Litvinov Stepan Viktorovch - Rostov State University of Civil Engineering (RSUCE) , Rostov State University of Civil Engineering (RSUCE), 162 Sotsialisticheskaya str., Rostov-on-Don, 344022, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 17-24

The equations of the finite element method for calculation of sandwich shells taking into account creep were obtained. The shell is represented as a set of flat triangular elements. The thickness of the carrier layers is supposed to be small compared to the total thickness of the shell. It is assumed that the outer layers perceive normal stresses, and the average layer perceives the shear forces. In the derivation of governing equations we used variational Lagrange principle. According to this principle, the true moves of all the possible ones satisfying the boundary conditions, are the ones that give a minimum of the total energy. Total energy is the sum of the strain energy and the work of external forces. The problem is reduced to a system of linear algebraic equations. On the right side of this system there is the vector of the sum of the external nodal forces and the contribution of creep strains to the load vector. The calculations were performed in mathematical package Matlab. As the law for description of the relationship between stress and creep strain, we used linear creep theory of heredity. If the core of creep is exponential, the creep law can be written in differential form. This allows the calculation by step method using a linear approximation of the time derivative. The model problem has been solved for a spherical shell hinged along the contour. The relationship between the curvature of shell and the growth of deflections was analyzed. It was found out that for the shells of large curvature the creep has no appreciable effect on the deflections.

DOI: 10.22227/1997-0935.2015.7.17-24

References
  1. Kovalenko V.A., Kondrat’ev A.V. Primenenie polimernykh kompozitsionnykh materialov v izdeliyakh raketno-kosmicheskoy tekhniki kak rezerv povysheniya ee massovoy i funktsional’noy effektivnosti [The Use of Polymeric Composite Materials in Rocket and Space Technology as a Reserve to Increase Its Mass and Functional Efficiency]. Aviatsionno-kosmicheskaya tekhnika i tekhnologiya [Aerospace Technics and Technology]. 2011, no. 5, pp. 14—20. (In Russian)
  2. Leonenko D.V. Radial’nye sobstvennye kolebaniya uprugikh trekhsloynykh tsilindricheskikh obolochek [Radial Natural Vibrations of Elastic Three-Layer Cylindrical Shells]. Mekhanika mashin, mekhanizmov i materialov [Mechanics of Machines, Tools and Materials]. 2010, no. 3 (12), pp. 53—56. (In Russian)
  3. Bakulin V.N. Neklassicheskie utochnennye modeli v mekhanike trekhsloynykh obolochek [Non-classical Refined Models in the Mechanics of Sandwich Shells]. Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo [Vestnik of Lobachevsky State University of Nizhni Novgorod]. 2011, no. 4-5, pp. 1989—1991. (In Russian)
  4. Zemskov A.V., Pukhliy V.A., Pomeranskaya A.K., Tarlakovskiy D.V. K raschetu napryazhenno-deformirovannogo sostoyaniya trekhsloynykh obolochek peremennoy zhestkosti [Calculation of the stress-Strain State of Sandwich Shells with Variable Rigidity]. Vestnik Moskovskogo aviatsionnogo institute [Bulletin of Moscow Aviation Institute]. 2011, vol. 18, no. 1, p. 26. (In Russian)
  5. Kirichenko V.F. O sushchestvovanii resheniy v svyazannoy zadache termouprugosti dlya trekhsloynykh obolochek [Existence of the Solutions to a Connected Problem of Thermoelasticity of Sandwich Shells]. Izvestiya vysshikh uchebnykh zavedeniy. Matematika [Russian Mathematics]. 2012, no. 9, pp. 66—71. (In Russian)
  6. Sukhinin S.N. Matematicheskoe i fizicheskoe modelirovanie v zadachakh ustoychivosti trekhsloynykh kompozitnykh obolochek [Mathematical and physical Modeling in Problems оf Stability оf Three-Layer Composite Shells]. Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo [Vestnik of Lobachevsky State University of Nizhni Novgorod]. 2011, no. 4-5, pp. 2521—2522. (In Russian)
  7. Grigorenko Ya.M., Vasilenko A.T. O nekotorykh podkhodakh k postroeniyu utochnennykh modeley teorii anizotropnykh obolochek peremennoy tolshchiny [On Some Approaches to the Construction of the Specified Models of the Theory of Anisotropic Shells of Variable Thickness]. Matematichnі metodi ta fіziko-mekhanіchnі polya [Mathematical Methods and Physical-Mechanical Fields]. 2014, vol. 7, pp. 21—25. (In Russian)
  8. Bakulin V.N. Effektivnye modeli dlya utochnennogo analiza deformirovannogo sostoyaniya trekhsloynykh neosesimmetrichnykh tsilindricheskikh obolochek [Effective Models for Proximate Analysis of the Deformed State of Three-Layered Non-Axisymmetric Cylindrical Shells]. Doklady Akademii nauk [Reports of the Russian Academy of Sciences]. 2007, vol. 414, no. 5, pp. 613—617. (In Russian)
  9. Smerdov A.A., Fan Tkhe Shon. Raschetnyy analiz i optimizatsiya mnogostenochnykh kompozitnykh nesushchikh obolochek [Design Analysis and Optimization of Composite Bearing Shells]. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [Proceedings of Higher Educational Institutions. Маchine Building]. 2014, no. 11 (656), pp. 90—98. (In Russian)
  10. Bakulin V.N. Postroenie approksimatsiy i modeley dlya issledovaniya napryazhenno-deformirovannogo sostoyaniya sloistykh neosesimmetrichnykh obolochek [Construction of Approximations and Models for Investigation of Stressed-Stained State of Layered Not- Axisymmetric Shells]. Matematicheskoe modelirovanie [Mathematical Modeling]. 2007, vol. 19, no. 12, pp. 118—128. (In Russian)
  11. Garrido M., Correia J., Branco F. Creep Behavior of Sandwich Panels with Rigid Polyurethane Foam Core and Glass-Fibre Reinforced Polymer Faces: Experimental Tests and Analytical Modeling. Journal of Composite Materials. 2013, pp. 21—28. DOI: http://dx.doi.org/10.1177/0021998313496593.
  12. Yazyev B.M., Chepurnenko A.S., Litvinov S.V., Yazyev S.B. Raschet trekhsloynoy plastinki metodom konechnykh elementov s uchetom polzuchesti srednego sloya [Calculation of Three-Layer Plates Using Finite Element Method Taking into Account the Creep of the Middle Layer]. Vestnik Dagestanskogo gosudarstvennogo tekhnicheskogo universiteta. Tekhnicheskie nauki [Herald of Dagestan State Technical University. Technical Sciences]. 2014, no. 33, pp. 47—55. (In Russian)
  13. Rabotnov Yu.N. Polzuchest’ elementov konstruktsiy [Creep of Structural Elements]. Moscow, Nauka Publ., 1966, 752 p. (In Russian)
  14. Kachanov L.M. Teoriya polzuchesti [Creep Theory]. Moscow, Fizmatgiz Publ., 1960, 680 p. (In Russian)
  15. Vol’mir A.S. Gibkie plastinki i obolochki [Flexible Plates and Shells]. Moscow, Izdatel’stvo Tekhniko-teoreticheskoy literatury Publ., 1956, 419 p. (In Russian)
  16. Andreev V.I., Yazyev B.M., Chepurnenko A.S. On the Bending of a Thin Plate at Nonlinear Creep. Advanced Materials Research. Trans Tech Publications, Switzerland. 2014, vol. 900, pp. 707—710. DOI: http://dx.doi.org/10.4028/www.scientific.net/AMR.900.707.
  17. Andreev V.I. Ob ustoychivosti polimernykh sterzhney pri polzuchesti [The Stability of Polymer Rods at Creep]. Mekhanika kompozitnykh materialov [Mechanics of Composite Materials]. 1968, no. 1, pp. 22—28. (In Russian)
  18. Chepurenko A.S., Andreev V.I., Yazyev B.M. Energeticheskiy metod pri raschete na ustoychivost’ szhatykh sterzhney s uchetom polzuchesti [Energy Method of Analysis of Stability of Compressed Rods with Regard for Creeping]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2013, no. 1, pp. 101—108. (In Russian)
  19. Andreev V.I., Yazyev B.M., Chepurnenko A.S. Osesimmetrichnyy izgib krugloy gibkoy plastinki pri polzuchesti [Axisymmetric Bending of a Round Elastic Plate in Case of Creep]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2014, no. 5, pp. 16—24. (In Russian)
  20. Kozel’skaya M.Yu., Chepurnenko A.S., Litvinov S.V. Raschet na ustoychivost’ szhatykh polimernykh sterzhney s uchetom temperaturnykh vozdeystviy i vysokoelasticheskikh deformatsiy [Stability Calculation of Compressed Polymer Rods with Account for Temperature Effects and Vysokoelaplastic Deformations]. Nauchno-tekhnicheskiy vestnik Povolzh’ya [Scientific and Technical Volga region Bulletin]. 2013, no. 4, pp. 190—194. (In Russian)

Download

Determination of resonant frequencies of axisymmetric oscillationsof a hollow ball using of the equations of motionof three-dimensional elasticity theory

  • Bobyleva Tat’yana Nikolaevna - Moscow State University of Civil Engineering (MGSU) Candidate of Physical and Mathematical Sciences, Associate Professor, Department of Higher Mathematics, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 25-32

A great number of works have been written on the frequencies of spherical bodies. In construction hollow balls are widely used. For this reason it is important to investigate the dynamics of such bodies, in particular, their resonance oscillations. In the paper we obtained an equation for determining the resonant frequencies of axisymmetric oscillations of a hollow ball. The general solution of three-dimensional equation of motion is used in a spherical coordinate system. Frequency equations of purely radial oscillations of solid and hollow balls are given as special cases. These equations coincide with those obtained previously. The solution may be used in boundary problems for arbitrary loaded space bodies, all the three dimensions of which are relatively equal, in the dynamic tasks for high-frequency oscillations.

DOI: 10.22227/1997-0935.2015.7.25-32

References
  1. Grigorenko A.Ya., Loza I.A. Osesimmetrichnye kolebaniya pologo neodnorodnogo shara s p’ezokeramicheskimi sloyami [Axisymmetric Oscillations of a Hollow Inhomogeneous Ball with Piezoceramic Layers]. Problemi obchislyuval’noï mekhaniki i mitsnosti konstruktsiy :zbirnik naukovikh prats’ [Problems of Computational Mechanics and Structural Reliability : Collection of Scientific Works]. 2011, no. 15, pp. 70—80. (In Russian)
  2. Shul’ga N.A. Radial’nye elektrouprugie kolebaniya p’ezokeramicheskogo pologo shara [Radial Electroelastic Oscillations of Piezoceramic Hollow Ball]. Prikladnaya mekhanika [Applied Machanics]. 1990, vol. 26, no. 8, pp. 20—25. (In Russian)
  3. Grigorenko A.Ya., Efimova T.L., Shul’ga N.A. Svobodnye neosesimmetrichnye kolebaniya transversal’no-izotropnogo pologo shara [Natural Non-Axially Symmetric Vibrations of Transversely Isotropic Hollow Ball]. Doklady Akademii nauk Ukrainskoy SSR [Reports of the Academy of Sciences of the Ukrainian SSR]. 1986. Ser. A : Fiziko-matematicheskie i tekhnicheskie nauki [Series A : Physico-Mathematical and Technical Sciences]. No. 2, pp. 8—20. (In Russian)
  4. Loza I.A., Shul’ga N.A. Osesimmetrichnye kolebaniya p’ezokeramicheskogo pologo shara pri radial’noy polyarizatsii [Axisymmetric Oscillations of Piezoceramic Hollow Ball at Radial Polarization]. Prikladnaya mekhanika [Applied Mechanics]. 1984, vol. 20, no. 2, pp. 3—8. (In Russian)
  5. Frishter L.Yu. Raschetno-eksperimental’nyy metod issledovaniya NDS sostavnykh konstruktsiy v zonakh kontsentratsii napryazheniy [Calculation and Experimental Method of Investigating Stress-strain State of Composite Structures in Stress Concentration Zones]. Stroitel’naya mekhanika inzhenernykh konstruktsiy i sooruzheniy [Structural Mechanics of Engineering Structures and Constructions]. 2008, no. 2, pp. 20—27. (In Russian)
  6. Lazutkin V.N. Kolebaniya pologo p’ezokeramicheskogo shara [Oscillations of Hollow Piezoceramic Ball]. Akusticheskiy zhurnal [Acoustic Journal]. 1971, vol. 17, no. 4, pp. 588—592. (In Russian)
  7. Petrenko T.P. Sobstvennye kolebaniya uprugogo pologo shara v zhidkosti ili gaze [Natural Frequencies of Elastic Hollow Ball in Liquid or Gas]. Izvestiya Akademii nauk Armyanskoy SSR [News of the Academy of Sciences of the Armenian SSR]. 1971, vol. 24, no. 5, pp. 37—46. (In Russian)
  8. Sharma J.N., Sharma N. 3-D Exact Vibration Analysis of a Generalized Thermoelastic Hollow Sphere with Matrix Frobenius Method. World Journal of Mechanics. 2012, vol. 2, pp. 98—112. DOI: http://dx.doi.org/10.4236/wjm.2012.22012.
  9. Srinivas R., Rajashekar M.N., Sambaiah K. Radial Vibrations in a Micro-Isotropic, Micro-Elastic Hollow Sphere. Int. J. Pure Appl. Sci. Technol. 2013, vol. 15, no. 2, pp. 54—61.
  10. Abd-Alla A.M. Free Vibrations in a Spherical Non-Homogeneous Elastic Region. J. Comp. and Theor. Nanoscience. 2013, vol. 10, no. 9, pp. 1914—1920. DOI: http://dx.doi.org/10.1166/jctn.2013.3148.
  11. Krasnenkov M.A., Korshakovskiy S.I., Chekalkin N.S. Problemy bezopasnosti i nadezhnosti pri izuchenii ustalosti elementov silovykh konstruktsiy aviatsionnoy i kosmicheskoy tekhniki [Problems of Safety and Reliability at Investigating the Fatigue of Load-Bearing Structures’ Elements of Aviation and Space Systems]. Nauchnyy vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta grazhdanskoy aviatsii [Scientific Bulletin of the Moscow State Technical University of Civil Aviation]. 2014, vol. 208, pp. 49—53. (In Russian)
  12. Kul’tina N.Yu., Novikov V.V. O spektre sobstvennykh chastot nekotorogo klassa tonkikh uprugikh obolochek [On the Eigenfrequency Spectrum of Some Class of Thin Elastic Shells]. Nauchni trudove na Rusenskiya universitet : sbornik [Scientific Works of the Russian University]. 2013, vol. 52, series 2, pp. 93—102. (In Russian)
  13. Boriseyko V.A., Ulitko A.F. Elektrouprugie kolebaniya tolstostennoy p’ezokeramiches-koy sfery [Electroelastic Oscillations of Thick-Wall Piezoceramic Ball]. Teplovye napryazheniya v elementakh konstruktsiy. Doklady nauchnogo soveshchaniya [Thermal Stresses in Structural Elements. Reports of the Scientific Meeting]. 1974, no. 14, pp. 121—126. (In Russian)
  14. Frishter L.Yu., Mozgaleva M.L. Sopostavlenie vozmozhnostey chislennogo i eksperimental’nogo modelirovaniya napryazhenno-deformirovannogo sostoyaniya konstruktsiy s uchetom ikh geometricheskoy nelineynosti [Comparing the Possibilities of Numerical and Expeimental Modeling of the Stress-Strain State of Structures with Account for their Geometrical Nonlinearity]. International Journal for Computational Civil and Structural Engineering. 2010, vol. 6, no. 1—2, pp. 221—222. (In Russian)
  15. Gol’denveyzer A.L., Lidskiy B.V., Tovstik P.E. Svobodnye kolebaniya tonkikh uprugikh obolochek [Natural Oscillations of Thin Elastic Shells]. Moscow, Nauka Publ., 1979, 384 p. (In Russian)
  16. Naghdi P.M., Kalnins A. On Vibrations of Elastic Spherical Shells. Trans. ASME. J. Appl. Mechanics. 1962, vol. E29, no. 1, pp. 65—72.
  17. Kabanov K.I., Kiryanova L.V. Some Aspects of Modeling a Random Process of the Spectral Density Method of Canonical Expansions. Integration Processes and Innovative Technologies. Achievements and Prospects of Engineering Sciences. Collection of Scientific Works. Kharkiv, 2012, 4 p.
  18. Shmakov V.P. Izbrannye trudy po gidrouprugosti i dinamike uprugikh konstruktsiy [Selected Works on Hydroelasticity]. Moscow, MGTU im. N.E. Baumana Publ., 2011, 287 p. (In Russian)
  19. Titova T.N. O nakhozhdenii normal’nogo vida gamil’tonovykh matrits [On Finding the Normal Form of Hamiltonian Matrixes]. Prikladnaya matematika i mekhanika [Applied Mathematics and Mechanics]. 1981, vol. 45, no. 6, pp. 1026—1031. (In Russian)
  20. Kartashov G.D., Chiganova N.M. Construction of Control Plans Using a Quantitative Index with Two-Sided Bounds. J. of Math. Sci. 1987, vol. 39, no. 2, pp. 2578—2588. DOI: http://dx.doi.org/10.1007/bf01084966.
  21. Sharma J.N., Sharma D.K., Dhaliwal S.S. Free Vibration Analysis of Viscothermoelastic Solid Sphere. Int. J. of Appl. Math. and Mech. 2012, vol. 8, no. 11, pp. 45—68.
  22. Lur’e A.I. Prostranstvennye zadachi teorii uprugosti [Space Problems of Elasticity Theory]. Moscow, Gostekhizdat, 1955, 491 p. (In Russian)
  23. Ulitko A.F. Vektornye razlozheniya v prostranstvennoy teorii uprugosti [Vector Decompositions in Space Elasticity Theory]. Kiev, Akademperiodika Publ., 2002, 341 p. (In Russian)
  24. Yanke E., Emde F., Lesh F. Spetsial’nye funktsii. Formuly, grafiki, tablitsy [Special Functions. Formulas, Diagrams, Tables]. Moscow, Nauka Publ., 1977, 342 p. (In Russian)
  25. Lyav A. Matematicheskaya teoriya uprugosti [Mathematical Elasticity Theory]. Moscow, Leningrad, ONTI NKTI SSSR Publ., 1935, 674 p. (In Russian)

Download

Secularitycondition of the kinetic Carleman system

  • Vasil’eva Ol’ga Aleksandrovna - Moscow State University of Civil Engineering (National Research University) (MGSU) Candidate of Physical and Mathematical Sciences, Associate Professor, Department of Higher Mathematics, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Dukhnovskiy Sergey Anatol’evich - Moscow State University of Civil Engineering (MGSU) postgraduate student, Department of Higher Mathematics, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 33-40

The kinetic theory of gases is considered as a collection of a large number of interacting particles. We consider the discrete kinetic model of one-dimensional gas consisting of identical monatomic molecules, which can have one of two speeds, namely, the Cauchy problem with periodic initial conditions for the system of the Carleman equation. This mathematical model has a number of properties of the Boltzmann equation. This system of equations is a quasi-linear hyperbolic system of partial differential equations. In general, there is no analytic solution for this system. Therefore, under some general assumptions we can find the finite-dimensional approximation of the solutions for the Carleman equation with small Knudsen numbers that allow us to study our problem on the widest scale. Moreover, we can find the secularity condition of the Carleman model. An approximation solution of the Carleman equation for non-periodic initial data will be found in the next article. There is an interesting problem of the existence of the shock waves connecting the pairs of equilibrium states. Here we have a catastrophe theory. It is assumed that the solutions of the Cauchy problem split into the superposition of weakly interacting solitons and decreasing dispersive waves. The Cauchy problem of the Carleman equation is studied for small perturbations of the equilibrium state whereby we have perturbed system. In order to construct the finite-dimensional approximation we use the Fourier method. Construction of finite-dimensional approximation allows doing theoretical studies of solutions for the Cauchy problem of the Carleman equation with small Knudsen numbers.

