Home Vestnik MGSU Library Vestnik MGSU 2015/9

Vestnik MGSU 2015/9

DOI : 10.22227/1997-0935.2015.9

Articles count - 16

Pages - 177

ARCHITECTURE AND URBAN DEVELOPMENT. RESTRUCTURING AND RESTORATION

PRINCIPLES OF AVAILABLE ENVIRONMENT IN THE CONCEPT OF TOURISTIC CITIES DEVELOPMENT

  • Tesler Kirill Igorevich - Moscow State University of Civil Engineering (National Research University) (MGSU) Candidate of Architecture, Associate Professor, Department of Building Design and Urban Development, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
  • Starikov Aleksandr Sergeevich - Moscow State University of Civil Engineering (National Research University) (MGSU) postgraduate student, Senior Lecturer, Department of Building Design and Urban Development, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
  • Kuznetsov Aleksandr Alekseevich - Moscow State University of Civil Engineering (National Research University) (MGSU) Master student, Department of Building Design and Urban Development, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.

Pages 7-15

The authors consider the problems related to available environment formation in the strategy of touristic cities development. One of the means of social and psychological rehabilitation of the disabled is tourism. It should be noted, that touristic cities mostly represent a complicated space structure with a lot of streets and concourses, with touristic objects distributed all over the city. Visiting and transportation in such an environment may cause difficulties. The aim is to form a touristic universal environment. A universal environment is aimed at widening the frames of a design target group and supposes an organization of comfortable city visit, availability of services, simple and recognizable navigation system for all the social groups. The suggested principles may become a guidance not only to the designers. The given material may also be useful for specialists in territorial marketing and touristic management and help to raise a regional economic efficiency.

DOI: 10.22227/1997-0935.2015.9.7-15

References
  1. Tesler K.I. Razvitie adaptirovannykh dlya malomobil’nykh grupp naseleniya marshrutov obshchestvennogo transporta v istoricheskoy chasti g. Moskvy [Development of the Routes o Public Transport for People with Limited Mobility in the Historical Part of Moscow]. Internet-vestnik VolgGASU. Seriya: Politematicheskaya [Internet-Vestnik of Volgograd State University of Architecture and Civil Engineering. Series: Multi-Topic]. 2014, no. 4 (35), article 23. Available at: http://vestnik.vgasu.ru/attachments/23TeslerK.pdf. Date of access: 15.03.2015. (In Russian)
  2. Ericsson A.B., Hagen S.E., Vaagland J. Local Economic Impacts of Cultural Events — Methodological and/or Measurement Problems. The ICCPR. 2008, 12 p.
  3. Smith M.K. Issues in Cultural Tourism Studies. London, New-York, Routeledge, 2003, 195 p.
  4. Garcia B. Cultural Policy and Urban Regeneration in Western European Cities: Lessons from Experience, Prospects for the Future. Local Economy. 2004, vol. 19, no. 4, pp. 312—326. DOI: http://dx.doi.org/10.1080/0269094042000286828.
  5. Matetskaya M.V. Ekonomika kul’tury i vektor institutsional’nykh reform [Culture Economy and Vector of Institutional Reforms]. Vestnik Sankt-Peterburgskogo universiteta. Seriya 5:Ekonomika [Vestnik of Saint-Petersburg University. Series 5. Economics]. 2006, no. 4, pp. 157—162. (In Russian)
  6. Gordin V.E., Matetskaya M.V. Kul’turnyy turizm kak strategiya razvitiya goroda: poisk kompromissov mezhdu interesami mestnogo naseleniya i turistov [Cultural Tourism as a Strategy of City Development: Search for Compromises between the Interests of Local Population and Tourists]. Sankt-Peterburg: Mnogomernost’ kul’turnogo prostranstva : sbornik materialov nauchno-prakticheskogo foruma [Saint Petersburg: Multidimensionality of Cultural Space : Collection of the Materials of Scientific and Practical Forum]. Saint Petersburg, Levsha-Sankt-Peterburg Publ., 2009, no. 2. Available at: http://tourlib.net/statti_tourism/gordin.htm/. Date of access: 02.07.2015. (In Russian)
  7. Tesler K.I., Korobeynikova A.A. Printsipy sozdaniya obshchedostupnoy sredy v bol’shikh gorodakh na primere g. Moskvy [Principles of Creating Publicly Available Environment in Big Cities on the Example of Moscow]. Sbornik dokladov konferentsii po itogam nauchno-issledovatel’skikh rabot studentov [Collection of Articles of the Conference on the Results of Scientific and Research Works of the Students]. Moscow, MGSU Publ., 2011/2012, pp. 71—74. (In Russian)
  8. Stepanov V.K., Starikov A.S. Universal’naya sreda obitaniya. Osnovnye printsipy [Universal Living Environment]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineeing]. 2012, no. 9, pp. 39—43. (In Russian)
  9. Matetskaya M.V. Sovremennye tekhnologii menedzhmenta v sfere kul’tury [Modern Management Technologies in Cultural Sphere]. Aktual’nye problemy sovremennogo menedzhmenta v Rossii: perspektivy na budushchee : materialy nauchno-prakticheskoy konferentsii, 24—25 dekabrya 2004 [Current Problems of Contemporary Management in Russia: Future Prospects : Materials of Science and Practice Conference, December 24—25, 2004]. Saint Petersburg, SPbF GU-VShE Publ., 2004, pp. 111—119. (In Russian)
  10. Razdel 1. Kontseptual’nye osnovy strategicheskogo plana razvitiya goroda / Strategicheskiy plan razvitiya Ekaterinburga do 2020 goda [Conceptual Framework of Strategic Plan of City Development]. Informatsionnyy portal Ekaterinburga [Informational Portal of Yekaterinburg]. Availavle at: http://www.ekburg.ru/officially/strategy_plan/strat_text/perviyrazdel/. Date of access: 02.07.2015. (In Russian)
  11. O’Konor Dzh. Kul’turnaya politika kak vliyanie: Eksport idei «tvorcheskikh industriy» v Sankt-Peterburg [Cultural Policy as an Influence: Export of an Idea of “Artistic Industry” in Saint Petersburg]. Institut kul’turnoy politiki [Institute of Cultural Policy]. Available at: http://www.cpolicy.ru/analytics/87.html. Date of access: 02.07.2015. (In Russian)
  12. Vizgalov D. Brending goroda [Branding of a City]. Moscow, Fond “Institut ekonomiki goroda” Publ., 2011, 160 p. (In Russian)
  13. Smetannikov M.M. Brending gorodov i regionov [Branding of Cities and Regions]. Open : sayt mezhdunarodnogo festivalya territorial’nogo marketinga i brendinga [Open : a site of International Festival of Territorial Marketing and Branding]. 27.04.2012. Available at: http://festopen.com/branding-gorodov-i-regionov. Date of access: 02.07.2015. (In Russian)
  14. Leader-Elliott L. Cultural Tourism. Flinders University. Available at: http://ehlt.flinders.edu.au/culturaltourism/faq/index.php. Date of access: 02.07.2015.
  15. Stepanov V.K., Starikov A.S. Predposylki formirovaniya arkhitekturnoy sredy dlya sportsmenov invalidov [Prerequisites of Architectural Environment Formation for Disabled Sportsmen]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2009, no. 4, pp. 214—218. (In Russian)
  16. Kay J. Welcome to Venice, the Theme Park. Times Online. Available at: http://www.guardian.co.uk/world/2006/jun/04/italy.robinmckie. Date of access: 02.07.2015.
  17. Gordin V.E., Sushchinskaya M., Yatskevich M. Teoreticheskie i prakticheskie podkhody k razvitiyu turizma [Theoretical and Practical Approaches to Touristic Development]. Kul’turnyy turizm: konvergentsiya kul’tury i turizma na poroge XXI veka [Cultural Tourism: Convergence of Culture and Tourism on the Edge of the 21st Century]. Saint Petersburg, SPbGUEF Publ., 2001, 124 p. (In Russian)
  18. Ashworth G.J. Conservation of the Built Environment in the Netherlands. The Construction of Built Heritage: a North European Perspective on Policies, Practices and Outcomes. London, Ashgate, 2001, 282 p.
  19. Kuznetsova E. Malyy biznes v «industrii vpechatleniy» [Small Business in the “Industry of Impressions”]. Astok. Delovaya nedelya [Educational Touristic Portal / Astok. Business Week]. February 2008, no. 6 (521). Available at: http://tourlib.net/statti_tourism/kuznecova2.htm. Date of access: 02.07.2015. (In Russian)
  20. Ulrike Rau. Barrierefrei Bauen Für Die Zukunft. Auflage: Dritte Auflage. Deutschland, Beuth Verlag, 368 p.

Download

DESIGNING AND DETAILING OF BUILDING SYSTEMS. MECHANICS IN CIVIL ENGINEERING

THE PROTECTABILITY OF BLOCK COVERINGS OF INDUSTRIAL BUILDINGS WITH DEFECTIVE LOAD-BEARING STRUCTURES FROM PROGRESSIVE COLLAPSE

  • Harutyunyan Gevorg Harutyunovich - Moscow State University of Civil Engineering (National Research University) (MGSU) postgraduate student, Scientific and Educational Center “Test of Structures”, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.

Pages 16-27

Beginning with the 20th century metal structures are widely used in the construction branch in Russia. The reason for it was in the development of calculation methods of structures. Beginning with 1930 and till now a substantial number of the industrial buildings (about 90 %) of production plants have been built of metal structures. The essential part of them - 20…60 % of the whole volume - has block coverings consisting of bearing and braced elements. At the present time the data on the operation duration of industrial structures is not systemized throughout Russia. This data may serve as one of characteristic factors for estimating safety operation level, because while the operation term increases, the wear also increases (mechanical damages), which influences the bearing capacity of the structures. The following article examines the collapse of industrial building coverings that may be accompanied not only by material losses, but also by fatal accidents. Statistical data of damageability of trusses and their elements are presented; the consequences of collapse are examined. The average life time of trusses is determined which is serving as a criteria that characterizes damage accumulation. The nature of the collapse of block coverings is revealed which, in most cases, may be classified as progressive.

DOI: 10.22227/1997-0935.2015.9.16-27

References
  1. Mel’nikov N.P., editor. Metallicheskie konstruktsii. Spravochnik proektirovshchika [Metal Structures (Reference Book of a Designer)]. 2nd edition, revised. Moscow, Stroyizdat Publ., 1980, 776 p. (In Russian)
  2. Gubanov V.V., Moskalenko V.I. Opyt likvidatsii рosledstviy avarii promyshlennogo zdaniya [Elimination of the Consequences of an Industrial Building Failure]. Metallicheskie konstruktsii [Metal Structures]. 2008, vol. 14, no. 3, pp. 181—188. (In Russian)
  3. Eremin K.I., Matveyushkin S.A. Elektronnaya pasportizatsiya zdaniy i sooruzheniy [Electronic Certification of Buildings and Structures]. Predotvrashchenie avariy zdaniy i sooruzheniy : sbornik nauchnukh trudov [Prevention of Accidents of Buildings and Structures. A Collection of Scientific Papers]. Moscow, 2008, pp. 5—14. (In Russian)
  4. Nezhdanov K.K., Zhukov A.N. Analiz sostoyaniya i prichin obrusheniy stroitel’nykh konstruktsiy v promyshlennykh zdaniyakh [State and Reasons of Structures Damages in Industrial Buildings]. Regional’naya arkhitektura i stroitel’stvo [Regional Architecture and Construction]. 2011, no. 1, pp. 80—84. (In Russian)
  5. Permyakov M.B. Analiz avariy zdaniy i sooruzheniy promyshlennykh predpriyatiy [The Analysis of Accidents of Buildings and Constructions in Industrial Enterprises]. Predotvrashchenie avariy zdaniy i sooruzheniy : sbornik nauchnukh trudov [Prevention of Accidents of Buildings and Structures. A Collection of Scientific Papers]. Moscow, 2008, pp. 39—43. (In Russian)
  6. Gruzinova M.A., Tavkin’ A.A. Bezopasnost’ sooruzheniy pri prirodnykh i tekhnogennykh dinamicheskikh vozdeystviyakh [Safety of Constructions During Natural and Man-Induced Dynamic Influences]. Seysmostoykoe stroitel’stvo. Bezopasnost’ sooruzheniy [Antiseismic Construction. Safety of Structures]. 2001, no. 4, pp. 42—44. (In Russian)
  7. Eremin K.I., Makhutov N.A., Pavlova G.A., Shishkina N.A. Reestr avariy zdaniy i sooruzheniy 2001—2010 godov [The Register of Accidents of Buildings and Structures from 2001 to 2010]. Moscow, 2011, 320 p. (In Russian)
  8. Eremin K.I., Matveyushkin S.A. Osobennosti ekspertizy i nerazrushayushchego kontrolya stroitel’nykh metallicheskikh konstruktsiy [The Characteristics of Examination and Nondestructive Inspection of Building Metallic Structures]. Predotvrashchenie avariy zdaniy i sooruzheniy : sbornik nauchnukh trudov [Prevention of Accidents of Buildings and Structures. A Collection of Scientific Papers]. Moscow, 2009, no. 8, pp. 5—14. (In Russian)
  9. Ponomarev V.N., Travush V.I., Bondarenko V.M., Eremin K.I. O neobkhodimosti sistemnogo podkhoda k nauchnym issledovaniyam v oblasti kompleksnoy bezopasnosti i predotvrashcheniya avariy zdaniy i sooruzheniy [On the Need of System Approach Towards Scientific Research in the Field of Complex Security and Prevention of Accidents of Buildings and Structures]. Monitoring. Nauka i bezopasnost’ [Monitoring: Science and Safety]. 2014, no. 1 (13), pp. 4—12. Available at: http://e.np-monitoring.ru/2014/2014-1(13).pdf. Date of access: 20.03.2015. (In Russian)
  10. Shishkina N.A. Otnoshenie obshchestvennosti k ekspluatiruemym stroitel’nym ob
  11. Kikin A.I., Vasil’ev A.A., Koshutin B.N., Uvarov B.Yu., Vol’berg Yu.L. Povyshenie dolgovechnosti metallicheskikh konstruktsiy promyshlennykh zdaniy [Increase of Longevity of Metallic Structures of Industrial Buildings]. 2nd edition, revised. Moscow, Stroyizdat Publ., 1984, 301 p. (In Russian)
  12. Lashchenko M.N. Avarii metallicheskikh konstruktsiy zdaniy i sooruzheniy [Accidents of Metallic Structures of Buildings and Constructions]. Leningrad, Stroyizdat Publ., 1969, 184 p. (In Russian)
  13. Belyaev B.I., Kornienko S.V. Prichiny avariy stal’nykh konstruktsiy i sposoby ikh ustraneniya [Causes of Accidents of Steel Structures and Means of Their Elimination]. Moscow, Stroyizdat Publ., 1968, 208 p. (In Russian)
  14. Shkinev A.N. Avarii v stroitel’stve [Accidents in Construction]. 4th edition, revised. Moscow, Stroyizdat Publ., 1984, 320 p. (In Russian)
  15. Augustin Ya., Shledzevskiy E. Avarii stal’nykh konstruktsiy [Accidents of Steel Structures]. Transl. from Polish. Moscow, Stroyizdat Publ., 1978, 177 p. (In Russian)
  16. Eremin K.I., Matveyushkin S.A., Pavlova G.A. Obzor sovremennykh avariy zdaniy i sooruzheniy. Analiz avariynosti zdaniy i sooruzheniy. Prichiny avariynogo razrusheniya konstruktsiy [Overview of Contemporary Accidents of Buildings and Constructions; Analysis of the Accident Rate of Buildings and Constructions, the Causes of Accidental Collapse]. Bezopasnost’ ekspluatiruemykh zdaniy i sooruzheniy [Safety of Exploited Buildings and Constructions]. Moscow, 2011, pp. 3—45. (In Russian)
  17. Eremin K.I., Shishkina N.A. Obzor avariy zdaniy i sooruzheniy, proizoshedshikh v 2010 godu [Review of Accidents of Buildings and Structures, Which Occurred in 2010]. Predotvrashchenie avariy zdaniy i sooruzheniy : sbornik nauchnukh trudov [Prevention of Accidents of Buildings and Structures. A Collection of Scientific Papers]. Moscow, 2011, no. 10, pp. 3—23. (In Russian)
  18. ASCE 7—02. Minimum Design Loads for Buildings and Other Structures. 2002 ed. American Society of Civil Engineers. Reston, VA, 2002, 376 p.
  19. Almazov V.O. Proektirovanie sooruzheniy s uchetom avariynykh vozdeystviy [The Design of Constructions Taking into Account the Accident Effects]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineers]. 2010, no. 1, Special Issue, pp. 151—159. (In Russian)
  20. Eremeev P.G. Predotvrashchenie lavinoobraznogo (progressiruyushchego) obrusheniya nesushchikh konstruktsiy unikal’nykh bol’sheproletnykh sooruzheniy pri avariynykh vozdeystviyakh [Prevention of Progressive Collapse of Load-Bearing Structures of Unique Large-Span Constructions under Emergency Effects]. Stroitel’naya mekhanika i raschet sooruzheniy [Structural Mechanics and Calculation of Structures]. 2006, no. 2, pp. 65—72. (In Russian)
  21. Taylor D.A. Progressive Collapse. Canadian Journal of Civil Engineering. Dec. 1975, vol. 2, no. 4, pp. 517—529. DOI: http://dx.doi.org/10.1139/l75-047.
  22. Allen D.E., Schriever W.R. Progressive Collapse. Abnormal Loads and Building Codes. Proc. Am. Soc. Civ. Eng. National Meeting on Struct. Eng., Clevelend, Ohio. Apr. 1972, pp. 21—47.
  23. Leyendecker E.V., Burnett E.F.P. The Incidence of Abnormal Loading in Residential Buildings. NBS Building Science Series 89, U.S. Department of Commerce, National Bureau of Standards, Washington D.C., 1976, 30 p.
  24. Starossek U. Typology of Progressive Collapse. Engineering Structures. 2007a, vol. 29, no. 9, pp. 2302—2307.