DOI: 10.22227/1997-0935.2015.7.33-40

References
  1. Boltzmann L. Izbrannye trudy [Selected works]. Moscow, Nauka Publ., 1984, 590 p. (Classics of Science) (In Russian)
  2. Godunov S.K., Sultangazin U.M. O diskretnykh modelyakh kineticheskogo uravneniya Bol’tsmana [On Discrete Models of the Kinetic Boltzmann Equation]. Uspekhi Matematicheskikh Nauk [The Success of Mathematical Sciences]. 1971, vol. 26, no. 3 (159), pp. 3—51. (In Russian)
  3. Karleman T. Matematicheskie zadachi kineticheskoy teorii gazov [Mathematical problems of the Kinetic Gas Theory]. Translated from French. Moscow,IIL Publ., 1960, 118 p. (In Russian)
  4. Radkevich E.V. O diskretnykh kineticheskikh uravneniyakh [On Discrete Kinetic Equations]. Doklady Akademii nauk [Reports of the Academy of Sciences]. 2012, vol. 447, no. 4, pp. 369—373. (In Russian)
  5. Radkevich E.V. The Existence of Global Solutions to the Cauchy Problem for Discrete Kinetic Equations. Journal of Mathematical Science. 2012, vol. 181, no. 2, pp. 232—280. DOI: http://dx.doi.org/10.1007/s10958-012-0683-9.
  6. Radkevich E.V. O povedenii na bol’shikh vremenakh resheniy zadachi Koshi dlya dvumernogo kineticheskogo uravneniya [The Behavior of Solutions of the Cauchy Problem at Large Times for Two-Dimensional Kinetic Equation]. Sovremennaya matematika. Fundamental’nye napravleniya [Contemporary Mathematics. Fundamental Directions]. 2013, vol. 47, pp.108—139. (In Russian)
  7. Vasil’eva O.A., Dukhnovskiy S.A., Radkevich E.V. O lokal’nom ravnovesii uravneniya Karlemana [On Local Equilibrium of the Carleman Equation]. Problemy matematicheskogo analiza [Problems of Mathematical Analysis]. 2015, vol. 78, pp. 165—190. (In Russian)
  8. Radkevich E.V., Vasileva O.A., Dukhnovskii S.A. Local Equilibrium of the Carleman Equation. Journal of Mathematical Science. 2015, vol. 207, no. 32, pp. 296—323.
  9. Vasil’eva O.A. Chislennoe issledovanie sistemy uravneniy Karlemana [Numerical Investigation of the Carleman System]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2015, no. 6, pp. 7—15. (In Russian)
  10. Broadwell T.E. Study of Rarified Shear Flow by the Discrete Velocity Method. J. of Fluid Mechanics. 1964, vol. 19, no. 3, pp. 401—414. DOI: http://dx.doi.org/10.1017/S0022112064000817.
  11. Il’in O.V. Statsionarnye resheniya kineticheskoy modeli Broduella [Stationary Solutions of the Kinetic Broadwell Model]. Teoreticheskaya i matematicheskaya fizika [Theoretical and Mathematical Physics]. 2012, vol. 170, no. 3, pp. 481—488. (In Russian)
  12. Adzhiev S.Z., Amosov S.A., Vedenyapin V.V. Odnomernye diskretnye modeli kineticheskikh uravneniy dlya smesey [One Dimensional Discrete Models of Kinetic Equations for Mixtures]. Zhurnal vychislitel’noy matematiki i matematicheskoy fiziki [Journal of Computational Mathematics and Mathematical Physics]. 2004, vol. 44, no. 3, pp. 553—558. (In Russian)
  13. Il’in O.V. Izuchenie sushchestvovaniya resheniy i ustoychivosti kineticheskoy sistemy Karlemana [Investigating the Existence of Solutions and Stability of Carleman Kinetic System]. Zhurnal vychislitel’noy matematiki i matematicheskoy fiziki [Journal of Computational Mathematics and Mathematical Physics]. 2007, vol. 47, no. 12, pp. 2076—2087. (In Russian)
  14. Aristov V., Ilyin O. Kinetic Model of the Spatio-Temporal Turbulence. Phys. Let. A. 2010, vol. 374, no. 43, pp. 4381—4384. DOI: http://dx.doi.org/10.1016/j.physleta.2010.08.069.
  15. Illner R., Reed M.C., Neunzert H. The Decay of Solutions of the Carleman Model. Math. Methods Appl. Sci. 1981, vol. 3 (1), pp. 121—127. DOI: http://dx.doi.org/10.1002/ mma.1670030110.
  16. Aristov V.V. Direct Methods for Solving the Boltzmann Equation and Study of Nonequilibrium Flows. Kluwer Academic Publishing, 2001, 312 p.
  17. Radkevich E.V. Matematicheskie voprosy neravnovesnykh protsessov [Mathematical Problems of Nonequilibrium Processes]. Novosibirsk, T. Rozhkovskaya Publ., 2007, 300 p. (In Russian)
  18. Radkevich E.V. The Existence of Global Solutions to the Cauchy Problem for Discrete Kinetic Equations (Non-Periodic Case). Journal of Mathematical Science. 2012, vol. 184, no. 4, pp. 524—556. DOI: http://dx.doi.org/10.1007/s10958-012-0879-z.
  19. Frishter L.Yu. Analiz napryazhenno-deformirovannogo sostoyaniya v vershine pryamougol’nogo klina [Analysis of Stress-strain State on Top of a Rectangular Wedge]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2014, no. 5, pp. 57—62. (In Russian)
  20. Euler N., Steeb W.-H. Painleve Test and Discrete Boltzmann Equations. Aust. J. Phys. 1989, vol. 42 (1), pp. 1—10. DOI: http://dx.doi.org/10.1071/PH890001.

Download

The theory of deformability calculation of timber joints on cylindrical nails

  • Markovich Aleksey Semenovich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Senior Lecturer, Department of Architectural and Construction Design, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 41-46

This article is devoted to the peculiarities of calculating deformability modifications of the timber elements on mechanical linkages. Here we analyze in detail the method of V.M. Kochenov used in the design standards of the Russian Federation. This method allows accurately determining the number of links that are able to resist the shear force in the linkage, however, this method does not include analyzing of shear deformation in modifications. And it is an important disadvantage. In this article the author considers another approach, based on the idea of determining the shear deformation of the mechanical linkage, installed in the connection. In order to calculate the shear deformations of the connections in the linkage it is necessary to conduct a preliminary analysis of the construction, to establish the type of connection and the thickness of the connected elements, to determine the number of slice planes, the number of established connections and the load level on the connection. After determining these values, structural analysis design is performed. This article describes in detail the theoretical aspects of this method, used assumptions and limitations. A test case is considered for validation of the considered methods.

DOI: 10.22227/1997-0935.2015.7.41-46

References
  1. SP 64.13330.2011. Derevyannye konstruktsii. Aktualizirovannaya redaktsiya SNiP II-25—80 [Requirements SP 64.13330.2011. Timber Constructions. The Actualized Edition of the Construction Norms SNiP II-25—80]. Moscow, Minregion Rossii Publ., 2011, 87 p. (In Russian)
  2. Posobie po proektirovaniyu derevyannykh konstruktsiy k SNiP II-25—80 [Guidelines on the Design of Timber Constructions to SNiP II-25—80]. Moscow, Stroyizdat Publ., 1986, 215 p. (In Russian)
  3. Kochenov V.M. Nesushchaya sposobnost’ elementov soedineniy derevyannykh konstruktsiy [Durability of Joining Elements of Timber Structures]. Moscow, Gosstroyizdat Publ., 1953, 320 p. (In Russian)
  4. Dmitriev P.A. Issledovanie dlitel’noy nesushchey sposobnosti soedineniy derevyannykh elementov na stal’nykh tsilindricheskikh nagelyakh [Investigation of Long-term Durability of Joints of Timber Elements on Steel Nails]. Izvestiya vysshikh uchebnykh zavedeniy. Stroitel’stvo i arkhitektura [News of Higher Educational Institutions. Construction and Architecture]. 1973, no. 5, pp. 28—35. (In Russian)
  5. Dmitriev P.A., Strizhakov Yu.D., Shvedov V.N. O raschete nesimmetrichnykh nagel’nykh soedineniy derevyannykh elementov so stal’nymi nakladkami i prokladkami // nagelyakh [On Calculation of Asymmetrical Nail Joints of Timber Elements with Steel Fish Plates and Linings]. Izvestiya vysshikh uchebnykh zavedeniy. Stroitel’stvo [News of Higher Educational Institutions. Construction]. 1999, no. 4, pp. 10—15. (In Russian)
  6. Shvedov V.N., Grokhotov A.B. Effektivnyy sposob soedineniy v derevyannykh konstruktsiyakh [Effective Method of Joints of Timber Constructions]. Povyshenie effektivnosti sel’skogo stroitel’stva : Mezhdunarodnyy sbornik trudov NGASU [Increase of Efficiency of Rural Construction. The international Collection of Works of NSUACE]. Novosibirsk, 2000, pp. 61—63. (In Russian)
  7. Rekomendatsii po ispytaniyu soedineniy derevyannykh konstruktsiy [Recommendations on Test of Joints of Timber Constructions]. Moscow, Stroyizdat Publ., 1980, 40 p. (In Russian)
  8. Gulvanessian H., Calgaro J.-A. Designers’ guide to Eurocode 0: Basis of Structural Design, 2nd edition. ISBN-10: 0727741713. ICE Publishing, 2012, 248 p.
  9. ISO 12491:1997. Statistical Methods for Quality Control of Building Materials and Components. ISO/TC 98/SC 2, Geneva, 1997, 30 p.
  10. Holicky M., Vorlicker M. General Lognormal Distribution in Statistical Quality Control. ICASP 7. Paris, 1995, pp. 719—724.
  11. Porteous A.J., Ross P. Designers’ Guide to Eurocode 5: Design of Timber Buildings. EN 1995-1-1. 978-0-7277-3162-3. Forthcoming: 2012, 220 p.
  12. BS 5268-2:2002. Structural Use of Timber. Code of Practice for Permissible Stress Design, Materials And Workmanship. BSI, London, 2002, 170 p.
  13. BS EN 408:2010+A1:2012. Timber Structures. Structural Timber and Glued Laminated Timber. Determination of Some Physical and Mechanical Properties. BSI, London, 2012. 42 p.
  14. Calgaro J.-A., Gulvanessian H., Holicky M. Bases de calcul des structures selon l’Eurocodes 0 : NF en 199. Paris, Le Moniteur Editions, 2013, 275 p.
  15. BS EN 912:2011. Timber Fasteners. Specifications for Connectors for Timbers. BSI, London, 2011, 52 p.
  16. Dias A.M.P.G., Cruz H.M.P., Lopes S.M.R., van de Kuilen J.W. Stiffness of Dowel-Type Fasteners In Timber — Concrete Joints. Proceedings of the ICE-Structures and Buildings. 2010, 163 (584), pp. 257—266.
  17. BS EN 13271:2002. Timber Fasteners. Characteristic Load-Carrying Capacities and Slip-Moduli for Connector Joints. BSI, London, 2002, 18 p.
  18. BS EN 1383:1999. Timber Structures. Test Methods. Pull-Through Resistance of Timber Fasteners. BSI, London, 1999, 8 p.
  19. DIN 1052—2008. Design of Timber Structures — General Rules and Rules for Buildings. 2008, 239 p.
  20. DIN 1052-10—2012. Design of Timber Structures — Part 10: Additional Provisions. 2012, 19 p.

Download

BEDDINGS AND FOUNDATIONS, SUBTERRANEAN STRUCTURES. SOIL MECHANICS

Interaction of anchors and the surrounding soil with accountfor elastic-plastic properties

  • Ter-Martirosyan Zaven Grigor’evich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Science, Professor of the Department of Soil Mechanics and Geotechnics, Main Researcher at the Research and Education Center “Geotechnics”, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Avanesov Vadim Sergeevich - Moscow State University of Civil Engineering (MGSU) postgraduate student, Department of Soil Mechanics and Geotechnics, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7 (495) 287-49-14 (ext. 14-25); This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 47-56

In this paper the problem of interaction between grouted anchor and the surrounding soil body with account for its elastic-plastic properties is solved by analytical and numerical methods. Tensile loads are exerted on a grouted anchor placed in homogeneous soil body. Under ultimate loads occurs the failure of the system “anchor-surrounding soil”. This research is based on the elastic-plastic model designed by Timoshenko. The problem of interaction between grouted anchor and the surrounding soil is solved in various design conditions, such as constant structural shear strength, account for anchor stiffness, linear variable structural shear strength. The solutions of these problems can be used for quantitative estimation of the stress-strain state of the system. This estimation makes it possible to calculate the displacements of anchors and their bearing capacity. It is shown that displacements significantly depend on physico-mechanical properties of the surrounding soil, geometrical properties of the anchor, selection of design model. The analysis demonstrates that load-displacement curve has clear nonlinearity and unrestrictedly increases at approaching the ultimate stress. The account for anchor stiffness insignificantly influences the obtained solutions and account for it may be neglected. The obtained equations also show that the displacement of the anchor increases with widening of the diameter at constant dimensional ratio of the cylindrical model. It is demonstrated that the ultimate uplift capacity is dependent on the dimensions of anchors and physico-mechanical properties of soil. Analytical solutions are compared to the results of the Finite Element Analysis (FEA) in the computer program Plaxis. The comparison of analytical and numerical solutions has close precision for the magnitude of anchor displacement and ultimate loads.

DOI: 10.22227/1997-0935.2015.7.47-56

References
  1. Chim-oye W., Marumdee N. Estimation of Uplift Pile Capacity in the Sand Layers. International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies. 2013, vol. 4, no. 1, pp. 57—65.
  2. Yimsiri S., Soga K., Yoshizaki K., Dasari G.R., O’Rourke T.D. Lateral and Upward Soil-Pipeline Interactions in Sand for Deep Embedment Conditions. Journal of Geotechnical and Geoenvironmental Engineering. 2004, vol. 130, no. 8, pp. 830—842. DOI: http://dx.doi.org/10.1061/(ASCE)1090-0241(2004)130:8(830).
  3. Zhang B., Benmokrane B., Chennouf A., Mukhopadhyaya P., El-Safty P. Tensile Behavior of FRP Tendons for Prestressed Ground Anchors. Journal of Composites for Construction. 2001, vol. 5, no. 2, pp. 85—93. DOI: http://dx.doi.org/10.1061/(ASCE)1090-0268(2001)5:2(85).
  4. Hoyt R.M., Clemence S.P. Uplift Capacity of Helical Anchors in Soil. 12th International Conference on Soil Mechanics and Foundation Engineering. 1989, 12 p.
  5. Hanna A., Sabry M. Trends in Pullout Behavior of Batter Piles in Sand. Proceeding of the 82 Annual Meeting of the Transportation Research Board. 2003, 13 p.
  6. Thorne C.P., Wang C.X., Carter J.P. Uplift Capacity of Rapidly Loaded Strip Anchors in Uniform Strength Clay. Geotechnique. 2004, vol. 54, no. 8, pp. 507—517. DOI: http://dx.doi.org/10.1680/geot.2004.54.8.507
  7. Young J. Uplift Capacity and Displacement of Helical Anchors in Cohesive Soil. A Thesis submitted to Oregon State University, 2012. Available at: http://hdl.handle.net/1957/29487. Date of access: 11.05.2015.
  8. Briyo J.L., Pauers U.F., Uezerbay D.I. Dolzhny li in”ektsionnye gruntovye ankery imet’ nebol’shuyu dlinu zadelki tyagi? [Should Grouted Anchors Have Short Tendon Bond Length?]. Geotekhnika [Geotechnical Engineering]. 2012, no. 5, pp. 34—55. (In Russian)
  9. Briaud J.L., Griffin R., Yeung A., Soto A., Suroor A., Park H. Long-Term Behavior of Ground Anchors and Tieback Walls. Texas A&M Transportation Institute, 1998, 280 p.
  10. Vyalov S.S. Reologicheskie osnovy mekhaniki gruntov [Rheological Principles of Soil Mechanics]. Moscow, Vysshaya shkola Publ., 1978, 447 p. (In Russian)
  11. Sabatini P.J., Pass D.G., Bachus R.C. Ground Anchors and Anchored Systems. Geotechnical Engineering Circular no. 4. 1999, 281 p.
  12. Barley A.D., Windsor C.R. Recent Advances in Ground Anchor and Ground Reinforcement Technology with Reference to the Development of the Art. GeoEng. 2000, vol. 1, pp. 1048—1095.
  13. Copstead R.L., Studier D.D. An Earth Anchor System: Installation and Design Guide. United States Department of Agriculture. 1990, 35 p.
  14. Zheng J.J., Dai J.G. Prediction of the Nonlinear Pull-Out Response of FRP Ground Anchors Using an Analytical Transfer Matrix Method. Engineering Structures. 2014, vol. 81, pp. 377—985. DOI: http://dx.doi.org/10.1016/j.engstruct.2014.10.008.
  15. Azari B., Fatahi B., Khabbaz H. Assessment of the Elastic-Viscoplastic Behavior of Soft Soils Improved with Vertical Drains Capturing Reduced Shear Strength of a Disturbed Zone. International Journal of Geomechanics. 2014, vol. 40, 15 p. Available at: http://www.researchgate.net/publication/271273415_Assessment_of_the_Elastic-Viscoplastic_Behavior_of_Soft_Soils_Improved_with_Vertical_Drains_Capturing_Reduced_Shear_Strength_of_a_Disturbed_Zone. Date of access: 11.05.2015. DOI: http://dx.doi.org/10.1061/(ASCE)GM.1943-5622.0000448 , B4014001.
  16. Timoshenko S.P., Goodier J.N. Theory of Elasticity. N.Y. : McGraw&Hill, 1970, 608 p.
  17. Ter-Martirosyan Z.G., Ter-Martirosyan A.Z. Reologicheskie svoystva gruntov pri sdvige [Rheological Properties of Soils while Shearing]. Osnovaniya, fundamenty i mekhanika gruntov [Bases, Foundations and Soil Mechanics]. 2012, no. 6, pp. 9—13. (In Russian)
  18. Ter-Martirosyan Z.G., Nguen Zang Nam. Vzaimodeystvie svay bol’shoy dliny s neodnorodnym massivom s uchetom nelineynykh i reologicheskikh svoystv gruntov [Interaction of Long Piles with a Heterogeneous Massif with Account for Non-linear and Rheological Properties of Soils]. Vestnik MGSU [Proceedings of Moscow Stte University of Civil Engineering]. 2008, no. 2, pp. 3—14. (In Russian)
  19. Ter-Martirosyan Z.G., Avanesov V.S. Vzaimodeystvie ankerov s okruzhayushchim gruntom s uchetom polzuchesti i strukturnoy prochnosti [Interaction between Anchors and Surrounding Soil with Account for Creep and Structural Shear Strength]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2014, no. 10, pp. 75—86. (In Russian)
  20. Ter-Martirosyan Z.G. Mekhanika gruntov [Soil Mechanics]. Moscow, ASV Publ, 2009, 550 p. (In Russian)
  21. Dinakar K.N., Prasad S.K. Behaviour of Tie Back Sheet Pile Wall for Deep Excavation Using Plaxis. International Journal of Research in Engineering and Technology. 2014, vol. 3, no. 6, pp. 97—103.

Download

ENGINEERING RESEARCHAND EXAMINATION OF BUILDINGS. SPECIAL-PURPOSE CONSTRUCTION

Geotechnical monitoring while constructingthe “diaphragm wall” in restricted conditions

  • Yugov Anatoliy Mikhaylovich - Donbas National Academy of Civil Engineering and Architecture (DonNACEA) Doctor of Technical Sciences, Professor, chair, Department of Technologies and Organization of Construction, Donbas National Academy of Civil Engineering and Architecture (DonNACEA), 2 Derzhavina str., Makeevka-23d., Donetsk Province, 86123, Republic of Ukraine; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Novikov Nikita Sergeevich - Donbas National Academy of Civil Engineering and Architecture (DonNACEA) postgraduate student, Department of Technologies and Organization of Construction, Donbas National Academy of Civil Engineering and Architecture (DonNACEA), 2 Derzhavina str., Makeevka-23d., Donetsk Province, 86123, Republic of Ukraine; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Gavrilyuk Anastasiya Sergeevna - Donbas National Academy of Civil Engineering and Architecture (DonNACEA) Master Student, Donbas National Academy of Civil Engineering and Architecture (DonNACEA), 2 Derzhavina str., Makeevka-23d., Donetsk Province, 86123, Republic of Ukraine; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 57-68

A diaphragm wall is a highly effective way to erect building substructures in urban conditions. A diaphragm wall construction minimizes urban environment violation, prevents air, surface and groundwater pollution, ensures firmness of the closely located buildings, their foundations and engineering services, and prevents settling of the ground and its surface. Geotechnical monitoring in the process of diaphragm wall construction allows revealing the influence and progress of unfavourable factors during the building activities in the conditions of the existing historical development. In the given article the current composition of geotechnical monitoring while constructing “diaphragm wall” in restricted conditions is considered. Its role in assuring safety of the construction object and the environment is discussed.

DOI: 10.22227/1997-0935.2015.7.57-68

References
  1. STO NOSTROY 2.5.74—2012. Osnovaniya i fundamenty. Ustroystvo «steny v grunte». Pravila, kontrol’ vypolneniya i trebovaniya k rezul’tatam rabot [STO NOSTROY 2.5.74—2012. Bases and Foundations. Diaphragm Wall Arrangement. Rules, Control and Requirements to the Results]. Moscow, BST Publ., 2014, 86 p. (In Russian)
  2. Rekomendatsii po proektirovaniyu i ustroystvu osnovaniy i fundamentov pri vozvedenii zdaniy vblizi sushchestvuyushchikh v usloviyakh plotnoy zastroyki v g. Moskve [Recommendations on Design and Arrangement of Bases and Foundations During Construction of Buildings Close to the Existing Ones in the Conditions of Dense Development in the Moscow City]. Moscow, Moskomarkhitektura Publ., 1999. Elektronnyy fond pravovoy i normativno-tekhnicheskoy dokumentatsii [Electronic Fund of Legislative and Normative and Technical Documentation]. Available at: http://docs.cntd.ru/document/1200003454/. Date of access: 25.03.2015. (In Russian)
  3. Rukovodstvo po proektirovaniyu sten sooruzheniy i protivofil’tratsionnykh zaves, ustraivaemykh sposobom «stena v grunte» [Manual on Designing Walls and Curtain Grouting of Buildings, Arranged as Diaphragm Walls]. Moscow, Stroyizdat Publ., 1977, 128 p. (In Russian)
  4. Maslov N.V., Gorpinchenko V.M. Monitoring nesushchikh konstruktsiy kak sostavnaya chast’ obespecheniya nadezhnosti i bezopasnosti otvetstvennykh zdaniy i sooruzheniy [Bearing Structures Monitoring as an Integral Part of Reliability and Safety of Responsible Buildings and Structures]. Seysmostoykoe stroitel’stvo. Bezopasnost’ sooruzheniy [Antiseismic Construction. Safety of Structures]. 2002, no. 5, pp. 34—37. (In Russian)
  5. Il’ichev V.A. Bezopasnost’ zhil’ya i gorodskoy sredy i ee normativno-pravovoe obespechenie [Accommodation and Urban Environment Safety and its Regulatory Support]. ACADEMIA: Arkhitektura i stroitel’stvo [ACADEMIA: Architecture and Construction]. 2004, no. 2, pp. 43—44. (In Russian)
  6. Dem’yanov A.A. Tipovaya tekhnologicheskaya karta na stroitel’stvo podzemnykh sooruzheniy. Primenenie sposoba «stena v grunte» dlya stroitel’stva sten podzemnykh sooruzheniy, fundamentov i protivofil’tratsionnykh zaves [Standard Flow Diagram for Construction of Undergound Stryctures. Application of Diaphragm Wall Method for Constructing the Walls of Underground Structures, Bases and Curtain Groutings]. Saint Petersburg, VITU Publ., 2011. (In Russian)
  7. Afanas’ev A.A., Inyutin M.A. Tekhnologiya vozvedeniya zaglublennykh chastey zdaniy v stesnennykh usloviyakh gorodskoy zastroyki [Arrangement Technology of the Buried Building Parts in the restricted urban conditions]. Aktual’nye voprosy stroitel’stva : materialy Vserossiyskoy nauchno-tekhnicheskoy konferentsii, Saransk [Current Problems of Civil Engineering. Materials of the All-Russian Scientific and Technical Conference, Saransk]. 2003, pp. 58—64. (In Russian)
  8. Petrukhin V.P., Shulyat’ev O.A., Mozgacheva O.A. Opyt proektirovaniya i monitoringa podzemnoy chasti Turetskogo torgovogo tsentra [The Experience of Design and Monitoring of the Turkish Mall Substructure]. Osnovaniya, fundamenty i mekhanika gruntov [Bases, Foundations and Soil Mechanics]. 2004, no. 5, pp. 2—8. (In Russian)
  9. Ulitskiy V.M., Shashkin A.G. Geotekhnicheskoe soprovozhdenie rekonstruktsii gorodov : Obsledovanie, raschety, vedenie rabot, monitoring [Geotechnical Support of the cities reconstruction : Inspection, Calculation, Working Process, Monitoring]. Moscow, ASV Publ., 1999, 324 p. (In Russian)
  10. Lim V.G. Inzhenernaya podgotovka organizatsionnykh resheniy stroitel’nogo proizvodstva pri rekonstruktsii promyshlennykh ob”ektov: avtoreferat dissertatsii doktora tekhnnicheskikh nauk : 05.23.2008 [Engineering preparation of the civil engineering organizational decisions during reconstruction of industrial objects: abstract of the thesis of Doctor of Technical Sciences: 05.23.2008]. Moscow, 2006, 38 p. (In Russian)
  11. Oleynik P.P. Organizatsiya stroitel’stva. Kontseptual’nye osnovy modeli i metody. Informatsionno-inzhenernye sistemy [Construction organization. Conceptual framework of the Model and Methods. Informational Engineering Systems]. Moscow, Profizdat Publ., 2001, 407 p. (In Russian)
  12. Oleynik P.P., Fomil’ L.Sh. Inzhenernaya podgotovka territorii stroitel’noy ploshchadki promyshlennogo predpriyatiya [Engineering Preparation of the Territory of Industrial Enterprise Building Site]. Moscow, Stroyizdat Publ., 1988, 240 p. (In Russian)
  13. Chang-Yu Ou. Deep Excavations. Theory and Practice. London, Taylor & Francis, 2006, 552 p.
  14. Stain V.M., Stain A.V. Reshenie geotekhnicheskikh zadach s pomoshch’yu programmnykh produktov kompanii MSC [Solving Geotechnical Tasks with the Help of MSC Software Products]. Voprosy stroitel’noy mekhaniki i nadezhnosti mashin i konstruktsiy : sbornik nauchnykh trudov MADI (GTU) [The Questions of Structural Mechanics and Safety of Machines and Constructions: Scientific Works of Moscow Automobile and Road Construction University (STU)]. Moscow, MADI Publ., 2008, pp. 128—138. (In Russian)
  15. Ragab A.A.M.A.R. Neue Planungskonzepte fuer Wustensiedlungen der Sinai-Halbinsel. Agypten: Diss. Stuttgart [s. n.], 1999, 231 p.
  16. Lee S.-J. Das Stadtbild als Aufgabe — Wege zu einer ganzheitlichen Stadtbildplanung: Diss. Stuttgart. 1995, 301 p.
  17. Zuziak Z.K. Strategie rewitalizacji przestrzeni srodmiejskiej. Krakow, 1998, 159 p.
  18. Goryachev O.M., Prykina L.V. Osobennosti vozvedeniya zdaniy v stesnennykh usloviyakh [Peculiarities of Building Influence in Restricted Conditions]. Moscow, Academia Publ., 2003, 272 p. (In Russian)
  19. Goryachev O.M., Bun’kin I.F., Prykina L.V. Organizatsionno-tekhnicheskie osnovy vozvedeniya zhilykh zdaniy v stesnennykh usloviyakh [Organizational and Technical Foundations of the Residential Buildings Construction in restricted conditions]. Mekhanizatsiya stroitel’stva [Mechanization of construction]. 2004, no. 1, pp. 6—7. (In Russian)

Download

RESEARCH OF BUILDING MATERIALS

Physical and mechanical properties of composites based on liquid glass for buildings and structures

  • Markov Sergey Vital’evich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Professor, Department of Housing and Utility Complex, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Zavalishin Evgeniy Vasil’evich - Ogarev Mordovia State University Candidate of Technical Sciences, Associate Professor, vice dean, Department of Construction and Architecture, Ogarev Mordovia State University, 68 Bolshevistskaya Str., Saransk, 430005, Republic of Mordovia, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Yunkevich Aleksey Vladimirovich - Research Design-and-engineering and Technological Institute (JC “VNIIzhelezobeton” ) engineer, Research Design-and-engineering and Technological Institute (JC “VNIIzhelezobeton” ), 62 A 2-ya Vladimirskaya str., Moscow, 111141, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 69-78

Composite materials for building structures have certain advantages. In this field Russian scientists got patents for inventions and useful models of new construction materials and structures. Scientific investigations on determining deformation capacity of concretes and building structures of other materials (wood) and their limit states are continuing with account for force and environment impacts and degradation weakening of construction elements. The article presents the study of physical and mechanical properties of composites based on liquid glass, depending on their quantitative and qualitative composition. The properties of the composites based on liquid glass depend on the type, quality of the composites in the material, their durability, correlation of their strength properties, adhesion of binders and filler, etc. In the studied composites different filler content, hardener, as well as modifying additives were used, that improve the properties of materials.