Download

CAST-IN-PLACE BUILDING FRAME AND ITS FEATURES AT SEPARATE LIFE CYCLES

  • Koyankin Aleksandr Aleksandrovich - Siberian Federal University (SibFU) Candidate of Technical Sciences, Associate Professor, Department of Building Structures and Control Systems, Siberian Federal University (SibFU), 79 Svobodny Avenue, Krasnoyarsk, 660041, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Mitasov Valeriy Mikhaylovich - Novosibirsk State University of Architecture and Civil Engineering (Sibstrin) (FGBOU VPO NGASU) Doctor of Technical Sciences, Professor, chair, Department of Reinforced Concrete Structures, Novosibirsk State University of Architecture and Civil Engineering (Sibstrin) (FGBOU VPO NGASU), 113 Leningradskaya str., Novosibirsk, 630008, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 28-35

Modern intensive development of precast-cast-in-place construction has led to creation of a wide range of various constructive systems of buildings during the last 100 years. They allow constructing buildings with best account of the requirements of functionality, architectural expressiveness, production possibilities of construction companies, etc. However in spite of this development both precast and cast-in-place housing construction has its peculiarities, positive and negative ones. The constructive systems of precast monolithic buildings existing at the moment are based on the required mutual deformation of prefabricated reinforced and cast iron reinforced concrete at the stage of a building construction and at the stage of its use as well. Having refused from this rule, the authors of this article have introduced a constructive system of a precast monolithic building able to bear loads, developing at the stage of erection (due to completion of a precast frame) and at the stage of use (due to completion of a precast monolithic frame). The offered construction of a precast monolithic building frame allows efficiently using the advantages of precast and cast-in-place construction minimizing their disadvantages and it also fully corresponds to the obligatory requirements to buildings. The corresponding patents are obtained.