DOI: 10.22227/1997-0935.2015.7.69-78

References
  1. Erofeev V.T., Travush V.I., Karpenko N.I., Bazhenov Yu.M., Zhidkin V.F., Rodin A.I., Rimshin V.I., Smirnov V.F., Bogatov A.D., Kaznacheev S.V., Rodina M.A. Patent 2491239 RF, MPK C04B 7/52. Biotsidnyy portlandtsement. Zayavka № 2012107175/03 ; zayavl. 27.02.2012; opubl. 27.08.2013. Byul. № 24 [Russian Patent 2491239 RF, MPK C04B 7/52. Biocide Portland Cement. Notice no. 2012107175/03 ; appl. 27.02.2012; publ. 27.08.2013. Bulletin no. 24]. Patent holder FGBOU VPO “MGU im. N.P. Ogareva”. 4 p. (In Russian)
  2. Erofeev V.T., Rimshin V.I., Bazhenov Yu.M., Travush V.I., Karpenko N.I., Magdeev U.Kh., Zhidkin V.F., Burnaykin N.F., Rodin A.I., Smirnov V.F., Bogatov A.D., Kaznacheev S.V. Patent 2491240 RF, MPK C04B 7/52. Biotsidnyy portlandtsement. Zayavka № 2012107722/03; zayavl. 29.02.2012; opubl. 27.08.2013. Byul. № 24 [Russian Patent 2491240 RF, MPK C04B 7/52. Biocide Portland Cement. Notice no. 2012107722/03; appl. 29.02.2012; publ. 27.08.2013. Bulletin no. 24]. Patent holder FGBOU VPO “MGU im. N.P. Ogareva”. 4 p. (In Russian)
  3. Erofeev V.T., Rimshin V.I., Bazhenov Yu.M., Magdeev U.Kh., Zhidkin V.F., Burnaykin N.F.,Rodin A.I., Bogatov A.D., Kaznacheev S.V., Rodina M.A. Patent 2496729 RF, MPK C04B. Portlandtsement. Zayavka № 2012107720 ; zayavl. 29.02.2012 ; opubl. 27.10.2013 [Russian Patent 2496729 RF, MPK C04B. Portland Cement. Notice no. 2012107720 ; appl. 29.02.2012 ;publ. 27.10.2013]. Bank patentov [Bank of Patents]. Patent holder FGBOU VPO “MGU im. N.P. Ogareva”. Available at: http://bankpatentov.ru/node/426361. Date of access: 15.05.2015. (In Russian)
  4. Erofeev V.T., Bazhenov Yu.M., Magdeev U.Kh., Zhidkin V.F., Rodin A.I., Rimshin V.I.,Bogatov A.D., Burnaykin N.F., Kaznacheev S.V., Rodina M.A. Patent 2496728 RF, MPK C04B. Portlandtsement. Zayavka № 2012107174 ; zayavl. 27.02.2012 ; opubl. 27.10.2013 [Russian Patent no. 2496728 RF, MPK C04B. Portland Cement. Notice no. 2012107174 ; appl. 27.02.2012 ; publ. 27.10.2013]. Bank patentov [Bank of Patents]. Patent holder FGBOU VPO “MGU im. N.P. Ogareva”. Available at: http://bankpatentov.ru/node/426360. Date of access: 15.05.2015. (In Russian)
  5. Anpilov S.M., Gaynulin M.M., Eryshev V.A., Murashkin V.G., Murashkin G.V., Anpilov M.S., Rimshin V.I., Sorochaykin A.N. Patent RF na poleznuyu model’ 147740. Nes”emnaya stenovaya opalubka. Opubl. 08.07.2014 [Russian Useful Model Patent 147740. Permanent Wall Form. Publ. 08.07.2014]. Poleznaya model’.ru [Useful Model.ru]. Available at: http://poleznayamodel.ru/model/14/147740.html/. Date of access: 15.05.2015. (In Russian)
  6. Anpilov S.M., Eryshev V.A., Gaynulin M.M., Murashkin V.G., Murashkin G.V., Anpilov M.S., Rimshin V.I., Sorochaykin A.N. Patent RF na poleznuyu model’ 147452. Sbornyy stroitel’nyy element : referat. Opubl. 08.07.2014 [Russian Useful Model Patent 147452. Ready-made Building Element : Report. Publ. 08.07.2014]. Poleznaya model’.ru [Useful Model.ru]. Available at: http://poleznayamodel.ru/model/14/147452.html/. Date of access: 15.05.2015. (In Russian)
  7. Bondarenko V.M., Rimshin V.I. Kvazilineynye uravneniya silovogo soprotivleniya i diagramma σ−ε betona [Quasilinear Equations of Force Resistance and Diagram of σ−ε Concrete]. Stroitel’naya mekhanika inzhenernykh konstruktsiy i sooruzheniy [Structural Mechanics of Engineering Structures and Constructions]. 2014, no. 6, pp. 40—44. (In Russian)
  8. Bondarenko V.M., Kurzanov A.M., Rimshin V.I. Mekhanizm seysmicheskikh razrusheniy zdaniy [Mechanism of Seismic Destruction of Buildings]. Vestnik Rossiyskoy akademii nauk [Bulletin of the Russian Academy of Sciences]. 2000, vol. 70, no. 11, pp. 1005—1009. (In Russian)
  9. Bondarenko V.M., Rimshin V.I. Ostatochnyy resurs silovogo soprotivleniya povrezhdennogo zhelezobetona [Residual Life of Force Resistance of Damaged Reinforced Concrete]. Vestnik otdeleniya stroitel’nykh nauk Rossiyskoy akademii arkhitektury i stroitel’nykh nauk [Bulletin of the Department of Construction Sciences of the Russian Academy of Architecture and Construction Sciences]. 2005, no. 9, pp. 119—126. (In Russian)
  10. Krishan A.L., Astaf’eva M.A., Narkevich M.Yu., Rimshin V.I. Opredelenie deformatsionnykh kharakteristik betona [Definition of the Deformation Properties of Concrete]. Estestvennye i tekhnicheskie nauki [Natural and Technical Sciences]. 2014, no. 9—10 (77), pp. 367—369. (In Russian)
  11. Krishan A.L., Astaf’eva M.A., Rimshin V.I. Predel’nye otnositel’nye deformatsii tsentral’no-szhatykh zhelezobetonnykh elementov [Limit Relative Deformations of Axially Loaded Reinforced Concrete Elements]. Estestvennye i tekhnicheskie nauki [Natural and Technical Sciences]. 2014, no. 9—10 (77), pp. 370—372. (In Russian)
  12. Kurbatov V.L., Rimshin V.I. Prakticheskoe posobie inzhenera-stroitelya [Practical Guide of Civil Enineer]. Moscow, Student Publ., 2012, 743 p. (In Russian)
  13. Larionov E.A., Rimshin V.I., Vasil’kova N.T. Energeticheskiy metod otsenki ustoychivosti szhatykh zhelezobetonnykh elementov [Energy Method of Estimating the Resistance of Compressed Reinforced Concrete Elements]. Stroitel’naya mekhanika inzhenernykh konstruktsiy i sooruzheniy [Structural Mechanics of Engineering Constructions and Buildings]. 2012, no. 2, pp. a77—81. (In Russian)
  14. Roshchina S.I., Rimshin V.I. Raschet deformatsiy izgibaemykh armirovannykh derevyannykh elementov s uchetom polzuchesti [Deformation Calculation of Bendable Reinforced Wooden Elements woth Account for Creep]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta [News of Southwest State University]. 2011, no. 1 (34), pp. 121—124. (In Russian)
  15. Rimshin V.I., Bikbov R.Kh., Kustikova Yu.O. Nekotorye elementy usileniya stroitel’nykh konstruktsiy kompozitnymi materialami [Some Elements of Building Structures Reinforcement with Composite Materials]. Vestnik BelGTU [Bulletin of BSTU named after V.G. Shukhov]. 2005, no. 10, pp. 381—383. (In Russian)
  16. Rimshin V.I., Kustikova Yu.O. Fenomenologicheskie issledovaniya velichiny stsepleniya bazal’toplastikovoy armatury s betonom [Phenomenological Analysis of Linkage Value of Basalt-Plastic Reinforcement with Concrete]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Tekhnika i tekhnologii [News of Southwest State University. Series: Equipment and Technologies]. 2011, no. 1, pp. 27—31. (In Russian)
  17. Rimshin V.I., Kustikova Yu.O. Mekhanika deformirovaniya i razrusheniya usilennykh zhelezobetonnykh konstruktsiy [Mechanics of Deformation and Destruction of Reinforced Concrete Structures]. Izvestiya Orlovskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Stroitel’stvo i transport [News of Orlov State Technical University. Series: Construction and Transport]. 2007, no. 3/15 (537), pp. 53—56. (In Russian)
  18. VSN 53-86(r). Pravilo otsenki fizicheskogo iznosa zhilykh zdaniy [Construction Norms VSN 53-86(r). Rules of Estimating the Physical Wear of Residential Buildings]. Moscow, Gosgrazhdanstroy Publ., 1988, 50 p. (In Russian)
  19. Rimshin V.I., Shubin L.I., Savko A.V. Resurs silovogo soprotivleniya zhelezobetonnykh konstruktsiy inzhenernykh sooruzheniy [Life of Force Resistance of Reinforced Concrete Structures of Engineering Constructions]. Academia. Arkhitektura i stroitel’stvo [Academia. Architecture and Construction]. 2009, no. 5, pp. 483—491. (In Russian)
  20. Rimshin V.I., Galubka A.I., Sinyutin A.V. Inzhenernyy metod rascheta usileniya zhelezobetonnykh plit pokrytiya kompozitnoy armaturoy [Engineering Calculation Method of Concrete Slab Reinforcement by Composite Reinforcement]. Nauchno-tekhnicheskiy vestnik Povolzh’ya [Scientific and Technical Volga region Bulletin]. 2014, no. 3, pp. 218—220. (In Russian)
  21. Telichenko V.I., Rimshin V.I. Kriticheskie tekhnologii v stroitel’stve [Critical Technologies in Construction]. Vestnik Otdeleniya stroitel’nykh nauk RAASN [Bulletin of the Department of Construction Sciences of the Russian Academy of Architecture and Construction Sciences]. 1998, no. 4, pp. 16—18. (In Russian)
  22. Erofeev V.T., Bazhenov Yu.M., Zavalishin E.V., Bogatov A.D., Astashov A.M., Korotaev S.A., Nikitin L.V. Silikatnye i polimersilikatnye kompozity karkasnoy struktury rolikovogo formovaniya [Silicate and Polymer-silicate Composites of the Frame Structure of Roller Forming]. Moscow, ASV Publ., 2009, 160 p. (In Russian)
  23. Zavalishin E.V. Biologicheskoe soprotivlenie kompozitov na osnove zhidkogo stekla : avtoreferat dissrtatsii … kandidata tekhnicheskikh nauk [Biological Resistance of the Composites Based on Liquid Glass : Author’s Thesis of Candidate of Technical Sciences]. Penza, 2002, 18 p. (In Russian)
  24. Zavalishin E.V., Erofeev V.T., Smirnov V.F. Biologicheskoe soprotivlenie kompozitov na osnove zhidkogo stekla [Biological Resistance of the Composites Based on Liquid Glass ].Biopovrezhdeniya i biokorroziya v stroitel’stve : materialy II Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii [Biodeteriorations and Biocorrosion in Construction : Materials of the 2nd International Science and Technical Conference]. Saransk, 2004, pp. 156—159. (In Russian)
  25. Perlin S.M., Makarov V.G. Khimicheskoe soprotivlenie stekloplastikov [Chemical Resistance of Fiberglass]. Moscow, Khimiya Publ., 1983, 184 p. (In Russian)
  26. Khrulev V.M. Polimersilikatnye kompozitsii v stroitel’stve [Polymer-silicate Compositions in Constrution]. Ufa, TAU Publ., 2002, 76 p. (In Russian)
  27. Rimshin V.I., Larionov E.A., Erofeyev V.T., Kurbatov V.L. Vibrocreep of Concrete with a Nonuniform Stress State. Life Science Journal. 2014, vol. 11, no. 11, pp. 278—280.
  28. Awaya H., Kajiyama H., Oda N. Suppression of the Corrosive Properties of Calcium Chloride. Japan. 78, 13179. May 08.78; Chem Abstr., 89, 116866.
  29. Christophliemk P. Herstellung, Struktur und Chemietechnisch wichtiger Alkalisilicate. Glastechnische Berichte. 1985, vol. 58, no. 11, pp. 308–—314.
  30. Csutor J. Gravitacios betonsöverk guartasa hendelessel. Epitöanyag. 1973, no. 11, pp. 423—431.
  31. Friedemann W. Anwendungsvielfalt des Rohstoffes Wasserglas. Glastechnische Berichte. 1985, vol. 58, no. 11, pp. 315—319.
  32. Vail J.G. Soluble Silicates (ACS Monograph Series). Reinhold, New York, 1952, vol. 1, pp. 158; Vol. 2, p. 549.
  33. Weldes H.H., Lange K.R. Properties of Soluble Silicates. Ind. Eng. Chem. 1969, vol. 61, no. 4, pp. 29—44. DOI: http://dx.doi.org/10.1021/ie50712a008.
  34. Williamson G., Glasser F.P. The Crystallization of Na2O∙2SiO2. Phys. Chem. Glasses. 1966, vol. 7, no. 4, pp. 127—128.

Download

The influenceof nanoparticles orientation on water permeability through nanocomposites

  • Matseevich Tat’yana Anatol’evna - Moscow State University of Civil Engineering (National Research University) (MGSU) Candidate of Physical and Mathematical Sciences, Associate Professor, Department of Higher Mathematics, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Popova Marina Nikolaevna - Moscow State University of Civil Engineering (MGSU) Doctor of Chemical Sciences, Associate Professor, Department of Composite Materials Technology and Applied Chemistry, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Afanas’ev Egor Sergeevich - A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS) Candidate of Chemical Sciences, senior research worker, A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), 28 Vavilova str., V-334, GSP-1, Moscow, 119991, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Askadskiy Andrey Aleksandrovich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Chemical Sciences, Professor, Department of Composite Materials Technology and Applied Chemistry, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 79-86

The problem of nanocomposites’ permeability regulation has been attracting the interest of scientists throughout the current decades. The works were dedicated to different models of permeability of the composites containing impermeable layered fillers in polymer matrix. It was shown that polymer films with parallel laid flat impermeable particles of the filler may have the permeability twice or thrice less than the films of the same size, but without a filler. The authors analyzed the influence of nanoparticles on water permeability through nanocomposites obtained on the basis of polymers and flat nanoparticles. The offered correlations take into account the chemical composition of the polymer and nanoparticles, as well as the surface structure in case of chemical modification. The shape of flat particles (tablet, brick, sphere) is also taken into account. The permeability is mostly influenced by nanoparticles concentration, their shape and size orientation angle.

DOI: 10.22227/1997-0935.2015.7.79-86

References
  1. McGrath J.E., Park H.B., Freeman B.D. Chlorine Resistant Desalination Membranes Based on Directly Sulfonated Poly(Arylene Ether Sulfone) Copolymers. US Patent Application 11/655319 (2007).
  2. Park H.B., Freeman B.D., Zhang Z.-B., Sankir M., McGrath J.E. Highly Chlorine-Tolerant Polymers for Desalination. Angewandte Chemie. 2008, vol. 47 (32), pp. 6019—6024. DOI: http://dx.doi.org/10.1002/anie.200800454.
  3. Xie W., Park H.B., Cook J., Lee C.H., Byun G., Freeman B.D., McGrath J.E. Advances in Membrane Materials: Desalination Membranes Based on Directly Copolymerized Disulfonated Poly (Arylene Ether Sulfone) Random Copolymers. Water Science and Technology. 2010, vol. 61 (3), pp. 619—624. DOI: http://dx.doi.org/10.2166/wst.2010.883.
  4. Knoell T. Municipal Wastewater. Chlorine’s Impact on the Performance and Properties of Polyamide Membranes. Ultrapure Water. 2006, no. 23, pp. 24—31.
  5. Geise G.M., Lee H.-S., Miller D.J., Freeman B.D., McGrath J.E., Paul D.R. Water Purification by Membranes: The Role of Polymer Science. Polymer Science, Ser. B. 2010, vol. 48, no. 15, pp. 1685—1718. DOI: http://dx.doi.org/10.1002/polb.22037.
  6. Geise G.M., Park H.B., Sagle A.C., Freeman B.D., McGrath J.E. Water Permeability and Water/Salt Selectivity Tradeoff in Polymers for Desalination. Journal of Membrane Science. 2011, vol. 369, no. 1—2, pp. 130—138. DOI: http://dx.doi.org/10.1016/j.memsci.2010.11.054.
  7. Greener J., Ng K.C., Vaeth K.M., Smith T.M. Moisture Permeability Through Multilayered Barrier Films as Applied to Flexible OLED Display. Journal of Applied Polymer Science. 2007, vol. 106 (5), pp. 3534—3542. DOI: http://dx.doi.org/10.1002/app.26863
  8. Genov Iv., Ganev R., Gospodinova N., Glavchev Iv. Water-Vapour Permeability of Polymer Films. Journal of the University of Chemical Technology and Metallurgy. 2010, vol. 45, no. 2, pp. 213—214.
  9. Islam M.A., Buschatz H. Assessment of Thickness-Dependent Gas Permeability of Polymer Membranes. Indian Journal of Chemical Technology. January 2005, vol. 12, pp. 88—92.
  10. Islam M.A., Buschatz H., Paul D. Non-Equilibrium Surface Reactions-A Factor in Determining Steady State Diffusion Flux. J. Membr. Sci. 2002, vol. 204, no. 1-2, pp. 379—384. DOI: http://dx.doi.org/10.1016/S0376-7388(02)00064-9.
  11. Islam M.A., Buschatz H. Gas Permeation through a Glassy Polymer Membrane: Chemical Potential Gradient or Dual Mobility Mode. Chem. Eng. Sci. 2002, vol. 57, no. 11, pp. 2089—2099. DOI: http://dx.doi.org/10.1016/S0009-2509(02)00068-4.
  12. Gennadios A., Weller C.L., Gooding C.H. On the Measurement of Water Vapor Transmission Rate of Hydrophilic Edible Films. J. Food Eng. 1994, vol. 21, no. 4, pp. 395—409. DOI: http://dx.doi.org/10.1016/0260-8774(94)90062-0.
  13. Morillon V., Debeaufort F., Blond G., Capelle M., Voilley A. Factors Affecting the Moisture Permeability of Lipid-Based Edible Films: A Review. Crit. Rev. Food Sci. Nutr. 2002, vol. 42 (1), pp. 67—89. DOI: http://dx.doi.org/10.1080/10408690290825466.
  14. Chen Y., Li Y. A New Model for Predicting Moisture Uptake by Packaged Solid Pharmaceuticals. Int. J. Pharm. 2003, vol. 255 (1-2), pp. 217—225. DOI: http://dx.doi.org/10.1016/S0378-5173(03)00089-9.
  15. Mizrahi S., Karel M. Accelerated Stability Test of Moisture Sensitive Products in Permeable Packages at High Rates of Moisture Gain and Elevated Temperatures. J. Food Sci. 1977, vol. 42, no. 6, pp. 1575—1578. DOI: http://dx.doi.org/10.1111/j.1365-2621.1977.tb08429.x.
  16. Del Nobile M.A., Buonocore G.G., Limbo S., Fava P. Shelf Life Prediction of Cereal-Based Dry Foods Packed in Moisture-Sensitive Films. Food Eng. Phys. Prop. 2003, vol. 68, no. 4, pp. 1292—1300. DOI: http://dx.doi.org/10.1111/j.1365-2621.2003.tb09642.x

Download

HYDRAULICS. ENGINEERING HYDROLOGY. HYDRAULIC ENGINEERING

Areas of use of interacting swirl liquid and gas flows

  • Volshanik Valeriy Valentinovich - Moscow State University of Civil Engineering (MGSU) Doctor of Technical Sciences, Professor, Professor, Department of Hydroelectric Engineering and Use of Aquatic Resource, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Orekhov Genrikh Vasil’evich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Associate Professor, Chair, Department of Hydroelectric Engineering and Use of Aquatic Resources; +7 (499) 182-99-58, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 87-104

Swirled flows of liquid and gas are widely used in modern technology because of many of their unique aerodynamic, thermodynamic, and hydro-mechanical qualities. They are used for spraying liquid fuel mixing and dispersing liquid, aerosol formation, formation of the flame, classification of disperse materials and drying, dehydration, deaeration, cooling and heating, distillation and purification (rectification of working fluids), ash and dust-collecting, generating vapor separation of suspensions, absorption materials, separation materials, excitation of mechanical vibrations and formation of a sound signal, transportation of materials and many other technological purposes. The proposals for the use of interacting (counter vortex) swirling flows were caused by the requirements of the practice of mixing fluids and gases and quenching of excess kinetic energy of the high-speed flow of water in the high-pressure hydro spillways. The method for energy dissipation by reacting flows (jets) I based on the idea of separating the stream into parts and creating the conditions for mutual energy damping of individual parts of during subsequent reunification. As it is known, while moving from the upper pool to the lower one the water flow may dampen its energy performing useful work on the hydraulic turbines or overcoming the reaction forces, which arise when passing through the dampers. The energy of one part of a stream in interaction with the energy of the other part is used for creating the forces equivalent to the jet forces developed by quenchers. Such interaction can give the best effect in the conditions of rational breakdown of a stream and creation of the respective movement directions of its parts in relation to each other. In the cylindrical camera of counter vortex devices coaxial flows are formed consisting of two or more oppositely swirling flows of liquid or gas, the interaction of which can convert practically the whole mechanical energy source of the interacting flows into excess turbulence energy. The nature and intensity of hydro-mechanical, aerodynamic and mechanical processes occurring in the counter vortex devices provide the efficiency of their application in various branches of modern technology for mixing of single-phase and multiphase media, quenching the excess mechanical energy of the flow of liquid and gas, for disintegration of conglomerates, creating a homogeneous systems, excitation of mechanical vibrations and obtaining other effects. Authors due to the nature of their activity paid the main attention to the development, researches and creation of the designs of counter vortex quenchers of spillways energy of high-pressure water-engineering systems and counter vortex aerators of different purpose. Counter vortex devices have been tested for other purposes (homogenizer, flotators), protected by patents or circuit diagram are proposed for them.

DOI: 10.22227/1997-0935.2015.7.87-104

References
  1. Volshanik V.V., Zuykov A.L., Eliseev N.A., Konovalov E.S., Krivchenko G.I., Levanov A.V., Mordasov A.P., Pravdivets Yu.P. Rezhimy raboty krupnomasshtabnoy modeli kontrvikhrevogo gasitelya [Modes of Operation of Large-Scale Models of Counter Vortex Damper]. Metody issledovaniy i gidravlicheskikh raschetov vodosbrosnykh gidrotekhnicheskikh sooruzheniy : materialy konferentsii i soveshchaniya po gidrotekhnike [Materials of the Conference and Meeting “Research Methods and Hydraulic Calculations of Intakes of Hydraulic Structures”]. Leningrad, Energoatomizdat Publ., 1985, pp. 154—157. (In Russian)
  2. Volshanik V.V., Zuykov A.L., Mordasov A.P., Krivchenko G.I. Zakruchennye potoki v gidrotekhnicheskikh sooruzheniyakh [Swirl Flows in Hydraulic Structures]. Saint Petersburg, Energoatomizdat Publ., 1990, 280 p. (In Russian)
  3. Volshanik V.V.‚ Mordasov A.P., Zuykov A.L. Proekty ispol’zovaniya zakruchennykh potokov v vysokonapornykh vodosbrosakh [Projects of Use of Swirling Spillway in High-Pressure Outlets]. Gidrotekhnika i melioratsiya [Hydraulic Engineering and Land Reclamation]. 1983, no. 8, pp. 3—7. (In Russian)
  4. Volshanik V.V., Zuykov A.L.‚ Orekhov G.V.‚ Churin P.S. Propusk kholostykh raskhodov cherez turbinnyy blok sredne- ili vysokonapornoy GES. Ch. 1 [Skip of Idling Consumption through the Turbine Unit of a Medium or High Pressure HPS. Part 1]. Gidrotekhnicheskoe stroitel’stvo [Hydraulic Engineering]. 2013, no. 4, pp. 51—56. (In Russian)
  5. Zuykov A.P.‚ Volshanik V.V.‚ Mordasov A.P. Primenenie kontrvikhrevykh ustroystv dlya gasheniya energii vysokoskorostnykh potokov vody i aeratsii zhidkostey [Application of Counter Vortex Devices for Energy Dissipation of High-Speed Streams of Water and Aeration of Liquids]. Trudy I nauchnoy konferentsii Politekhnicheskogo instituta [Proceedings of the First Scientific Conference of the Polytechnic Institute]. Brno, Chekhoslovakiya. 1989, vol. 16, pp. 90—94. (In Russian)
  6. Zuykov A.L., Krivchenko G.I., Mordasov A.P. Vysokonapornye vodosbrosnye sistemy s vikhrevymi i kontrvikhrevymi ustroystvami i praktika gidrotekhnicheskogo stroitel’stva [High-pressure Waste Water Systems with Vortex and Counter Vortex Devices and Practice of Hydrotechnical Construction]. Razvitie gidroenergetiki SSSR v XII pyatiletke : trudy Vsesoyuznogo nauchno-tekhnicheskogo soveshchaniya [Proceedings of the All-Union Scientific and Technical Meeting “The Development of Hydropower in the 12th Five-Year Plan of the USSR]. Sayanogorsk, 1988. (In Russian)
  7. Zuykov A.L., Chepaykin G.A. Issledovaniya modeli vysokonapornogo glubinnogo vodosbrosa so vzaimodeystviem kontsentricheskikh zakruchennykh potokov [Studies of High-Pressure Deep Spillway Model in Interaction of Concentric Swirling Flows]. Gidrotekhnicheskoe stroitel’stvo [Hydraulic Engineering]. 1986, no. 12, pp. 29—33. (In Russian)
  8. Karelin V.Ya.‚ Krivchenko G.I., Volshanik V.V.‚ Mordasov A.P., Zuykov A.L. Ispol’zovanie zakruchennykh potokov dlya zashchity ot kavitatsii v vysokonapornykh vodosbrosnykh sistemakh [Using Swirl Flows for Cavitation Protection in High-Pressure Intake Systems]. Trudy Mezhdunarodnogo simpoziuma po kavitatsii [Proceedings of the International Symposium on Cavitation]. Sendai, Japan, 1986, pp. 287—291. (In Russian)
  9. Krivchenko G.I., Mordasov A.P., Kvyatkovskaya E.V.‚ Volshanik B.B., Zuykov A.L. Vysokonapornaya vodosbrosnaya sistema s kontrvikhrevym gasitelem energii potoka vody [High-Pressure Wastewater System with a Counter Vortex Quencher of Water Flow Energy]. Gidrotekhnicheskoe stroitel’stvo [Hydraulic Engineering]. 1981, no. 10, pp. 29—31. (In Russian)
  10. Krivchenko G.I., Kvyatkovskaya E.V.‚ Mordasov A.P., Volshanik V.V., Zuykov A.L. Vysokonapornye vodosbrosnye sistemy s kontrvikhrevymi gasitelyami energii potoka [High Pressure Water Discharge System with Counter Vortex Absorbers of Flow Energy]. Tezisy dokladov IV nauchno-tekhnicheskogo soveshchaniya Gidroproekta [Abstracts of the 4th Scientific and Technical Meeting of the Hydroproject]. Moscow, 1982, pp. 41—42. (In Russian)
  11. Krivchenko G.I., Kvyatkovskaya E.V., Mordasov A.P., Volshanik V.V.‚ Zuykov A.L. Shakhtnyy vikhrevoy vodosbros s kontrvikhrevym gasitelem dlya vysokonapornykh gidrouzlov [Mine Vortex Spillway With a Countervortex Absorber for High-Pressure Water-Engineering Systems]. Trudy Moskovskogo inzhenerno-stroitel’nogo instituta [Works of the Moscow Construction Institute]. Moscow, MISI Publ., 1983, no. 189, pp. 151—157. (In Russian)
  12. Krivchenko G.I., Mordasov A.P., Kvyatkovskaya E.V., Volshanik B.B., Zuykov A.L.‚ Levanov A.V. Gasiteli energii vysokonapornykh vodosbrosnykh sooruzheniy, osnovannye na vzaimodeystvii soosnykh zakruchennykh potokov [Absorbers of High-Energy Intakes and Facilities Based on the Interaction of Coaxial Swirling Flows]. Trudy XX Kongressa Mezhdunarodnoy assotsiatsii po gidravlicheskim issledovaniyam [Proceedings of the 20th Congress of the International Association for Hydraulic Research]. Moscow, 1983, vol. 7, pp. 464—467. (In Russian)
  13. Slisskiy C.M., Mordasov A.P., Pravdivets Yu.P.‚ Laktionova E.A., Kuznetsova E.V., Naymark L.I. Gidravlicheskie issledovaniya kontrvikhrevogo gasitelya [Hydraulic Studies of Counter Vortex Absorber]. Energeticheskoe stroitel’stvo [Energy Construction]. 1984, no. 10, pp. 47—49. (In Russian)
  14. Krivchenko G.I., Kvyatkovskaya E.V., Volshanik V.V., Zuykov A.L. A. s. na izobretenie SSSR № 812876, MKI E02V8/06. Sposob gasheniya energii potoka [Certificate of authorship of the USSR no. 812876, MKI E02V8/06. Way of Energy Dissipation]. Zayavka № 2754985/29-15 ; zayavl. 20.04.1979 ; opubl. 15.03.1981. Byul. № 10 [Notice no. 2754985/29-15 ; appl. 20.04.1979 ; publ. 15.03.1981. Bulletin no. 10]. Pp. 111—112. (In Russian)
  15. Krivchenko G.I., Kvyatkovskaya E.V., Mordasov A.P., Volshanik V.V., Zuykov A.L. A. s. na izobretenie SSSR № 812877, MKI E02V8/06. Vodosbrosnoe ustroystvo [Certificate of authorship of the USSR no. 812877, MKI E02V8/06. Spillway Device]. Zayavka № 2766983/29-15 ; zayavl. 17.05.1979 ; opubl. 15.03.1981. Byul. № 10 [Notice no. 2766983/29-15 ; appl. 17.05.1979 ; publ. 15.03.1981. Bulletin no. 10, p. 112. (In Russian)
  16. Mordasov A.P., Zhivotovskiy B.A. A. s. na izobretenie SSSR № 819254, MKI E02V8/06. Vodosbrosnoe ustroystvo [Certificate of authorship of the USSR no. 819254, MKI E02V8/06. Spillway Device]. Zayavka № 2783220/29-15 ; zayavl. 20.06.1979 ; opubl. 07.04.1981. Byul. № 13 [Notice no. 2783220/29-15 ; appl. 20.06.1979 ; publ. 07.04.1981. Bulletin no. 13]. P. 119. (In Russian)
  17. Krivchenko G.I., Kuperman V.L., Kvyatkovskaya E.V., Mordasov A.P., Volshanik V.V., Zuykov A.L. A. s. na izobretenie SSSR № 874853, MKI E02V8/06. Gasitel’ energii potoka vody [Certificate of authorship of the USSR no. 874853, MKI E02V8/06. Energy Dissipating Device]. Zayavka № 2924103/29-15 ; zayavl. 23.10.1980 ; opubl. 29.05.1981. Byul. № 39 [Notice no. 2924103/29-15 ; appl. 23.10.1980 ; publ. 29.05.1981. Bulletin no. 39]. P. 161. (In Russian)
  18. Krivchenko G.I., Kvyatkovskaya E.V., Mordasov A.P., Volshanik V.V., Zuykov A.L. A. s. na izobretenie SSSR № 920099, MKI E02V8/06. Vodosbrosnoe ustroystvo [Certificate of authorship of the USSR no. 920099, MKI E02V8/06. Spillway Device]. Zayavka № 2787006/29-15 ; zayavl. 29.06.1979 ; opubl. 15.04.1982. Byul. № 14 [Notice no. 2787006/29-15 ; appl. 29.06.1979 ; publ. 15.04.1982. Bulletin no. 14]. P. 91. (In Russian)
  19. Mordasov A.P., Volshanik V.V, Zuykov A.L. A. s. na izobretenie SSSR № 924233, MKI E02V8/06. Vodosbrosnoe ustroystvo i ego variant [Certificate of Authorship of the USSR no. 924233, MKI E02V8/06. Spillway Device and its Variant]. Zayavka № 3226699 ; zayavl. 30.12.1980 ; opubl. 30.04.1982. Byul. № 16 [Notice no. 3226699 ; appl. 30.12.1980 ; publ. 30.04.1982. Bulletin no. 16]. P. 140. (In Russian)
  20. Chepaykin G.A., Redchenko I.S., Zuykov A.L. A. s. na izobretenie SSSR № 1010184, MPK E02V8/06. Sposob gasheniya energii potoka [Certificate of authorship of the USSR no. 1010184, MKI E02V8/06. Way of Energy Dissipation]. Zayavka № 3217678/29-15 ; zayavl. 19.11.1980 ; opubl. 07.04.1983. Byul. № 13 [Notice no. 3217678/29-15 ; appl. 19.11.1980 ; publ. 07.04.1983. Bulletin no. 13]. P. 179. (In Russian)
  21. Krivchenko G.I., Slisskiy S.M., Mordasov A.P., Pravdivets Yu.P., Kvyatkovskaya E.V., Volshanik V.V., Zuykov A.L., Levanov A.V. A. s. na izobretenie SSSR № 1233548, MPK A01K63/04. Gasitel’ energii potoka glubinnogo vodosbrosa [Certificate of authorship of the USSR no. 1233548, MPK A01K63/04. Way of Energy Dissipation of Bottomwater Outlet]. Zayavka № 3641463; zayavl. 14.09.1983 ; opubl. 30.05.1989. Byul. № 20 [Notice no. 3641463; appl. 14.09.1983 ; publ. 30.05.1989. Bulletin no. 20. (In Russian)
  22. Volshanik V.V., Zuykov A.L., Orekhov G.V., Churin P.S. Pat. № 2483158 RF, MPK V02V8/06. Vikhrevoy vodosbros [Russian Patent no. 2483158 RF, MPK V02V8/06. Vortex Water Disposal]. Zayavka № 2011140562/13 ; zayavl. 06.10.2011 ; opubl. 27.05.2013. Byul. № 15 [Notice no. 2011140562/13 ; appl. 06.10.2011 ; publ. 27.05.2013. Bulletin no. 15]. Patent holder FGBOU VPO MGSU, 11 p. (In Russian)
  23. Mordasov A.P., Volshanik V.V., Zuykov A.L., Levanov A.V. A. s. na izobretenie SSSR № 1073489, MPK F01N1/06. Glushitel’ shuma gazovogo potoka [Certificate of authorship of the USSR no. 1073489, MPK F01N1/06. Gas Flow Noise Suppressor]. Zayavka № 3504045/25-06 ; zayavl. 26.10.1982 ; opubl. 15.02.1984. Byul. № 6 [Notice no. 3504045/25-06 ; appl. 26.10.1982 ; publ. 15.02.1984. Bulletin no. 6]. 118 p. (In Russian)
  24. Volshanik V.V., Zuykov A.L., Skatkin M.G. Pat. № 2206378 RF, MPK V0F5/04. Universal’nyy smesitel’ [Russian Patent no. 2206378 RF, MPK V0F5/04. Multimixer]. Zayavka № 2001130700/12 ; zayavl. 14.11.2001 ; opubl. 20.06.2003. Byul. № 17 [Notice no. 2001130700/12 ; appl. 14.11.2001 ; publ. 20.06.2003. Bulletin no. 17]. P. 620. (In Russian)
  25. Mordasov A.P., Volshanik V.V., Zuykov A.L. A. s. na izobretenie SSSR № 856415, MPK A01K63/04. Ustroystvo dlya aeratsii vody v rybovodnykh vodoemakh [Certificate of authorship of the USSR no. 856415, MPK A01K63/04. Device for Water Aeration in Fish-Breeding Basins]. Zayavka № 2840145 ; zayavl. 11.11.1979 ; opubl. 23.08.1981. Byul. № 31 [Notice no. 2840145 ; appl. 11.11.1979 ; publ. 23.08.1981. Bulletin no. 31]. 5 p. (In Russian)
  26. Volshanik V.V., Mordasov A.P., Kan S.V., Meshchankin G.I., Popov V.G., Grigoryan A.N.,Litmans B.A., Krasnolutskaya T.I., Gorkin Yu.A., Yur’evich Yu.I. A. s. na izobretenie SSSR № 1143076, MPK A01K63/04. Apparat dlya vyrashchivaniya mikroorganizmov (i ego varianty) [Certificate of authorship of the USSR no. 1143076, MPK A01K63/04. Device for Microorganisms Breeding (and Its Variants]. Zayavka № 3628255 ; zayavl. 22.07.83 [Notice no. 3628255 ;appl. 22.07.83. (In Russian)
  27. Mordasov A.P., Volshanik V.V., Zuykov A.L. A. s. na izobretenie SSSR № 963362, MKI E02V8/06. Dvukhkomponentnaya forsunka [Certificate of authorship of the USSR no. 963362, MKI E02V8/06. Doublet Injector]. No. 3226249 ; appl. 30.12.80. (In Russian)
  28. Mordasov A.P., Volshanik V.V., Zuykov A.L., Levanov A.V. A. s. na izobretenie SSSR № 1083684, MPK A01K63/04. Reaktivnyy dvigatel’ [Certificate of authorship of the USSR no. 1083684, MPK A01K63/04. Jet Engine]. Zayavka № 3504044 ; zayavl. 26.10.82 [Notice no. 3504044 ; appl. 26.10.82. (In Russian)
  29. Mordasov A.P., Volshanik V.V., Zuykov A.L., Levanov A.V. A. s. na izobretenie SSSR № 1188498, MPK F28C1/00. Gradirnya [Certificate of authorship of the USSR no. 1188498, MPK F28C1/00. Water Cooling Tower]. Zayavka № 3552449/24-06 ; zayavl. 09.02.1983 ;opubl. 30.10.1985. Byul. № 40 [Notice no. 3552449/24-06 ; appl. 09.02.1983 ; publ. 30.10.1985. Bulletin no. 40]. P. 147. (In Russian)
  30. Mordasov A.P., Volshanik V.V., Zuykov A.L., Levanov A.V., Khodankov N.A. A. s. na izobretenie SSSR № 1467350, MPK F28C1/00. Gradirnya [Certificate of authorship of the USSR no. 1467350, MPK F28C1/00. Water Cooling Tower] № 4288989 ; zayavl. 22.07.1987; opubl. 23.03.1989. Byul. № 11 [No. 4288989 ; appll. 22.07.1987; publ. 23.03.1989. Bulletin no. 11]. P. 27. (In Russian)
  31. Bogdanov V.M., Borovkov V.S., Volshanik V.V. Ochistka bol’shogo pruda moskovskogo zooparka sistemoy zamknutogo vodooborota i struyno-vikhrevoy aeratsii [Cleaning the Large Pond of the Moscow Zoo by Closed Water System and the Swirling Jet Aeration]. Chistyy gorod [Clean City]. 2000, no. 1, pp. 42—48. (In Russian)
  32. Boykova I.G., Volshanik V.V., Karpova N.B., Pechnikov V.G., Pupyrev E.I. Ekspluatatsiya, rekonstruktsiya i okhrana vodnykh ob
  33. Borovkov V.S.‚ Volshanik V.V. Kompleksnye tekhnologii rekonstruktsii gorodskikh vodnykh ob
  34. Stroitel’nye materialy, oborudovanie, tekhnologii XXI veka [Building Materials, Equipment and Technologies of the 21st Century]. 2003, no. 8 (55), pp. 44—55. (In Russian)
  35. Borovkov V.S., Volshanik V.V., Karelin V.Ya., Pupyrev E.I., Bayaraa U. Sistemy podderzhaniya kachestva vody v gorodskikh vodnykh ob
  36. Borovkov V.S.‚ Volshanik V.V.‚ Orekhov G.V. Inzhenernaya sistema podderzhaniya kachestva vody v gorodskikh vodnykh ob
  37. Borovkov V.S., Volshanik V.V., Orekhov G.V. Oborudovanie i vysokoeffektivnye tekhnologii vosstanavlivaniya i ekspluatatsii gorodskikh vodnykh ob
  38. Borovkov V.S., Volshanik V.V., Orekhov G.V. Tekhnologii podderzhaniya samoochishchayushchey sposobnosti vody v gorodskikh vodnykh ob
  39. Volshanik V.V.‚ Orekhov G.V. Defitsit rastvorennogo kisloroda v vodoemakh na selitebnykh territoriyakh i sistemy iskusstvennoy aeratsii i zamknutogo vodooborota [Deficiency of Dissolved Oxygen in Ponds in Residential Areas and Artificial Aeration Systems and Closed Water Rotation]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2008, no. 1, pp. 243—246. (In Russian)
  40. Gidravlicheskie raschety vodosbrosnykh gidrotekhnicheskikh sooruzheniy : spravochnoe posobie [Hydraulic Calculations of Waterworks Intakes : Reference Book]. Moscow, Energoatomizdat Publ., 1988, pp. 233—248. (In Russian)
  41. Zuykov A.L. Gidrodinamika tsirkulyatsionnykh techeniy [Hydrodynamics of Circulating Currents]. Moscow, ASV Publ.‚ 2010, 216 p. (In Russian)
  42. Orekhov G.V. Vodnye ob’ekty na urbanizirovannykh territoriyakh i inzhenernye sistemy aeratsii i zamknutogo vodooborota [Water Objects in Urban Areas and Engineering of the Aeration System and Closed Water Rotation]. Ekologiya urbanizirovannykh territoriy [Ecology of Urbanized Territories]. 2008, no. 2, pp. 88—93. (In Russian)
  43. Orekhov G.V. Gidromekhanicheskiy sposob uluchsheniya kachestva vody v vodnykh ob’ektakh [Hydromechanical Way to Improve Water Quality in Water Objects]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2008, no. 4, pp. 175—180. (In Russian)
  44. Borovkov V.S., Volshanik V.V., Orekhov G.V. Opyt klassifikatsii gorodskikh vodnykh o’ektov po geneticheskim i inzhenerno-ekologicheskim priznakam [Experience of Urban Water Objects Classification according to Genetic and Engineering-Environmental Grounds]. Stroitel’nye materialy, oborudovanie, tekhnologii XXI veka [Construction Materials, Equipment, Technologies of the 21st Century]. 2004, no. 4 (63), pp. 62—65. (In Russian)
  45. Akhmedov V.K.‚ Volshanik V.V. Raschet techeniy s vozvratnymi zonami v kamere otstoynika [Calculation of Flows with Reverse Zones in Settling Basin]. 1996, no. 5, pp. 29—31. (In Russian)
  46. Borovkov V.S., Volshanik V.V., Galant M.A., Dorkina I.V., Karelin V.Ya. Inzhenernaya sistema podderzhaniya kachestva vody prudov Lefortovskogo parka [Engineering System to Maintain Water Quality in the Ponds of Lefortovo Park]. Vestnik Otdeleniya stroitel’nykh nauk Rossiyskoy akademii arkhitektury i stroitel’nykh nauk [Bulletin of the Department of Civil Engineering of the Russian Academy of Architecture and Construction Sciences]. 2001, no. 4, pp. 28—38. (In Russian)
  47. Borovkov V.S., Volshanik V.V., Orekhov G.V. Inzhenernye sistemy vodooborota i aeratsii dlya ochistki vody v gorodskikh vodnykh ob
  48. Borovkov V.S., Volshanik V.V., Orekhov G.V. Inzhenernye sistemy zamknutogo vodooborota dlya intensifikatsii protsessov samoochishcheniya vody v gorodskikh vodnykh ob
  49. Volshanik V.V., Aniskin N.N. Ob ispol’zovanii aktivnykh gidrodinamicheskikh rezhimov pri iskusstvennoy aeratsii stochnykh vod [On the Use of Active Hydrodynamic Regimes for Artificial Aeration of Wastewater]. Sozdanie i vnedrenie sovremennykh apparatov s aktivnymi gidrodinamicheskimi rezhimami dlya tekstil’noy promyshlennosti i proizvodstva khimicheskikh volokon : tezisy dokladov Vsesoyuznoy konferentsii (14—16 noyabrya 1989 g.) [Abstracts of the All-Union conference “Development and Implementation of Modern Devices with Active Hydrodynamic Regimes for the Textile Industry and Production of Chemical Fibers]. Moscow, 1989, pp. 147—148. (In Russian)
  50. Volshanik V.V. Zuykov A.L., Karelin V.Ya., Orekhov G.V. Vikhrevye aeratory — printsip deystviya i konstruktsii [Swirl Aerators — Action Principle and Design]. Sbornik nauchnykh trudov MGSU [Collection of Scientific Papers of Moscow State University of Civil Engineering]. Moscow, MGSU Publ., 2001, pp. 95—101. (In Russian)
  51. Volshanik V.V., Zuykov A.L.‚ Orekhov G.V.‚ Bayaraa U. Osobennosti rabochego protsessa kontrvikhrevykh aeratorov i zadachi ikh gidravlicheskikh issledovaniy [Features of the Working Process of Counter Vortex Aerators and Objectives of Hydraulic Studies]. Ekologiya urbanizirovannykh territoriy [Ecology of Urbanized Territories]. 2013, no. 2, pp. 74—80. (In Russian)
  52. Volshanik V.V., 3uykov A.L.‚ Orekhov G.V.‚ Bayaraa U. Raskhod vody i ezhektsiya vozdukha v kontrvikhrevom aeratore [Water Consumption and Air Ejection in Counter Vortex Aerator]. Ekologiya urbanizirovannykh territoriy [Ecology of Urbanized Territories]. 2014, no. 2, pp. 33—40. (In Russian)
  53. Volshanik V.V., Zuykov A.L., Orekhov G.V., Bayaraa U. Techenie v kamere smesheniya kontrvikhrevogo aeratora [The Flow in the Mixing Chamber of Counter Vortex Aerator]. Ekologiya urbanizirovannykh territoriy [Ecology of Urbanized Territories]. 2015, no. 1, pp. 23—28. (In Russian)
  54. Volshanik V.V., Zuykov A.L., Orekhov G.V., Svitaylo V.D.‚ Skatkin M.G. Ispol’zovanie vikhrevykh aeratorov dlya intensifikatsii protsessov ochistki prirodnykh vod [Using Vortex Aerators for Intensifying the Processes for Wastewater Treatment]. Inzhenernaya zashchita okruzhayushchey sredy. Ochistka vod. Utilizatsiya otkhodov [Engineering Protection of the Environment. Water Purification. Waste Disposal]. Moscow, ASV Publ., 2002, pp. 97—106. (In Russian)
  55. Volshanik V.V., Mordasov A.P.‚ Akhmetov B.K. Ekologicheskaya effektivnost’ primeneniya struyno-vikhrevykh aeratorov po rezul’tatam model’nykh i naturnykh ispytaniy [Environmental Efficiency of Jet Vortex Aerators according To the Results of Modeling and Field Tests]. Fizicheskoe i matematicheskoe modelirovanie gidravlicheskikh protsessov : tezisy nauchno-tekhnicheskogo soveshchaniya [Abstracts of Scientific-Technical Conference “Physical And Mathematical Modeling of Hydraulic Processes”]. Divnogorsk, 1989, pp. 62—63. (In Russian)
  56. Volshanik V.V.‚ Mordasov A.P.‚ Ivanova T.A., Krotova A.V., Savina M.M. Gidravlicheskiy raschet kontrvikhrevykh aeratorov i zadachi standartizatsii ikh konstruktsiy [Hydraulic Calculation of Counter Vortex Aerators and Objectives of Standardization of Their Designs]. Trudy XI Mezhdunarodnogo nauchnogo simpoziuma studentov, molodykh nauchnykh rabotnikov [Proceedings of the 11th International Scientific Symposium of Students, Young Scientists]. Zielona Gora, Poland, 1989, pp. 206—211. (In Russian)
  57. Volshanik V.V.‚ Mordasov A.P.‚ Orekhov G.V. Proekty kontrvikhrevykh aeratorov dlya povysheniya kachestva vody v vodokhranilishchakh [Projects of Counter Vortex Aerators to Improve Water Quality in Reservoirs]. Sostoyanie i perspektivy razvitiya gidroenergetiki : tezisy Vsesoyuznogo soveshchaniya. Sayano-Shushenskaya GES. 14—16 sentyabrya 1988 [Abstracts of All-Union Conference “Status and Development Prospects of Hydropower”. September 14—16, 1988]. (In Russian)
  58. Volshanik V.V., Pogorelov A.E. Primenenie kontrvikhrevykh aeratorov v kachestve ustroystva podachi i smesheniya koagulyanta [Applying Counter Vortex Diffusers as Feeder and Mixing the Coagulant]. Proekty razvitiya infrastruktury goroda. Proektirovanie gorodskikh inzhenernykh sistem : sbornik nauchnykh trudov [Collection of Scientific Works “Infrastructure Projects of the City”]. Moscow, Prima-press Ekspo Publ., 2010, no. 10, pp. 54—58. (In Russian)
  59. Karelin V.Ya.‚ Volshanik B.B., Zuykov A.L., Orekhov G.V. Eksperimental’noe obosnovanie optimal’noy formy protochnoy polosti vikhrevogo aeratora [Experimental Substantiation of the Optimal Cavity Form of the Vortex Flow Aerator]. Vestnik Otdeleniya stroitel’nykh nauk Rossiyskoy akademii arkhitektury i stroitel’nykh nauk [Bulletin of the Department of Civil Engineering of the Russian Academy of Architecture and Construction Sciences]. 2005, no. 9, pp. 229—237. (In Russian)
  60. Akhmetov B.K., Volshanik V.V., Zuykov A.L., Orekhov G.V. Modelirovanie i raschet kontrvikhrevykh techeniy [Modeling and Calculation of Counter Vortex Currents]. Moscow, MGSU Publ., 2012, 252 p. (In Russian)
  61. Karelin V.Ya., Volshanik V.V., Zuykov A.L. Nauchnoe obosnovanie i tekhnicheskoe ispol’zovanie effekta vzaimodeystviya zakruchennykh potokov [Scientific Substantiation and Technical Use of the Synergies of Swirling Flows]. Vestnik Otdeleniya stroitel’nykh nauk Rossiyskoy akademii arkhitektury i stroitel’nykh nauk [Bulletin of the Department of Civil Engineering of the Russian Academy of Architecture and Construction Sciences]. 2000, no. 3, pp. 37—44. (In Russian)
  62. Volshanik V.V., Zuykov A.L., Karelin V.Ya., Mordasov A.P., Orekhov G.V. Kontrvikhrevye ustroystva dlya intensifikatsii protsessov peremeshivaniya, masso- i teploobmena, gasheniya energii, dezintegratsii konglomeratov. Chast’ 2 [Counter Vortex Devices for Intensification of the Processes of Mixing, Heat and Mass Transfer, Energy Dissipation, Disintegration of Conglomerates. Part 2]. Stroitel’nye materialy, oborudovanie, tekhnologii XXI veka [Construction Materials, Equipment and Technologies of the 21st Century]. 2004, no. 09 (68), pp. 44—45. (In Russian)
  63. Volshanik V.V.‚ Zuykov A.L., Orekhov G.V. Gidravlicheskiy raschet protochnoy chasti kontrvikhrevykh aeratorov [Hydraulic Calculation of the Flowing Part of Counter Vortex Aerators]. Vodosnabzhenie i sanitarnaya tekhnika [Water Supply and Sanitary Technique]. 2009, no. 12, pp. 50—56. (In Russian)
  64. Volshanik V.V.‚ Orekhov G.V., Zuykov A.L., Karelin V.Ya. Inzhenernaya gidravlika zakruchennykh potokov zhidkosti [Engineering Hydraulics of Swirling Flow]. Gidrotekhnicheskoe stroitel’stvo [Hydraulic Engineering]. 2000, no. 11, pp. 23—26. (In Russian)
  65. Volshanik V.V.‚ Zuykov A.L., Orekhov G.V. Tsirkulyatsionnye techeniya v nauke i tekhnike [Circulating Currents in Science and Technology]. Delovaya slava Rossii [Business Glory of Russia]. 2011, no. 2 (30), pp. 48—50. (In Russian)
  66. Volshanik V.V., Danek M., Zuykov A.L.‚ Mordasov A.P.‚ Rybnikar I. Gidravlicheskiy raschet gidrotekhnicheskikh sooruzheniy s zakrutkoy potoka [Hydraulic Calculation of Hydraulic Structures with Flow Swirl]. Moscow, MISI Publ., 1992, 64 p. (In Russian)
  67. Mordasov A.P.‚ Volshanik V.V., Zuykov A.L., Levanov A.B. Ispol’zovanie vzaimodeystvuyushchikh zakruchennykh potokov v reshenii problem zashchity okruzhayushchey sredy [Using Interacting Swirling Flows in Addressing Environmental Problems]. Izvestiya vysshikh uchebnykh zavedeniy. Stroitel’stvo i arkhitektura [News of the Institutions of Higher Education. Construction and Architecture]. 1984, no. 8, pp. 97—101. (In Russian)
  68. Orekhov G.V.‚ Zuykov A.L., Volshanik V.V. Kontrvikhrevoe polzushchee techenie [Counter Vortex Creeping Flow]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2013, no. 4, pp. 172—180. (In Russian)
  69. Zuykov A.L., Orekhov G.V., Volshanik V.V. Model’ techeniya Gromeki — Bel’trami [Analytical Model of Gromeka — Beltrami Flow]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2013, no. 4, pp. 150—159. (In Russian)
  70. Zuykov A.L., Orekhov G.V., Volshanik V.V. Raspredelenie azimutal’nykh skorostey v laminarnom kontrvikhrevom techenii [Distribution of Azimuthal Velocities in a Laminar Counter Vortex Flow]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2013, no. 5, pp. 150—161. (In Russian)
  71. Karelin V.Ya.‚ Krivchenko G.I., Mordasov A.P., Volshanik V.V., Zuykov A.L., Akhme-tov V.K. Fizicheskoe i matematicheskoe modelirovanie sistem gasheniya energii v vikhrevykh vodosbrosakh [Physical and Mathematical Modeling of Systems of Energy Dissipation in Vortex Spillways]. Fizicheskoe i matematicheskoe modelirovanie gidravlicheskikh protsessov :tezisy nauchno-tekhnicheskogo soveshchaniya, g. Divnogorsk [Abstracts of Scientific-Technical Conference “Physical and Mathematical Modeling of Hydraulic Processes”, Divnogorsk]. 1989, pp. 11—12. (In Russian)
  72. Karelin V.Ya.‚ Mordasov A.P., Zuykov A.L., Volshanik V.V. Chislennye metody eksperimental’nogo issledovaniya kharakteristik zakruchennogo potoka zhidkosti [Numerical Methods of Experimental Studies of the Characteristics of Swirling Fluid Flow]. Trudy simpoziuma MAGI [Works of the MAGI Symposium]. Divnogorsk. Belgrad, Yugoslaviya, 1990. (In Russian)
  73. Volshanik V.V., Evstigneev N.M., Zuykov A.L., Orekhov G.V. Vliyanie turbulentnoy diffuzii na protsess separatsii neftesoderzhashchikh primesey v tsilindricheskom gidrotsiklone [Effect of Turbulent Diffusion in the Process of Separation of Oily Contaminants in a Cylindrical Hydrocyclone]. Mezhvuzovsiy sbornik nauchnykh trudov po gidrotekhnicheskomu i spetsial’nomu stroitel’stvu [Interuniversity Collection of Scientific Papers on Hydraulic Engineering and Special Construction]. Moscow, MGSU Publ., 2002, pp. 55—62. (In Russian)
  74. Volshanik V.V., Zuykov A.L., Mordasov A.P. Analiticheskiy metod gidravlicheskogo rascheta vikhrevykh shakhtnykh vodosbrosov [Analytical Method of Hydraulic Calculation of Vortex Glory Hole Spillway]. Gidrotekhnicheskoe stroitel’stvo [Hydraulic Engineering]. 1989, no. 4, pp. 38—42. (In Russian)