DOI: 10.22227/1997-0935.2015.9.28-35

References
  1. Mordich A.I., Belevich V.N., Simbirkin V.N., Navoy D.I., Mironov A.N., Raychev V.P., Chubrik A.I. Effektivnye konstruktivnye sistemy mnogoetazhnykh zhilykh domov i obshchestvennykh zdaniy (12…25 etazhey) dlya usloviy stroitel’stva v Moskve i gorodakh Moskovskoy oblasti, naibolee polno udovletvoryayushchie sovremennym marketingovym trebovaniyam [Effective Constructional Systems of Multistory Blocks of Flats and Civil Buildings (12…25 Storey) for the Construction Conditions in Moscow and the Cities of Moscow Region, More Fully Fulfilling Modern Marketing Demands]. Minsk, NIEPUP “Institut BelNIIS” Publ., 2002, 117 p. (In Russian)
  2. Unifitsirovannaya sistema sborno-monolitnogo bezrigel’nogo karkasa KUB 2.5. Vypusk 1-1 / TsNIIPI «Monolit» [Unified System of Precast-Cast-in-place Reinforced Concrete Composite Frame without Collar Beams KUB 2.5. Edition 1-1 / TSNIIPI “Monolit”]. Moscow, Stroyizdat Publ., 1990, 49 p. (In Russian)
  3. Shembakov V.A. Sborno-monolitnoe karkasnoe domostroenie: rukovodstvo k prinyatiyu resheniya [Cast-in place and Precast Frame House-Building. Guidance for Decision-Making]. 2-nd edition, revised. Cheboksary, OOO “Cheboksarskaya tipografiya № 1” Publ., 2005, 119 p. (In Russian)
  4. Mitasov V.M., Koyankin A.A. Rabota diska sborno-monolitnogo perekrytiya [Operation of a Precast Monolithic Slab]. Izvestiya vysshikh uchebnykh zavedeniy. Stroitel’stvo [News of Higher Educational Institutions. Construction]. 2014, no. 3, pp. 103—109. (In Russian)
  5. Nikitin N.V., Franov P.I., Timonin E.M. Rekomendatsii po proektirovaniyu konstruktsiy ploskogo sborno-monolitnogo perekrytiya «Sochi» [Recommendations for Engineering of the Constructions of Flat Precast Monolithic Slab “Sochi”]. 3-rd edition, revised. Moscow, Stroyizdat Publ., 1975, 34 p. (In Russian)
  6. Koyankin A.A., Mitasov V.M. Eksperimental’nye issledovaniya raboty stykovogo soedineniya rigelya s kolonnoy v sborno-monolitnom perekrytii [Experimental Study of the Operation of the Bolt Joint of a Bearer with a Column in Precast-Monolithic Ceiling]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2015, no. 5, pp. 27—34. (In Russian)
  7. Sakhnovskiy K.V. Zhelezobetonnye konstruktsii [Reinforced Concrete Constructions]. 8th edition. Moscow, Gosstroyizdat Publ., 1960, 840 p. (In Russian)
  8. Mordich A.I. Sborno-monolitnye i monolitnye karkasy mnogoetazhnykh zdaniy s ploskimi raspornymi perekrytiyami [Precast-Monolithic and Monolithic Frames of Multistoreyed Buildings with Flat Brace Floor]. Montazhnye i spetsial’nye raboty v stroitel’stve [Building and Special Works in Construction]. 2001, no. 8—9, pp. 10—14. (In Russian)
  9. Mordich A.I. Belevich V.N., Simbirkin V.N., Navoy D.I. Opyt prakticheskogo primeneniya i osnovnye rezul’taty naturnykh ispytaniy sborno-monolitnogo karkasa BelNIIS [Experience of Practical Application and the Main Results of Field Studies of the Precast-Monolithic Frame BelNIIS]. BST: Byulleten’ stroitel’noy tekhniki [BST: Bulletin of Construction Technologies]. 2004, no. 8, pp. 8—12. (In Russian)
  10. Mordich A.I., Sadokho V.E., Podlipskaya I.I., Taratynova N.A. Sborno-monolitnye prednapryazhennye perekrytiya s primeneniem mnogopustotnykh plit [Precast-Monolithic Prestressed Slabs Using Hollow Core Slabs]. Beton i zhelezobeton [Concrete and Reinforced Concrete]. 1993, no. 5, pp. 3—6. (In Russian)
  11. Weber H., Bredenbals B., Hullman H. Bauelemente mit Gittertragern. Institut fur Industrialisierung des Buens. Hannover, 1996, 24 p.
  12. Dimitrijevic R. A Prestressed «Open» System from Jugoslavia. Système «ouvert» précontraint yougoslave. Batiment Informational, Building Research and Practice. 1978, vol. 6, no. 4, pp. 244, 245—249. Nauchno-tekhnicheskiy referativnyy sbornik TsINIS [Science and Technical Abstract Collection of the Central Institute of Scientific Information on Construction]. 1979, vol. 14, no. 3, pp. 8—12.
  13. Bausysteme mit Gittertragern. Fachgruppe Betonbauteile mit Gittertragern im BDB. Bonn, 1998, 40 p.
  14. Schwerm D., Jaurini G. Deskensysteme aus Betonfertigteilen. Informationsstelle Beton-Bauteile, 1997, Bonn, 37 p.
  15. Pessiki S., Prior R., Sause R., Slaughter S. Review of Existing Precast Concrete Gravity Load Floor Framing System. PCI Journal. 1995, vol. 40, no. 2, pp. 52—67.
  16. Koprivitsa B. Primenenie karkasnoy sistemy IMS dlya stroitel’stva zhilykh i obshchestvennykh zdaniy [Application of Frame System IMS for Constructing Residentialand Public Buildings]. Zhilishchnoe stroitel’stvo [Housing Construction]. 1984, no. 1, pp. 30—32. (In Russian)
  17. Semchenkov A.S. Obosnovanie regional’no-adaptirovannye industrial’noy universal’noy stroitel’noy sistemy «RADIUSS» [Reasons of Regional-Adaptive Industrial Universal Construction System “RADIUSS”]. Beton i zhelezobeton [Concrete and Reinforced Concrete]. 2008, no. 4, pp. 1—7. (In Russian)
  18. Semchenkov A.S. Regional’no-adaptiruemye sborno-monolitnye stroitel’nye sistemy dlya mnogoetazhnykh zdaniy [Regional-Adaptive Precast-Cast-in-place Constructional Systems for Multi-Storied Buildings]. Beton i zhelezobeton [Concrete and Reinforced Concrete]. 2010, no. 3, pp. 2—6. (In Russian)
  19. Kimberg A.M. Effektivnaya konstruktivnaya sistema karkasno-panel’nykh zdaniy s natyazheniem armatury v postroechnykh usloviyakh (metodicheskie rekomendatsii) [Effective Constructive System of Frame-Panel Buildings with Tensioning of the Steel in Site Conditions (Methodological Recommendations)]. Tbilisi, TbilZNIIEP Publ., 1985, 33 p. (In Russian)
  20. Kazina G.A. Sovremennye zhelezobetonnye konstruktsii seysmostoykikh zdaniy [Modern Reinforced Concrete Structures of Earthquake-Resistant Buildings]. Moscow, VNIIS Publ., 1981, 25 p. (In Russian)

Download

THE STRENGTH OF REINFORCED CONCRETE BEAM ELEMENTS UNDER CYCLIC ALTERNATING LOADING AND LOW CYCLE LOAD OF CONSTANT SIGN

  • Semina Yuliya Anatol'evna - Odessa State Academy of Civil Engineering and Architecture (OGASA) postgraduate student, Department of Strength of Materials, Odessa State Academy of Civil Engineering and Architecture (OGASA), 4 Didrikhsona Str., Odessa, 65045, Ukraine; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 36-50

The behavior of reinforced concrete elements under some types of cyclic loads is described in the paper. The main aim of the investigations is research of the stress-strain state and strength of the inclined sections of reinforced concrete beam elements in conditions of systemic impact of constructive factors and the factor of external influence. To spotlight the problem of cyclic loadings three series of tests were conducted by the author. Firstly, the analysis of the tests showed that especially cyclic alternating loading reduces the bearing capacity of reinforced concrete beams and their crack resistance by 20 % due to the fatigue of concrete and reinforcement. Thus the change of load sign creates serious changes of stress-strain state of reinforced concrete beam elements. Low cycle loads of constant sign effect the behavior of the constructions not so adversely. Secondly, based on the experimental data mathematical models of elements’ strength were obtained. These models allow evaluating the impact of each factor on the output parameter not only separately, but also in interaction with each other. Furthermore, the material spotlighted by the author describes stress-strain state of the investigated elements, cracking mechanism, changes of deflection values, the influence of mode cyclic loading during the tests. Since the data on the subject are useful and important to building practice, the ultimate aim of the tests will be working out for improvement of nonlinear calculation models of span reinforced concrete constructions taking into account the impact of these loads, and also there will be the development of engineering calculation techniques of their strength, crack resistance and deformability.

DOI: 10.22227/1997-0935.2015.9.36-50

References
  1. Babich E.M. Vliyanie dlitel'nykh i malotsiklovykh nagruzok na mekhanicheskie svoystva betonov i rabotu zhelezobetonnykh elementov [Influence of Long-Term and Low-Cycle Loads on the Mechanical Properties of Concrete and on the Work of Reinforced Concrete Elements]. Rovno, 1995, 386 p. (In Ukrainian)
  2. Albu E.I., Kitsak A.K., Semina Yu.A., Gaydarzhi A.P., Grebenyuk A.V., Sashin V.O., Karpyuk V.M. Metodika eksperimental'nykh issledovaniy napryazhenno-deformirovannogo sostoyaniya priopornykh uchastkov zhelezobetonnykh balok pri malotsiklovom nagruzhenii [Technique of Experimental Studies of Stress-Strain State of Reinforced Concrete Beams under Low-Cycle Loading in the Supporting Areas]. Stroitel'stvo — kak faktor formirovaniya komfortnoy sredy zhiznedeyatel'nosti: sbornik materialov V Respublikanskoy nauchno-tekhnicheskoy konferentsii (28 noyabrya 2013 g.) [Construction as a Factor of Comfortable Living Environment Formation: Collection of the Materials of the 5th Republican Scientific and Technical Conference]. Bendery, 2014. Рр. 3—10. (In Russian)
  3. Zalesov A.S., Klimov Yu.A. Prochnost' zhelezobetonnykh konstruktsiy pri deystvii poperechnykh sil [The Strength of Reinforced Concrete Structures under the Action of Shear Forces]. Kiev, Budіvel'nik Publ., 1989, 104 p. (In Russian)
  4. Korneychuk A.I., Masyuk G.Kh. Eksperimental'nye issledovaniya nesushchey sposobnosti naklonnykh secheniy izgibaemykh zhelezobetonnykh elementov pri deystvii malotsiklovykh znakoperemennykh nagruzok [Experimental Study of the Bearing Capacity of Inclined Cross Sections of Bending Reinforced Concrete Elements under the Action of Low-Cycle Alternating Loads]. Resursoekonomnye materialy, konstruktsii zdaniya i sooruzheniya : sbornik nauchnykh trudov [Resource Saving Materials, Buildings Constructions and Structures: Collection of Scientific Papers]. Rovno, 2008, no. 16, part 2, pp. 217—222. (In Ukrainian)
  5. Dorofeev V.S., Karpyuk V.M., Yaroshevich N.M. Prochnost' i treshchinostoykost' izgibaemykh zhelezobetonnykh elementov [Strength and Crack Resistance of Bending Reinforced Concrete Elements]. Vestnik OGASA [Bulletin of the Odessa State Academy of Building and Architecture]. 2008, no. 28, pp. 149—158. (In Russian)
  6. Karpyuk V.M. Raschetnye modeli silovogo soprotivleniya progonnykh zhelezobetonnykh konstruktsiy v obshchem sluchae napryazhennogo sostoyaniya [Calculation Models of Power Resistance of Girder Reinforced Concrete Constructions in General Case of Stress State]. Odessa, OGASA Publ., 2014, 352 p. (In Ukrainian)
  7. Gomon P.S. Rabota zhelezobetonnykh balok tavrovogo secheniya pri deystvii povtornogo nagruzheniya [Work of T-section Reinforced Concrete Beams under Repeated Loading]. Novye materialy, oborudovanie i tekhnologii v promyshlennosti : materialy Mezhdunarodnoy konferentsii molodykh uchenykh [New Materials, Equipment and Technologies in the Industry: Proceedings of the International Conference of Young Scientists]. Mogilev, 2009, p. 90. (In Ukrainian)
  8. Zarechanskiy O.O. Issledovanie szhato-izognutykh elementov pri povtornom deystvii poperechnoy sily vysokikh urovney [Research of Compressed-Bent Elements by Repeated Transverse Force of High Levels]. Resursoekonomnye materialy, konstruktsii zdaniya i sooruzheniya : sbornik nauchnykh trudov [Resource Saving Materials, Buildings Constructions and Structures: Collection of Scientific Papers]. Rovno, 2005, no. 13, pp. 129—135. (In Ukrainian)
  9. Zinchuk N.S. Eksperimental'nye issledovaniya napryazhenno-deformirovannogo sostoyaniya zhelezobetonnykh izgibaemykh elementov pri odnokratnom i malotsiklovom nagruzheniyakh v usloviyakh povyshennykh temperatur [Experimental Study of Stress-Strain State of Reinforced Concrete Bent Elements under the Single and Low-Cycle Loading at Elevated Temperatures]. Resursoekonomnye materialy, konstruktsii zdaniya i sooruzheniya : sbornik nauchnykh trudov [Resource Saving Materials, Buildings Constructions and Structures: Collection of Scientific Papers]. Rovno, 2004, no. 11, pp. 164—166. (In Ukrainian)
  10. Karavan V.V., Masyuk G.Kh. Rezul'taty eksperimental'nykh issledovaniy treshchinostoykosti i deformativnosti izgibaemykh zhelezobetonnykh elementov pri vozdeystvii malotsiklovykh znakoperemennykh nagruzok [The Experimental Results of Crack Resistance and Deformability Bending Reinforced Concrete Elements When Exposed to Low-Cycle Alternating Loads]. Stalezhelezobetonnye konstruktsii. Issledovanie, proektirovanie, stroitel'stvo, ekspluatatsiya : sbornik nauchnykh statey [Composite Structures. Research, Design, Construction, Operation: Collection of Scientific Papers]. Krivoy Rog, 2002, no. 5, pp. 168—172. (In Ukrainian)
  11. Grigorchuk A.B., Masyuk G.Kh. Prochnost' i deformativnost' zhelezobetonnykh elementov, kotorye podvergayutsya vozdeystviyu znakoperemennogo nagruzheniya [Strength and Deformability of Reinforced Concrete Elements That are Exposed to Action of Alternating Loading]. Sbornik materialov konferentsii Ch. 1. Stroitel'stvo [Collection of Conference Materials. Part 1 Building]. L'vov, 2001, pp. 29—34. (In Ukrainian)
  12. Karpenko N.I., Karpenko S.N. O postroenii bolee sovershennoy modeli deformirovaniya zhelezobetona s treshchinami pri ploskom napryazhennom sostoyanii [On Construction of a More Perfect Model of Deformation of Cracked Reinforced Concrete under Plane Stress State]. Beton i zhelezobeton — puti razvitiya : materialy ІІ Vserossiyskoy Mezhdunarodnoy konferentsii po betonu i zhelezobetonu (05.09—09.09.2002) [Concrete and Reinforced Concrete — Ways of Development: Materials of the 2nd All-Russian International Conference on Concrete and Reinforced Concrete]. Moscow, 2005, pp. 431—444. (In Russian)
  13. Zalesov A.S., Mukhamediev T.A., Chistyakov E.A. Raschet prochnosti zhelezobetonnykh konstruktsiy pri razlichnykh silovykh vozdeystviyakh po novym normativnym dokumentam [Calculation of the Strength of Concrete Structures under Different Force Actions on New Regulations]. Beton i zhelezobeton [Concrete and Reinforced Concrete]. 2002, no. 3, pp. 10—13. (In Russian)
  14. Babich E.M., Gomon P.S., Filipchuk S.V. Rabota i raschet nesushchey sposobnosti izgibaemykh zhelezobetonnykh elementov tavrovogo profilya pri vozdeystvii povtornykh nagruzok [Work and Calculation of the Bearing Capacity of Bending T-Sections Reinforced Concrete Elements under the Influence of Repeated Loads]. Rovno, NUVGP Publ., 2012, 108 p. (In Ukrainian)
  15. Masyuk G.Kh., Korneychuk A.I. Napryazhenno-deformirovannoe sostoyanie naklonnykh secheniy izgibaemykh zhelezobetonnykh elementov, kotorye podvergayutsya vozdeystviyu malotsiklovykh znakoperemennykh nagruzok [Stress-strain State of Incline Sections of Bending Concrete Elements That are Exposed to the Action of Low-Cycle Alternating Loads]. Resursoekonomnye materialy, konstruktsii zdaniya i sooruzheniya : sbornik nauchnykh trudov [Resource Saving Materials, Buildings Constructions and Structures: Collection of Scientific Papers]. Rovno, NUVGP Publ., 2008, no. 17, pp. 204—211. (In Ukrainian)
  16. Mel'nik S.V., Borisyuk O.P., Kononchuk O.P., Petrishin V.M. Issledovanie raboty usilennykh zhelezobetonnykh balok pri deystvii malotsiklovykh nagruzheniy [Research of Reinforced Concrete Beams Work under the Action of Low-Cycle Loading]. Resursoekonomnye materialy, konstruktsii zdaniya i sooruzheniya : sbornik nauchnykh trudov [Resource Saving Materials, Buildings Constructions and Structures: Collection of Scientific Papers]. Rovno, 2008, no. 17, pp. 404—410. (In Ukrainian)
  17. Koval'chik Ya.I., Koval' P.M. Issledovanie treshchinostoykosti predvaritel'no napryazhennykh zhelezobetonnykh balok pri vozdeystvii malotsiklovykh nagruzheniy [Investigation of Crack Resistance of Prestressed Concrete Beams under the Influence of Low-Cycle Loading]. Nauchno-prikladnye aspekty avtomobil'noy i transportno-dorozhnoy otrasley : Nauchnye zametki [Scientific and Practical Aspects of the Automobile and Transport Industries: Scientific Notes]. Lutsk, 2014, no. 45, pp. 282—287. (In Ukrainian)
  18. Dovbenko V.S. Issledovanie raboty zhelezobetonnykh balok, usilennykh polimernoy kompozitsiey pri vozdeystvii malotsiklovykh nagruzok [Research of Reinforced Concrete Beams Work Reinforced with Polymer Composition When Exposed to Low-Cycle Loads]. Resursoekonomnye materialy, konstruktsii zdaniya i sooruzheniya : sbornik nauchnykh trudov [Resource Saving Materials, Buildings Constructions and Structures: Collection of Scientific Papers]. Rovno, 2011, no. 22, pp. 787—794. (In Ukrainian)
  19. Babich V.E. Osobennosti raboty nerazreznykh zhelezobetonnykh balok pri povtornykh nagruzkakh [Features of Continuous Reinforced Concrete Beams Work under the Repeated Loads]. Stroitel'nye konstruktsii : sbornik nauchnykh trudov [Building Structures: Collection of Scientific Works]. Kiev, 2003, no. 58, pp. 8—13. (In Ukrainian)
  20. Drobyshinets S.Ya., Babich E.M. Rabota stalefibrobetonnykh i stalefibrozhelezobetonnykh balok pri odnokratnom i povtornom nagruzheniyakh [Work of Fiber Concrete and Fiber Reinforced Concrete Beams under the Action of Single and Repeated Loadings]. Stalezhelezobetonnye konstruktsii. Issledovanie, proektirovanie, stroitel'stvo, ekspluatatsiya : sbornik nauchnykh statey [Composite Structures. Research, Design, Construction, Operation: Collection of Scientific Papers]. Krivoy Rog, 2004, no. 6, pp. 65—71. (In Ukrainian)
  21. Valovoy M.A. Prochnost', deformativnost' i treshchinostoykost' zhelezobetonnykh balok pri vozdeystvii povtornykh nagruzok [The Strength, Crack Resistance and Deformability of Concrete Beams under the Influence of Repeated Loads]. Stalezhelezobetonnye konstruktsii. Issledovanie, proektirovanie, stroitel'stvo, ekspluatatsiya : sbornik nauchnykh statey [Composite Structures. Research, Design, Construction, Operation: Collection of Scientific Papers]. Krivoy Rog, 2008, no. 8, pp. 45—48. (In Ukrainian)