Download

Determination of the parameters of a simple pipeline on the basis of the theory of automatic control

  • Terskikh Vladimir Zakharovich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Associate Professor, Department of Hydraulics and Water Resources, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Zommer Tat’yana Valentinovna - Moscow State University of Civil Engineering (National Research University) (MGSU) Lecturer, Department of Engineering Geology and Geoecology, head, Laboratory of Hydraulics, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Zommer Viktor Leonidovich - Moscow State University of Civil Engineering (MGSU) student, laboratory assistant, Department of Hydraulics and Water Resources, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 105-112

In most cases the parameters of a pipeline are calculated on the basis of of the Darcy formula, which is true for steady-state fluid motion. However, for the study of the dynamic mode of fluid motion it is necessary to use the method of transfer functions. In this method the processes should be described not only by using mathematical formulas. Also a phased definition of transfer functions is required. In this case, it becomes possible to perform continuous automatic analysis of the quality of various piping systems. The theory of automatic control allows presenting the basic formulas in the form of a scheme of regulation.

DOI: 10.22227/1997-0935.2015.7.105-112

References
  1. Khodzinskaya A.G., Zommer T.V. Gidravlika i gidrologiya transportnykh sooruzheniy [Hydraulics and Hydrology of Transport Constructions]. Moscow, MGSU Publ., 2014, 92 p. (In Russian)
  2. Besekerskiy V.A., Popov E.P. Teoriya sistem avtomaticheskogo regulirovaniya [Theory of Automatic Control Systems]. Nauka Moskvy i regionov: Innovatsii. Razrabotki. Proizvodstvo [Science of Moscow and Regions: Innovations. Developments. Production]. 1972, pp. 767—778. (In Russian)
  3. Besekerskiy V.A., Popov E.P. Teoriya sistem avtomaticheskogo regulirovaniya [Theory of Automatic Control Systems]. Moscow, Nauka Publ., 1972, 768 p. (In Russian)
  4. Besekerskiy V.A., Popov E.P. Teoriya sistem avtomaticheskogo upravleniya [Theory of Automatic Control Systems]. 4th edition, revised. Saint Petersburg, Professiya Publ., 2003, 747 p. (In Russian)
  5. Tokarenko V.M., Terskikh V.Z., Stolyarov A.L. Gidroprivod i gidrooborudovanie avtotransportnykh sredstv [Hydraulic Drive and Hydraulic Equipment of Transport]. Kiev, Lybid’ Publ., 1991, 232 p. (In Russian)
  6. Terskikh V.Z. Sravnitel’nyy analiz dinamicheskikh svoystv drossel’nykh gidroprivodov [Comparative Analysis of the Dynamic Features of Choke Hydraulic Drives]. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [Proceedings of Higher Educational Institutions. Маchine Building]. 1976, no. 7, pp. 59—62. (In Russian)
  7. Borovin G.K., Popov D.N. Mnogokriterial’naya optimizatsiya gidrosistem [Multicriteria Optimization of Hydraulic Systems]. Moscow, MGTU im. N.E. Baumana Publ., 2007, 94 p. (In Russian)
  8. Hu L., Mao X., Zhang L. Robust Stability and Boundedness of Nonlinear Hybrid Stochastic Differential Delay Equations. IEEE Transactions on Automatic Control. 2013, vol. 58, no. 9, pp. 2319—2332. DOI: http://dx.doi.org/10.1109/TAC.2013.2256014.
  9. Zaripov D.I., Mikheev N.I., Dushin N.S. A Technique for Simulation of a Fluid Flow in Branched Channels. Russian Aeronautics. 2013, vol. 56, no. 1, pp. 30—36. DOI: http://dx.doi.org/10.3103/S1068799813010054.
  10. Brkić D. Iterative Methods for Looped Network Pipeline Calculation. Water Resources Management. 2011, vol. 25, no. 12, pp. 2951—2987. DOI: http://dx.doi.org/10.1007/s11269-011-9784-3.
  11. Ismagilov K.V., Velikanov V.S. Razrabotka modeley i issledovanie sistem avtomaticheskogo upravleniya [Development of Models and Investigation of Automated Control Systems]. Magnitogorsk, MGTU Publ., 2013, 132 p. (In Russian)
  12. Li Y., Zhang X., Yuan M. Robust Exponential Stability and Stabilization of a Class of Nonlinear Stochastic Time-Delay Systems. Asian Journal of Control. 2013, vol. 15, no. 4, pp. 1168—1177. DOI: http://dx.doi.org/10.1002/asjc.645.
  13. Zav’yalov V.A., Velichkin V.A. Opredelenie parametrov MP regulyatora po parametram peredatochnoy funktsii ob
  14. Popov D.N. Dinamika i regulirovanie gidro- i pnevmosistem [Dynamics and Regulation of Hydro- and Air Sytems]. 2nd edition, revised. Moscow, Mashinostroenie Publ., 1987, 464 p. (In Russian)
  15. Popov D.N., Chvyalev D.S. Sostavlenie i issledovanie matematicheskoy modeli elektrogidravlicheskogo privoda dlya dinamicheskikh ispytaniy armatury zhelezobetonnykh konstruktsiy [Creation and Investigation of Mathematical Model of Hydroelectric Drive for Dynamic Tests of Concrete Structures Reinforcement]. Nauka i obrazovanie: elektronnoe nauchno-tekhnicheskoe izdanie [Science and Education: Electronic Science and Technical Issue]. 2006, no. 6. Available at: http://technomag.edu.ru/doc/58885.html. Date of access: 20.03.2015. (In Russian)
  16. Morozenko A.A. Sinergeticheskiy podkhod k povysheniyu gibkosti struktury investitsionnno-stroitel'nogo proekta na osnove kriteriya ustoychivosti Naykvista — Mikhaylova [Synergetic Approach to Improvement of the Structural Flexibility of an Investment Construction Project on the Basis of the Nyquist — Mikhailov Criterion of Stability]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2012, no. 8, pp. 203—206. (In Russian)
  17. Volgina L.V., Tarasov V.K., Zommer T.V. Vliyanie kharakteristik dvukhfaznogo potoka na effektivnost’ sistemy gidrotransporta [Influence of Two-Phase Flow Characteristics on the Efficiency of Hydrotransport System]. Internet-vestnik VolgGASU. Seriya: Politematicheskaya [Internet Proceedings of Volgograd State University of Architecture and Civil Engineering]. 2012, no. 3 (23). Available at: http://vestnik.vgasu.ru/attachments/VolginaTarasovZommer-2012_3(23).pdf. Date of access: 20.03.2015. (In Russian)
  18. Volgina L.V., Gusak L.N., Zommer T.V. Gidravlika dvukhfaznykh potokov i gidrotransportnye sistemy [Hydraulics of Two-Phase Flows and Hydrotransport Systems]. Moscow, MGSU Publ., 2013, 92 p. (In Russian)
  19. Popov D.N., Knyazhanskiy A.A. O neopredelennosti sobstvennoy chastoty drossel’nogo gidroprivoda [On the indeterminacy of Eigen Frequency of Choke Hydraulic Drives]. Nauka i obrazovanie: elektronnoe nauchno-tekhnicheskoe izdanie [Science and Education: Electronic Science and Technical Issue]. 2011, no. 7. Available at: http://technomag.edu.ru/doc/198318.html. Date of access: 20.03.2015. (In Russian)
  20. Fikhtengol’ts G.M. Kurs differentsial’nogo i integral’nogo ischisleniya [Course of Differential ad Integral Calculation]. 8th edition. Moscow, Fizmatgiz Publ., 2003, vol. 2, 864 p.
  21. Ye R., Chen H., Lu R. A Differential Games Theory Based Method for Coordinating Two-Area Automatic Generation Control. Automation of Electric Power Systems. 2013, vol. 37, no. 18, pp. 48—54, 67.
  22. Gavrilov S.A., Devyatov V.V., Pupyrev E.I. Logicheskoe proektirovanie diskretnykh avtomatov [Logic Design of Discrete Automation]. Moscow, Nauka Publ., 1977, 352 p. (In Russian)
  23. Lazareva T.Ya., Martem’yanov Yu.F. Osnovy teorii avtomaticheskogo upravleniya [Fundamentals of Automatic Control Theory]. 2nd edition, revised. Tambov, TGU Publ., 2004, 252 p. (In Russian)
  24. Lazareva T.Ya., Martem’yanov Yu.F. Lineynye sistemy avtomaticheskogo regulirovaniya [Linear Systems of Automatic Control]. Tambov, TGU Publ., 2001, 264 p. (In Russian)