Download

BEDDINGS AND FOUNDATIONS, SUBTERRANEAN STRUCTURES. SOIL MECHANICS

BEARING CAPACITY OF A HORIZONTALLY LOADED SINGLE PILE SUPPORT WITH SLEEPERS

  • Buslov Anatoliy Semenovich - Moscow State University of Mechanical Engineering (UMech) Doctor of Technical Science, Professor, Advisor, Russian Academy of Architecture and Construction Sciences, Department of Industrial and Civil Engineering, Moscow State University of Mechanical Engineering (UMech), 22 Pavla Korchagina Str., Moscow, 129626, Russian Federation.
  • Mokhovikov Evgeniy Sergeevich - Ryazan Institute (branch) of Moscow State University of Mechanical Engineering (UMech) senior lecturer, Department of Architecture and Urban Planning, Ryazan Institute (branch) of Moscow State University of Mechanical Engineering (UMech), 26/53 Pravo-lybedskaya str., Ryazan, 390000, Russian Federation.

Pages 51-60

The supports of a overhead wiring used in transport take up substantial loads both because of wires and constructions holding them and wind, dynamic and other extraordinary impacts. In case of using single-member piles a question about their stability appears. For this reason different sleepers constructions are used. In order to improve the bearing capacity of horizontally loaded single pile supports of the contact systems used in urban, road and rail transport, power lines, etc.., it is recommended to use sleepers as horizontally laid under the ground in the depth of support beams. The calculation methods for different support sleepers of different lengths and cross sections are not well investigated. The proposed calculation method allows determining the carrying capacity of horizontally loaded bearings with soil pieces of different structural dimensions and their location in the soil, which allows choosing the best option for cost and material consumption. The calculations offered by the authors prove the efficiency of sleepers use in order to increase the bearing capacity of horizontally loaded piles and the possibility to chose their size.

DOI: 10.22227/1997-0935.2015.9.51-60

References
  1. Goroshkov Yu.I., Bondarev N.A. Kontaktnaya set’ [Overhead Wiring]. 2nd edition, revised. Moscow, Transport Publ., 1981, 400 p. (In Russian)
  2. Glushkov G.I. Raschet sooruzheniy, zaglublennykh v grunt [Calculation of Structures Buried in the Ground]. Moscow, Stroyizdat Publ., 1977, 295 p. (In Russian)
  3. Gudushauri I.I., Dzhioev L.N. Issledovanie fundamentov opor liniy elektroperedachi v neskal’nykh gruntakh [Investigation of Pile Foundations of Power Lines in Soil]. Moscow, Leningrad, Gosenergoizdat Publ., 1963, pp. 50—68. (In Russian)
  4. Buslov A.S., Bakulina A.A. Vliyanie kol’tsevogo ushireniya na nesushchuyu sposobnost’ gorizontal’no nagruzhennoy monosvaynoy opory [Effect of a Round Cap on the Bearing Capacity of a Laterally Loaded Pile]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering], 2012, no. 4, pp. 63—68. (In Russian)
  5. Bakulina A.A. Issledovanie nesushchey sposobnosti odnostoechnykh opor s ukrepleniem verkhnego sloya grunta pri gorizontal’nykh nagruzkakh [Investigation of the Bearing Capacity of One Member Supports with Strengthening the Upper Soil Layer at Horisontal Loadings]. Aktual’nye problemy razvitiya nano- mikro- i optoelektroniki : trudy Vserossiyskoy konferentsii s elementami nauchnoy shkoly dlya molodezhi [Current Development Problems of Nano, Micro and Optoelectronics : the Works of All-Russian Conference with Elements of Scientific School for the Youth]. Ryazan, RITs RGRTU Publ., 2010, pp. 171—174. (In Russian)
  6. Buslov A.S. Rabota svay na gorizontal’nuyu nagruzku za predelami uprugosti v svyaznykh gruntakh [Operation of Piles in Case of Horizontal Loads beyond Elasticity in Cohesive Soils]. Tashkent, FAN Publ., 1979, 106 p. (In Russian)
  7. Berezantsev V.G. Raschet odinochnykh svay i svaynykh kustov na deystvie gorizontal’nykh sil [Calculation of Horizontal Impacts on Single Piles and Pile Groups]. Moscow, Voenizdat Publ., 1946, 51 p. (In Russian)
  8. Kobrinets V.M., Barchukova T.N. Metod rascheta po deformatsiyam gruntovogo osnovaniya gorizontal’no nagruzhennogo fundamenta iz korotkoy svai-kolonny [Calculation Method for the Deformations of Horizontally Loaded Soil Foundation of a Short Pile-Column]. Budivel’ni konstruktsii : zb. nauk. prats’ [Building Structures : Collection of Scientific Articles]. Kiev, DP NDIBK Publ., 2008, no. 71, book 1, pp. 463—469. (In Russian)
  9. Laletin N.V. Raschet svaynykh ankerov na deystvie gorizontal’noy sily [Calculation of the Horizontal Impact on Pile Anchors]. Sbornik trudov Voronezhskogo inzhenerno-stroitel’nogo instituta [Collection of Papers of the Voronezh Engineering and Construction Institute]. Voronezh, 1964, no. 10, vol. 1, pp. 119—133. (In Russian)
  10. Broms B.B. Lateral Resistance of Piles in Cohesive Soils. Journal of the Soil Mechanics and Foundations Division. Proceedings of the American Society of Civil Engineers. 1964, vol. 90, no. 2, pp. 27—63.
  11. Angel’skiy D.V. K raschetu svaynykh osnovaniy na gorizontal’nuyu nagruzku [To the Calculation of Pile Foundations in Case of Horizontal Loadings]. Trudy MADI [Works of Moscow Automobile and Road Construction University]. Moscow, Gostransizdat Publ., 1937, no. 7, pp. 41—49. (In Russian)
  12. Mironov B.B. K raschetu odinochnykh svay i vysokikh svaynykh rostverkov na deystvie gorizontal’nykh sil [To the Calculation of Single Piles and High Pile Foundation Frames in Case of Horizontal Impacts]. Trudy LIIZhTa [Works of Leningrad Institute of Engineers of Railway Transport]. Leningrad, 1963, no. 207, pp. 112—156. (In Russian)
  13. Poulos H.G. The Behavior of Laterally Loaded Piles. Part I: Single Piles. ASCE Journal of the Soil Mechanics and Foundation Engineering Division. 1971, vol. 97, no. 5, pp. 711—731.
  14. Snitko N.K., Chernov V.K. Deformatsionnyy raschet i ustoychivost’ szhato-izognutykh svay [Deformation Calculation and Stability of Beam Piles]. Mekhanika gruntov, osnovaniya i fundamenty : sbornik trudov LISI [Soil Mechanics, Bases and Foundations : Collection of Works of Leningrad Engineering and Construction Institute]. Leningrad, 1976, no. 1 (116), pp. 8—14. (In Russian)
  15. Annenkov A.P. O vliyanii ugla naklona svai na nesushchuyu sposobnost’ fundamentov [On the Influence of Slope Angle of a Pile on the Bearing Capacity of Foundations]. Stroitel’nye konstruktsii, osnovaniya i fundamenty : Mezhvuzovskiy sbornik nauchnykh trudov [Building Structures, Bases and Foundations : Interuniversity Collection of Scientific Works]. Perm’, 1976, no. 179, pp. 36—38. (In Russian)
  16. Dobrovol’skiy K.I. Ispytanie svay i gruntov probnoy nagruzkoy v svyazi s raschetom nizkikh svaynykh rostverkov [Test of Piles and Soils with a Test Load while Calculating Low Pile Foundation Frames]. Tiflis : Zakavkazskiy institut inzhenerov putey soobshcheniya Publ., 1935, 198 p. (In Russian)
  17. Buslov A.S., Mokhovikov E.S. Vliyanie lezhney na peremeshcheniya gorizontal’no nagruzhennykh fundamentov opor kontaktnoy seti [Influence of Solepieces on the Displacements of Horizontally Loaded Support Bases of a Contact System]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2014, no. 8, pp. 44—53. (In Russian)

Download

RESULTS OF COMPRESSION TESTING ON PSEUDO-COHESIVE SOIL

  • Ofrikhter Vadim Grigor’evich - Perm National Research Polytechnic University (PNRPU) Candidate of Technical Sciences, Associate Professor, Department of Construction Production and Geotechnics, Perm National Research Polytechnic University (PNRPU), 29 Komsomolskiy Prospekt, Perm, 614990, Russian Federation.
  • Ofrikhter Yan Vadimovich - Perm National Research Polytechnic University (PNRPU) student, Construction Department, Perm National Research Polytechnic University (PNRPU), 29 Komsomolskiy Prospekt, Perm, 614990, Russian Federation.

Pages 61-72

Natural non-treated sand reinforced with randomly oriented short polypropylene fibers of 12 mm in length was tested to determine creep characteristics. This study is a part of the research aimed at encouraging fibrosand (FRS) application in subsoils, embankments and retaining wall constructions. Fiber content was accounted for 0.93 %. Twin specimens were put to creep tests (1-D compression) using the two curve method. The test results were analyzed and checked with the use of ageing, hardening and hereditary creep theories. On the basis of approximation of the test results the creep deformation equation at constant stress for tested fibrosand was obtained. The assessment of fibrosand secondary compression was carried out by the FORE method. As a result, the value of the void ratio by the end of the secondary compression had been eu=0.7041. For determination of the beginning of the secondary compression the rate equation was superimposed on the empirical curve. The point of the graph divergence is the beginning of the secondary compression process. The secondary compression had begun by the time moment being equal to 9360 min. The void ratio by the beginning of the secondary compression had amounted to 0.70574. Fibrosand is a specific type of improved soil relating to so-called pseudo-cohesive soil. This type of soil is characterized by cohesion like cohesive soils, but, at the same time, by the filtration coefficient of about 1 m per day like non-cohesive soils. Pseudo-cohesive soil testing helps to understand the distinctive features of the stress-strain state of this kind of materials. Municipal solid waste also relates to them.