Download

ECONOMICS, MANAGEMENT AND ORGANIZATION OF CONSTRUCTION PROCESSES

Institutional model of the management system of innovativedevelopment in a construction complex with use of innovative engineering

  • Alekseeva Tat’yana Romanovna - Moscow State University of Civil Engineering (National Research University) (MGSU) Candidate of Economic Sciences, Associate Professor, Department of Economy and Management in the Construction, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 113-126

Today the national economy is facing the need of modernization. There is a problem of its transfer to an innovative way of development. The construction complex is one of the most important sectors of national economy. Now its innovative and technological rearmament is necessary. Creation and introduction of new technologies in a construction complex will allow improving the quality of construction production, its consumer characteristics, reliability and ecological safety. Also application of innovations in construction will provide energy efficiency of buildings and constructions. Application of institutional approach to the process of innovative development of a construction complex allows understanding better features of its functioning in modern conditions. In the article the institutional approach to innovative development of a construction complex is considered. The control system of innovative development of a construction complex with the use of innovative engineering from the point of view of institutional approach is considered. Its advantages are revealed and proved.

DOI: 10.22227/1997-0935.2015.7.113-126

References
  1. Asaul A.N. Problemy innovatsionnogo razvitiya otechestvennoy ekonomiki [Problems of Innovative Development of Domestic Economy]. Ekonomicheskoe vozrozhdenie Rossii [Economic Revival of Russia]. 2009, no. 4, pp. 3—6. (In Russian)
  2. Alekseeva T.R., Pastukhova Ya.Z. Innovatsionnyy potentsial stroitel’nogo kompleksa i ego struktura struktura [Innovative Potential of a Construction Complex and Its Structure]. Nauchnoe obozrenie [Scientific Review]. 2015, no. 8, pp. 270—274. (In Russian)
  3. Alekseeva T.R. Lizingovye tekhnologii v innovatsionnom razvitii stroitel’nogo kompleksa [Leasing Technologies in Innovative Development of Construction Complex]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2014, no. 5, pp. 152—161. (In Russian)
  4. Dolzhenko Yu.A. Metodicheskie podkhody dlya otsenki urovnya innovatsionnosti investitsionno-stroitel’nykh proektov [Methodological Approaches to Assessing the Innovativeness Level of Investment and Construction Projects]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2015, no. 2, pp. 178—186. (In Russian)
  5. Zagidullina G.M., Kleshcheva O.A. Razvitie innovatsionnoy infrastruktury investitsionno-stroitel’nogo kompleksa [Development of Innovative Infrastructure of an Investment and Construction Complex]. Izvestiya Kazanskogo gosudarstvennogo arkhitekturno-stroitel’nogo universiteta [News of Kazan State University of Architecture and Engineering]. 2011, no. 2 (16),pp. 271—277. (In Russian)
  6. Glaz’ev S.Yu. Mirivoy ekonomicheskiy krizis kak protsess zameshcheniya dominiruyushchikh tekhnologicheskikh ukladov [World Economic Crisis as a Process of Replacement of Dominating Technological Ways]. Sayt S.P. Kurdyumova [The site of S.P. Kurdyumov] Available at: http://spkurdyumov.ru/economy/mirovoj-ekonomicheskij-krizis/. Date of access: 12.03.2015. (In Russian)
  7. Syrtsova O.N. Lizing kak instrument modernizatsii ekonomiki Rossii [Leasing as a tool for modernization of Russian economy]. Lizing. Tekhnologii biznesa [Leasing. Technologies of Business]. 2012, no. 8, pp. 14—29. (In Russian)
  8. Lukmanova I.G. Metodicheskie osnovy transfera tekhnologiy v stroitel’noy otrasli [Methodological Bases for Technology in the Construction Industry]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2012, no. 3, pp. 193—198. (In Russian)
  9. Sannikova T.D. K voprosu o transformatsii institutsional’noy sredy innovatsionnoy deyatel’nosti v regione [On the Question of Transformation of the Institutional Environment of Innovative Activity in the Region]. Innovatsionnyy Vestnik Region [Innovative Herald Region]. 2013, no. 2, pp. 67—71. (In Russian)
  10. Filosofova T.G. Effektivnost’ ispol’zovaniya lizinga v skhemakh modernizatsii [Leasing as an Efficient Tool in Modernization Schemes]. Lizing. Tekhnologii biznesa [Leasing. Technologies of Business]. 2011, no. 9, pp. 6—21. (In Russian)
  11. Krutchankova K.A., Bukhtiyarova T.I. Institutsional’naya sreda innovatsionnogo razvitiya ekonomiki regiona [Institutional Environment of Innovative Development of Regional Economy]. Fundamental’nye issledovaniya [Fundamental Research]. 2013, no. 6-6, pp. 1485—1492. (In Russian)
  12. Timofeeva T.V. Institutsional’naya infrastruktura ekonomiki: metodologicheskiy aspekt issledovaniya [Institutional Infrastructure of Economy: Methodological Aspect of Research]. Izvestiya Volgogradskogo gosudarstvennogo tekhnicheskogo universiteta [News of Volgograd State Technical University]. 2005, no. 5, pp. 10—15. (In Russian)
  13. Kharisova G.M. Razvitie innovatsionnoy infrastruktury respubliki Tatarstan [Development of Innovative Infrastructure of the Republic of Tatarstan]. Izvestiya Kazanskogo gosudarstvennogo arkhitekturno-stroitel’nogo universiteta [News of Kazan State University of Architecture and Engineering]. 2010, no. 2 (14), pp. 360—365. (In Russian)
  14. Kamenetskiy M.I., Yas’kova N.Yu. Krizis otechestvennoy modeli upravleniya stroitel’stvom i rynkom nedvizhimosti [Crisis of the Domestic Model of Management of Construction and Real Estate Market]. Ekonomika stroitel’stva [Economy of Construction]. 2009, no. 3 (576), pp. 3—13. (In Russian)
  15. Lipsey R.G., Carlaw K.I., Bekar C.T. Economic Transformations — General Purpose Technologies and Long-Term Economic Growth. Oxford University Press, 2005, 618 p.
  16. Davis L., North D. Institutional Change and American Economic Growth. Cambridge, 1971, 803 p.
  17. Kamenetskii M.I., Yaskova N.U. Administrative Resources as a Factor in Improving the Efficiency of the State Administration System. Studies on Russian Economic Development. 2015, vol. 26, no. 2, pp. 124—131. DOI: http://dx.doi.org/10.1134/S1075700715020057.
  18. Levy M.J. Modernization and the Structure of Societies. Princeton University Press, 1966, 735 p.
  19. Meier G.M. Leading Issues in Economic Development. 6th edition. New York, Oxford University Press, 1995, 86 p.
  20. Eisenstadt Sh.N. Breakdowns of Modernization the Dynamics of Modern Society. J.G. William ed. New York, Basic Books, 1964, pp. 434—448.

Download

Analysis of planning, management and development methodsof organizational and technological solutions in infrastructure projects

  • Sultanova Irina Pavlovna - Plekhanov Russian University of Economics (PRUE); LLC K4 degree-seeking student, Department of Project and Program Management; Chief executive director, Plekhanov Russian University of Economics (PRUE); LLC K4, 36 Stremyannyy pereulok, Moscow, 117997, Russian Federation; 2/4-17 Luzhnetskaya naberezhnaya, Moscow, 119270, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 127-136

The given article shows the peculiarities of project management methods, 3D-modeling, scheduling-network planning, straight-line organization of work, visual modeling of construction arrangement, norm setting and cost estimation of work. After all, applying the methods mentioned above should provide earlier and less resource-consuming solution of the problem of constructing facilities within limited time and costs at permanent performance property as well as requirements for safety and quality. Hereinafter, the article summarizes the studied methods’ functionality together with the coverage areas’ analysis, and the above listed methods limitations are described, when they are used on a stand-alone basis. The list of tasks to be solved during elaboration and optimization of organizational and technological solutions is formulated on the basis of the analysis of regulations and project organization, elaborated on their basis. The conclusion was made a on the possibility of achieving best results by using these methods collaboratively, assuming that these methods would be complemented with the methods of economic assessment variation of architectural, engineering and organizational and technological concepts, and also with the help of methodology of searching for the most favorable solution in accordance with the criteria of economic efficiency. At the end of the article the information on the studies’ continuation is provided. Thus, the functional model that provides the search of the most favorable solution for the capital construction’s value and duration, based on harmonization of architectural, engineering, economic, financial, resource-technological and organizational-technological solutions is described in the author’s article : “The concept of economic-visual model building, an instrument of improving the investment and construction realization efficiency”.

DOI: 10.22227/1997-0935.2015.7.127-136

References
  1. Bachurina S.S., Sultanova I.P. Organizatsiya stroitel’nogo proizvodstva: etapy razvitiya i sovremennoe sostoyanie [Organization of Construction Operations: Expansion Phase and Actual Status]. Aktual’nye problemy sotsial’no-ekonomicheskogo razvitiya Rossii [Current Problems of Socioeconomic Development of Russia]. 2014, no. 4, pp. 67—70. (In Russian)
  2. Kolosova E.V., Sukhachev K.A. Proekt organizatsii stroitel’stva kak strategiya obespecheniya svoevremennogo vvoda ob”ekta v ekspluatatsiyu [Plan of Construction Management as a Guarantee of Up to Date Object Commissioning]. Neftegazopromyslovyy inzhiniring [Oil and Gas Producing Engineering]. 2012, no. 3, pp. 66—67. (In Russian)
  3. Afanas’ev E.M. Upravlenie riskami innovatsionnykh infrastrukturnykh proektov na osnove proektnogo finansirovaniya [Risk Management of Innovative Infrastructure Projects Based on Project Financing]. Ekonomika i predprinimatel’stvo [Economy and Business]. 2014, no. 7 (48), pp. 930—934. (In Russian)
  4. Voronina E.I. Modelirovanie kachestva sooruzheniya verkhnego stroeniya puti [Modeling of the Construction Quality of Superstructure]. Put’ i putevoe khozyaystvo [Track and Track Facilities]. 2007, no. 12, pp. 13—14. (In Russian)
  5. Grachev V.A., Sukhoverkhov Yu.N., Akopyan A.N. Sovremennye metody postroeniya organizatsionnykh struktur dlya povysheniya kachestva stroitel’nogo proizvodstva [Modern Methods of Organizational Charting to Improve Construction Production Quality]. NTS. Metodicheskie podkhody analiza tekhnologicheskikh protsessov stroitel’nogo proizvodstva :nauchno-tekhnicheskiy sbornik [Scientific and Technical Cooperation. Methodological Approaches to the Analysis of the Technological Processes of Construction Operations : Scientific and Technical Collection]. Moscow, TsNIIOMTP Publ., 2002, no. 2, pp. 21—23. (In Russian)
  6. Grachev V.A., Klimov Yu.N., Lim V.G., Zakharov P.V., Belyaev A.Yu. Problemno-orientirovannye metody modelirovaniya informatsionno-vychislitel’nykh sistem dlya proektirovaniya stroitel’nogo proizvodstva [Task-Oriented Methods of Information Computation Systems’ Modeling for Construction Operations’ Design]. NTI. Organizatsiya i metodika informatsionnoy raboty. : nauchno-tekhnicheskiy sbornik [Scientific and Technical Information: Organization and Methodology of Informational Work]. Moscow, TsNIIOMTP Publ., 2006, no. 5, pp. 18—22. (In Russian)
  7. Akopyan A.N., Grachev V.A., Shmakov V.V. Povyshenie kachestva stroeniy s ispol’zovaniem informatsionno-intellektual’noy sredy [Improvement of the Buildings’ Quality, Using Information Intellectual Environment]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. 2005, no. 5, pp. 53—54. (In Russian)
  8. Sborshchikov S.B., Zharov Ya.V. Organizatsionno-tekhnologicheskoe proektirovanie v stroitel’stve: voprosy normativnoy dokumentatsii [Organizing-technological Design In Construction: Regulatory Documentation]. Nauchnoe obozreni [Scientific Review]. 2014, no. 1, pp. 223—226. (In Russian)
  9. Sborshchikov S.B., Lazareva N.V., Zharov Ya.V. Teoreticheskie osnovy mnogomernogo modelirovaniya ustoychivogo razvitiya investitsionno-stroitel’noy deyatel’nosti [Theoretical Bases of Multidimensional Modeling of Sustainable Development in Investment and Construction Activities]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2014, no. 6, pp. 165—171. (In Russian)
  10. Sukhachev K.A., Sultanova I.P., Dolzhenko Yu.A. Novye tekhnologii upravleniya kak sredstvo resheniya problem stroitel’stva energeticheskikh ob”ektov [New Management Technologies as an Instrument of Solving the Problems of Power Assets Construction]. Neftenazopromyslovyy inzhiniring [Oil and Gas Producing Engineering]. 2013, special issue no. 7, pp. 62—66. (In Russian)
  11. Sukhachev K.A. Puti kachestvennogo uluchsheniya deyatel’nosti stroitel’noy otrasli Rossii [Methods of Quality Improvement of Russian Construction Industry]. Ekonomika Rossii. Vzglyad v budushchee [Economy of Russia. Future Outlook]. Moscow, Asmo-press Publ., 2013, special issue, pp. 116—125. (Golden Book of Russia) (In Russian)
  12. Application of Advanced Construction Technologies to New Nuclear Power Plants, MPR-2610 / U.S. Department of Energy. Nuclear Energy Research Advisory Committee, 2004, 132 p.
  13. Fleming Q.W., Koppelman J.M. Earned Value Project Management. Book Review. PM Network. 2008, vol. 22, no. 5, p. 78.
  14. Kolosova E.V., Sukhachev K.A. Ratsional’naya organizatsiya proizvodstva rabot v proekte — sokrashchenie sebestoimosti stroitel’stva [Rational Organization of Work Performance in a Project — Reduction of Construction Costs]. Atomeks. 2010, no. 4, pp. 36—37. (In Russian)
  15. Omoto A. Improved Construction and Project Management. International Conference on Advances in Nuclear Power Plants (ICAPP). 2002, Print.
  16. Korol’ M.G. Britantsy soobshchili miru, chto takoe BIM urovnya 3: eto — Digital Built Britain [The British told the world what is BIM level 3: it is Digital Built Britain]. isicad.ru. 2015, no. 128. Available at: http://isicad.ru/ru/articles.php?article_num=17570. Date of access: 14.03.2015. (In Russian)
  17. Creasey T. Manage Change for Engineering Success. Desktop Engineering Digital Edition. 2015, no. 03. Available at: http://www.deskeng.com/de/manage-change-success. Date of access: 13.03.2015.
  18. Cohn D. Evolution of Computer-Aided Design. Desktop Engineering Digital Edition. 2010, no. 12. Available at: http://www.deskeng.com/de/evolution-of-computer-aided-design. Date of access: 13.03.2015.
  19. Talapov V.V. Edinaya model’ BIM: utochneniya k terminologii [Universal BIM model: Specification of Terms]. isicad.ru. 2012, no. 92. Available at: http://isicad.ru/ru/articles.php?article_num=15154. Date of access: 14.03.2015. (In Russian)
  20. Batrova R.G., Glukhov S.V. Kalendarnoe planirovanie programm setevymi metodami [Scheduling the Programs by Means of Network Approach]. Materialy konferentsii, posvyashchennoy 90-letiyu so dnya rozhdeniya Alekseya Andreevicha Lyapunova. Novosibirsk, Akademgorodok. 8—11 oktyabrya 2001 [Proceedings of the Conference on Aleksey Andreevich Lyapunov’s 90th Birthday Anniversary. Novosibirsk, Akademgorodok. October 8—11, 2001]. Available at: http://www.ict.nsc.ru/ws/Lyap2001/2226/. Date of access: 14.03.2015. (In Russian)
  21. Kolosova E.V., Sukhachev K.A. Praktika primeneniya tekhnologiy kalendarno-setevogo planirovaniya [Practical Application of Scheduling-Network Planning Technologies]. K4 :planirovat’ prosto [K4 : It’s Easy to Plan]. Available at: http://k4-info.com/pub/769-praktika-primeneniya-texnologij-kalendarno-setevogo-planirovaniya/#4/. Date of access: 14.03.2015. (In Russian)
  22. Kolosova E.V., Sukhachev K.A. Analiz tipichnykh problem stroitel’nykh proektov i puti ikh resheniya s pomoshch’yu tekhnologiy kalendarno-setevogo planirovaniya v proektakh stroitel’stva promyshlennykh ob”ektov [Analysis of the Construction Project’s Typical Problems and the Ways of Their Solution with the Help of Scheduling-Network Planning Technologies in Industrial Construction]. K4 : planirovat’ prosto [K4 : It’s Easy to Plan]. Available at: http://k4-info.com/pub/768-analiz-tipichnyx-problem-stroitelnyx-proektov-i-puti-ix-resheniya-s-pomoshhyu-texnologij-kalendarno-setevogo-planirovaniya-v-proektax-stroitelstva-promyshlennyx-obektov/. Date of access: 14.03.2015. (In Russian)
  23. Talapov V.V. Vnedrenie BIM v Rossii: kuda ono poydet? [Adaptation of BIM in Russia: Where Does It Go?]. isicad.ru. 2015, no. 127. Available at: http://isicad.ru/ru/articles.php?article_num=17535. Date of access: 15.03.2015. (In Russian)
  24. Dolotov M.V., Sukhachev K.A., Talapov V.V. BIM v smetnom dele — vopros gosudarstvennoy vazhnosti [BIM in Budgeting — an Issue of State Concern]. isicad.ru. 2015, no. 128. Available at: http://isicad.ru/ru/articles.php?article_num=17572. Date of access: 15.03.2015. (In Russian)
  25. Sukhachev K.A. Vspomnim setevye grafiki [Let’s Remember Project Networks]. Kirpich [The Brick]. 2012, no. 5, pp. 12—17. (In Russian)
  26. Malakhov V.I. Resursnyy metod — poslednyaya nadezhda spasti rossiyskiy inzhiniring [Input Method is the Last Hope of Saving the Russian Engineering]. Ok-inform.Ru : Obshchestvennyy kontrol’ [Ok-inform.Ru : Public Control]. 2015. Available at: http://ok-inform.ru/experts/30077-resursnyj-metod-poslednyaya-nadezhda-spasti-rossijskij-inzhiniring.html. Date of access 17.03.2015. (In Russian)
  27. Bachurina S.S., Raykov A.N. Kognitivnoe modelirovanie razvitiya moskovskoy stroyindustrii [Cognitive Modeling of the Development of Moscow Construction Industry]. Kognitivnyy analiz i upravlenie razvitiem situatsiey (CASC‘2003) : trudy 3-y Mezhdunarodnoy konferentsii : v 2-kh tomakh [The Works of the 3d International Conference “Cognitive Analysis and Development Management of the Situation (CASC’ 2003)”. In 2 volumes]. Vol. 2. Moscow, IPU RAN Publ., 2003, pp. 17—22. (In Russian)
  28. Bachurina S.S., Sultanova I.P. Kontseptsiya sozdaniya ekonomiko-vizual’noy modeli — instrumenta povysheniya effektivnosti realizatsii investitsionno-stroitel’nykh proektov [The Concept of Economic-Visual Model Design — An Instrument of Quality Improvement of Investment-Construction Projects]. Gradostroitel’stvo [Urban Development]. 2015, no. 1 (35), pp. 11—14. (In Russian)

Download

ENGINEERING GEOMETRY AND COMPUTER GRAPHICS

Geometry graphical variationsof the circular conjugate problems

  • Polezhaev Yuriy Olegovich - Moscow State University of Civil Engineering (MGSU) Associate Professor, Department of Descriptive Geometry and Graphics, member, International Union of Russian Artists, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
  • Borisova Anzhelika Yur’evna - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Associate Professor, Department of Descriptive Geometry and Graphics, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
  • Borisova Viktoriya Aleksandrovna - Moscow State University of Civil Engineering (MGSU) student, Institute of Environmental Engineering and Mechanization, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.

Pages 137-146

In civil engineering and architectural design the coupling of circular curves are of great importance. There are different requirements for their practical application, including the possibility of approximation of the curves of higher order. The present article contains a brief excursion into the axiomatic description of the properties and concepts uniting the geometric graphics of a circular, a direct and a point into various compositions. One of the main conjunction theorems is presented, which defines the position and properties of orthoelements of pairing and the sequence of mating arcs using symmetry. The content of the theorem is commented in the form of proof by contradiction, in the form of geometric graphical operations that are naturally consistent with the analytical results. The examples are given of the circular conjunctions closed into oval shapes with a slight difference in the algorithms of composition construction. A particular case of the present configuration is a linear model of squaring the circle, the circle when the medial conjunction coincides with the base circle squaring. Here, the rhomb figure is presented as a basic square and the four successively conjugated circles have their centers at the vertices of squaring, their area are equiareals. Then, the straight “tapered” circular number and variations of its geometry graphical construction are analyzed. The summary results of the considered material are as follows. The main qualitative, quantitative, and typical examples of the circular conjunctions allow competently and variably solving certain problems of geometry graphics in the design process of civil engineering, architecture and applied domestic objects, items and personal things.

DOI: 10.22227/1997-0935.2015.7.137-146

References
  1. Volynskov V.E. Prostranstvennoe formoobrazovanie i ego arkhetipy [Space Forming and its Archetypes]. Vestnik Volgogradskogo gosudarstvennogo arkhitekturno-stoitel’nogo universiteta [Proceedings of Volgograd State University of Architecture and Civil Engineering. 2009, no. 13, pp. 124—129. (In Russian)
  2. Krylova O.V., Polezhaev Yu.O., Tel'noy V.I. Deduktivnyy aspekt postroeniya izometricheskikh monoproektsiy [Deductive Aspect of Isometric Monoprojections Creation]. Fundamental'nye nauki v sovremennom stroitel'stve: Sbornik dokladov Shestoy nauchno-prakticheskoy i uchebno-metodicheskoy konferentsii [Fundamental Sciences in the Modern Construction]. Moscow, MGSU Publ., 2008, pp. 163—165. (In Russian)
  3. Pólya G. Mathematical Discovery: On Understanding, Learning and Teaching Problem Solving, 2 volumes, Wiley 1962.
  4. Gilbert de B. Robinson. The Foundations of Geometry. U. of Toronto; Fourth edition, 1946.
  5. Polezhaev Yu.O., Borisova A.Yu., Kondrat’eva T.M. Lineynye puchki v tsirkul’no-ellipticheskikh sootvetstviyakh [Linear Bundles within the Framework of Coincidence of Circle and Ellipse]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2012, no. 6, pp. 62—67. (In Russian)
  6. Stepura E.A., Zontov R.A. Provedenie pryamoy cherez nedostupnuyu tochku [Drawing a straight through a Remote Point]. Sbornik trudov 2-y Vserossiyskoy nauchno-metodicheskoy konferentsii po inzhenernoy geometrii i komp'yuternoy grafike [Collection of Works of the 2nd All-Russian Scientific Conference on Engineering Geometry and Computer Graphics]. Moscow, MITKhT Publ., 2009, pp. 103—110. (In Russian)
  7. Polezhaev Yu.O., Borisova A.Yu. Lineynye variatsii modelirovaniya svoystv elliptichnosti [Modeling the Properties of Ellipticity: Linear Variations]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2012, no. 8, pp. 34—38. (In Russian)
  8. Kon-Fossen S. Gilbert D. Naglyadnaya geometriya [Visual Geometry]. 5th edition, Moscow, Editorial USSR, 2010, 344 p. (In Russian)
  9. Klein F. Neevklidovaya geometriya [Non-Euclidean geometry]. Transl. from German. Moscow, Leningrad, GGTI, 1936, 358 p. (In Russian)
  10. Semple J.G., Kneebone G.T. Algebraic Projective Geometry. Oxford, Oxford University Press, 1952, 405 p.
  11. Coxeter H.S.M. Projective Geometry. New York, Blaisdell Publishing Co, 1964, 162 p.
  12. Fedorov E.S. Nachala ucheniya o figurakh [Bases of the Theory of Figures]. Moscow, EE Media Publ., 2012, 418 p. (In Russian)
  13. Lelon-Ferran Zh. Osnovaniya geometrii [Fundamentals of Geometry]. Transl. from France. Moscow, Mir Publ., 1989, 312 p. (In Russian)
  14. Polezhaev Yu.O., Mitina T.V. K voprosu o metodike resheniya zadach intsidentsii [On the Methodology of Solving Incidence Problems]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2007, no. 1, p. 81. (In Russian)
  15. Vol'berg O.A. Osnovnye idei proektivnoy geometrii [Basic Ideas of Projective Geometry]. 4th edition. Moscow, Editorial URSS Publ., 2009, 192 p. (Nauku vsem — Shedevry nauchno-populyarnoy literatury [Science to Everyone — Masterpieces of Popular Scientific Literature]) (In Russian)
  16. Odesskiy P.D. O teoriyakh prochnosti i effekte vtoroy nagruzki primenitel'no k stal'nym stroitel'nym konstruktsiyam [On Strength Theories of the Effect of the Second Load Applied to the Steel Building Structures]. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering]. 2013, no. 10, pp. 20—24. (In Russian)
  17. Zhilkina T.A. Rol' prostranstvennogo myshleniya v praktike prepodavaniya graficheskikh distsiplin v tekhnicheskikh vuzakh [The Role of Spatial Thinking in the Practice of Teaching Graphic Disciplines in Technical Universities]. Nauka i obrazovanie: problemy i tendentsii : materialy Mezhdunarodnoy nauchno-prakticheskoy konferentsii [Science and Education: Problems and Tendencies : Materials of the International Science and Practice Conference]. Ufa, December 20—21 2013 : in three parts. Ufa, RITs BashGU Publ., 2013, part 2, pp. 142—146. (In Russian)
  18. Znamenskaya E.P., Ruzaev A.M. Geometricheskaya interpretatsiya rezul'tatov poiska optimal'nykh resheniy stroitel'nykh konstruktsiy [Geometric Interpretation of Search for Optimal Solutions for Building Structures]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2010, no. 4, vol. 1, pp. 113—116. (In Russian)
  19. Polezhaev Yu.O., Fatkullina A.A., Borisova A.Yu. Geometricheskie modeli sopryazheniy kvadrik na fragmentakh arkhitekturnykh ob”ektov [Geometric Models of Junctions of Quadrics in Fragments of Architectural Pieces]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2012, no. 9, pp. 18—23. (In Russian)
  20. Martynyuk A.N., Matveev O.A., Ptitsyna I.V. Elementy proektivnoy geometrii [Projective Geometry Elements]. Moscow, MGOU Publ., 2010, 134 p. (In Russian)
  21. Zacharias M. Vvedenie v proektivnuyu geometriyu [Introduction into Projective Geometry]. Transl. from German. Moscow, LIBROKOM Publ., 2010, 90 p. (Fiziko-matematicheskoe nasledie: matematika (geometriya) [Physical and Mathematical Heritage: Mathematics (Geometry)]. (In Russian)
  22. Polezhaev Yu.O., Donskaya O.V. Osobennosti vzaimosvyazey inzhenerno-tekhnicheskogo i khudozhestvennogo risunka. K voprosu o vozrozhdenii akademicheskikh traditsiy [Interaction Features of Engineering Technical and Artistic Drawing. To the Question of Academical Tradition Revival]. Dekorativnoe iskusstvo i predmetno-prostranstvennaya sreda. Vestnik MGKhPA [Decorative Art and Environment. Gerald of the Moscow State Academy of Applied Art and Design named after Sergei Stroganov]. 2012, no. 2-2, pp. 247—252. (In Russian)
  23. Georgievskiy O.V. Khudozhestvenno-graficheskoe oformlenie arkhitekturno-stroitel'nykh chertezhey [Art and Graphic Design of Architectural Drawings]. Moscow, Arkhitektura-S Publ., 2004, 79 p. (In Russian)
  24. Gusakova I.M. Rol' tonal'nogo risunka na poiskovom etape raboty nad dekorativnoy kompozitsiey po distsipline «Materialovedenie, tekhnologiya i proizvodstvennoe obuchenie» [The Role of the Tonal Drawing on the Exploratory Phase of the Decorative Composition on the Subject “Materials Science, Technology and Vocational Training”]. Prepodavatel' XXI vek [A teacher of the 21st Century]. 2014, no. 1, part 1, pp. 170—175. (In Russian)

Download

PROBLEMS OF HIGHER EDUCATION IN CIVIL ENGINEERING

Creative aspects of architectural education on the example of low-rise house course project. Part 1. Design methods

  • Balakina Alevtina Evgen’evna - Moscow State University of Civil Engineering (MGSU) Candidate of Architecture, Professor, chair, Department of Building Design and Urban Development, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Tesler Kirill Igorevich - Moscow State University of Civil Engineering (MGSU) Candidate of Architectural Sciences, Senior Lecturer, Department of Design of Buildings, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Tesler Nadezhda Dmitrievna - Moscow State University of Civil Engineering (MGSU) assistant, Department of Design of Buildings, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Kovalev Yuriy Germanovich - Moscow State University of Civil Engineering (MGSU) Senior Lecturer, Department of Building Design and Urban Development, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 147-157

One of the main aspects of architectural education is development of the sequence, an algorithm of design, generation of space and planning solution with account for all the limiting factors and requirements. In different periods of society and science development the process of architectural design, its aims and methods have been changed. For example in the 20th century the most important thing was correspondence of buildings and structures to everyday and industrial requirements. At the present time in general the architectural society came to the conclusion that the form and the function are closely related and influence each other. The article highlights the following aspects of current architectural design process: the initial data and design task influence on the method selection, the problem of form and function relation, contemporary trends in searching the form. Two basic methods are exposed: “from the form to the function” and “from the function to the form”. The article uncovers the design phases and shows different elements’ impact on each phase.

DOI: 10.22227/1997-0935.2015.7.147-157

References
  1. Barkhin B.G. Metodika arkhitekturnogo proektirovaniya [Architectural Design Methodology]. 2nd edition, revised. Moscow, Stroyizdat Publ., 1982, 225 p. (In Russian)
  2. Molchanov V.M. Osnovy arkhitekturnogo proektirovaniya: sotsial’no-funktsional’nye aspekty [Basics of Architectural Design: Socio-Functional Aspects.]. Rostov-on-Don, Feniks Publ., 2004, 160 p. (In Russian)
  3. Cannon P.F. Louis Sullivan: Creating a New American Architecture. Pomegranate, 2011, 192 p.
  4. Kuleshova A.A. Funktsionalizm kak khudozhestvennoe yavlenie [Functionalism as an Artistic Phenomenon]. Kul’tura i obrazovanie [Culture and Education]. September 2013, no. 1. Available at: http://vestnik-rzi.ru/2013/09/876. Date of access: 29.11.2014. (In Russian)
  5. Ikonnikov A.V. Funktsiya, forma, obraz v arkhitekture [Function, Form and Image in Architecture]. Moscow, Stroyizdat Publ., 1986, 288 p. (In Russian)
  6. Jones J.C. Design methods, 2nd Edition. David Fulton Publishers, London, 1992, 472 p.
  7. Kandinskiy V. Tochka i liniya na ploskosti [Point and Line to Plane]. Translated from German. Saint Petersburg, Azbuka Publ., 2005, 240 p. (Azbuka-Klassika Series)(In Russian)
  8. Mamoshin M.A. Sovremennaya teoriya formoobrazovaniya v arkhitekture. Opyt analiza i prakticheskogo voploshcheniya [The Modern Theory of Form Making in Architecture. Experience in Analysis and Practical Implementation]. Vestnik grazhdanskikh inzhenerov [Bulletin of Civil Engineers]. March 2006, no. 1 (6), pp. 9—15. (In Russian)
  9. Stepanov A.V., Mal’gin V.I. Ob”emno-prostranstvennaya kompozitsiya [Volume-Spatial Composition]. Moscow, Arkhitektura-S Publ., 2007, 256 p. (In Russian)
  10. Ikonnikov A.V., Stepanov G.P. Osnovy arkhitekturnoy kompozitsii [Fundamentals of Architectural Composition]. Moscow, Iskusstvo Publ., 1971, 225 p. (In Russian)
  11. Jenks C. The Language of Post-Modern Architecture. Rizzoli; 6th edition, 204 p.
  12. Sergeychuk P.S. Metafora kak mekhanizm obraznogo vospriyatiya arkhitekturnoy formy [Metaphor as a Mechanism of Image Perception of Architectural Form] Prospekt Svobodnyy-2015 : materialy nauchnoy konferentsii, posvyashchennoy 70-letiyu Velikoy Pobedy (15—25 aprelya 2015 g.) [Materials of the International Scientific Conference Dedicated to the 70th Anniversary of the Victory “Free Prospect-2015” (April 15—25 2015). Krasnoyarsk, Sibirskiy federal’nyy universitet Publ., 2015. Available at: http://conf.sfu-kras.ru/825. Date of access: 08.05.2015. (In Russian)
  13. Khan-Magomedov S.O. Suprematizm i arkhitektura (problemy formoobrazovaniya) [Suprematism and Architecture (the Problem of Formation)]. Moscow, Arkhitektura-S Publ., 2007, 520 p. (In Russian)
  14. Nikol’skiy A.S. Vtoroe sobesedovanie [The Second Interview]. Mastera sovetskoy arkhitektury ob arkhitekture : v 2 tomakh [Masters of Soviet Architecture about the Architecture: In 2 volumes]. Moscow, Iskusstvo Publ., 1975, vol. 1, p. 497. (In Russian)
  15. Andrews J. Architectural Visions — Contemporary Sketches, Perspectives, Drawings. Braun, 2009, 368 p.
  16. Jones W. Architect’s Sketchbooks. Thames & Hudson, 2011, 351 p.
  17. Markuzon V.F., Mikhaylov B.P., editors. Vseobshchaya istoriya arkhitektury : v 12-ti tomakh [Universal History of Architecture : in 12 volumes]. 2nd edition, revised. Moscow, Stroyizdat Publ., 1973, vol. 2: Arkhitektura antichnogo mira (Gretsiya i Rim) [Architecture of the Ancient World. Greece and Rome]. 712 p. (In Russian)
  18. Melodinskiy D.L. Arkhitekturnaya masshtabnost’ kak sistema: evolyutsiya ponyatiya [Architectural Scale as the System: the Evolution of the Concept]. Arkhitekton: izvestiya vuzov [Architecton: Proceedings of Higher Education]. Mart 2015, no. 49. Available at: http://archvuz.ru/2015_1/2. Date of access: 05.05.2015. (In Russian)
  19. Demina A.V., El’chishcheva T.F. Maloetazhnoe zhiloe zdanie. Ch. I. Nesushchie i ograzhdayushchie konstruktsii [Low-rise Residential Building. Part I. Bearing and Enclosing Constructions]. Tambov, TGTU Publ., 2009, 52 p. (In Russian)
  20. Tomina T.S. Osnovnye funktsii voobrazheniya dizaynerov [The Main Functions of Designer’s Imagination]. Arkhitekton: izvestiya vuzov [Architecton: Proceedings of Higher Education]. September 2013, no. 42. Sopplement. Available at: http://archvuz.ru/2013_22/82. Date of access: 05.05.2015. (In Russian)

Download