DOI: 10.22227/1997-0935.2015.9.61-72

References
  1. Meschyan S.R. Eksperimental’naya reologiya glinistykh gruntov [Experimental Rheology of Clayey Soils]. Moscow, Nedra Publ., 1985, 342 p. (In Russian)
  2. Meschyan S.R. Experimental Rheology of Clayey Soils. Leiden, Netherlands, CRC Press, 1995, 460 p.
  3. Vyalov S.S. Reologicheskie osnovy mekhaniki gruntov [Rheological Bases of Soil Mechanics]. Moscow, Vysshaya shkola Publ., 1978, 447 p. (In Russian)
  4. Maslov N.N. Fiziko-tekhnicheskaya teoriya polzuchesti glinistykh gruntov v praktike stroitel’stva [Physical and Technical Theory of Clayey Soils Creep in the Construction Practice]. Moscow, Stroyizdat Publ., 1984, 176 p. (In Russian)
  5. Ter-Martirosyan Z.G. Reologicheskie svoystva gruntov i raschety osnovaniy sooruzheniy [Rheological Features of Soils and Calculation of Building Foundations]. Moscow, Stroyizdat Publ., 1990, 200 p. (In Russian)
  6. Ter-Martirosyan Z.G., Ter-Martirosyan A.Z., Sobolev E.S. Polzuchest’ i vibropolzuchest’ gruntov [Creep and Vibrocreep of Soils]. Perspektivnye napravleniya razvitiya teorii i praktiki v reologii i mekhanike gruntov : trudy XIV Mezhdunarodnogo simpoziuma po reologii gruntov [Promising Directions of Theory and Practice Development in Rheology and Soil Mechanics : Works of the 14th International Symposium on Soil Rheology]. Kazan’, KGASU Publ., 2014, pp. 8—23. (In Russian)
  7. Murthy V.N.S. Geotechnical Engineering: Principles and Practices of Soil Mechanics and Foundation Engineering. New York, Marcel Dekker, Inc., 2003, 1029 p.
  8. Mesri G. Primary and Secondary Compression. Soil Behavior and Soft Ground Construction (ASCE GSP). 2003, vol. 119, pp. 122—166.
  9. Havel F. Creep in Soft Soils. Doctoral Thesis for the Degree of Doctor Engineer. Trondheim, Norway, NGI, 2004. Available at: http://www.diva-portal.org/smash/get/diva2:124915/FULLTEXT01.pdf. Date of access: 14.05.2015.
  10. Fatahi B., Le T.M., Le M.Q., Khabbaz H. Soil Creep Effects on Ground Lateral Deformation and Pore Water Pressure under Embankments. Geomechanics and Geoengineering. 2013, vol. 8, no. 2, pp. 107—124. DOI: http://dx.doi.org/10.1080/17486025.2012.727037.
  11. Degago S.A., Grimstad G., Jostad H.P., Nordal S. Misconception about Experimental Substantiation of Creep Hypothesis A. Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering. Paris, Presses des Ponts, 2013, pp. 215—218.
  12. Nakai T., Shahin H.M., Kyokawa H. Rational Expression of Time-Dependent Behavior from Normally Consolidated Soil to Naturally Deposited Soil. Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering. Paris, Presses des Ponts, 2013, pp. 255—258.
  13. Ye Y., Zhang Q., Cai D., Chen F., Yao J., Wang L. Study of New Method of Accelerated Clay Creep Characteristic Tests. Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering. Paris, Presses des Ponts, 2013, pp. 461—464.
  14. Grimstad G., Asrafi M.A.H., Degago S.A., Emdal A., Nordal S. Discussion of Soil creep Effects on Ground Lateral Deformation and Pore Water Pressure under Embankments. Geomechanics and Geoengineering. 2015. DOI: http://dx.doi.org/10.1080/17486025.2014.985338. Available at: http://www.tandfonline.com/doi/abs/10.1080/17486025.2014.985338?journalCode=tgeo20#.VfAc9GcVhpF/. Date of access: 15.04.2015.
  15. Meschyan S.R. Metodika opredeleniya kharakteristik polzuchesti skeleta glinistykh gruntov primenitel’no k usloviyam odnomernogo uplotneniya [Methods of Estimating the Creep Characteristics of Clayey Soil Skeleton in Relation to One-Dimension Compaction Conditions]. Izvestiya akademii nauk Armyanskoy SSR. Seriya: Fiziko-matematicheskie nauki [News of the Academy of Sciences of the Armenian Soviet Socialist Republic. Series: Physical and Mathematical Sciences]. 1964, vol. 17, no. 3, pp. 119—131. (In Russian)
  16. Meschyan S.R. Mekhanicheskie svoystva gruntov i laboratornye metody ikh opredeleniya [Mechanical Features of Soils and Laboratory Methods of Their Estimation]. Moscow, Nedra Publ., 1974, 192 p. (In Russian)
  17. Meschyan S.R. Nachal’naya i dlitel’naya prochnost’ glinistykh gruntov [Initial and Creep-Rupture Strength of Clayey Soils]. Moscow, Nedra Publ., 1978, 207 p. (In Russian)
  18. Handy R.L. First-order Rate Equations in Geotechnical Engineering. Journal of Geotechnical and Geoenvironmental Engineering. 2002, vol. 128, no. 5, pp. 416—425.
  19. Ofrikhter V.G., Ofrikhter Ya.V. Otsenka mekhanicheskoy polzuchesti fibropeska po rezul’tatam kompressionnykh ispytaniy [Estimation of the Mechanical Creep of Fibrosand according to the Results of Compression Tests]. Izvestiya KGASU [News of the Kazan State University of Architecture and Engineering]. 2014, no. 4 (30), pp. 222—229. (In Russian)
  20. Casagrande A., Fadum R.E. Notes on Soil Testing for Engineering Purposes. Harvard Soil Mechanics Series, 1940, vol. 8, 74 p.
  21. Taylor D.W. Fundamentals of Soil Mechanics. New York, John Wiley & Sons Inc., 1948, 700 p.

Download

INTERACTION OF A LONG PILE OF FINITE STIFFNESS WITH SURROUNDING SOIL AND FOUNDATION CAP

  • Ter-Martirosyan Armen Zavenovich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Sciences, Professor of the Department of Soil Mechanics and Geotechnics, Head of Research and Education Center «Geotechnics», Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
  • Ter-Martirosyan Zaven Grigor’evich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Sciences, Professor, Department of Soil Mechanics and Geotechnics, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
  • Trinh Tuan Viet - Moscow State University of Civil Engineering (National Research University) (MGSU) postgraduate student, Department of Soil Mechanics, Bases and Foundations, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.

Pages 72-83

The article presents the formulation and analytical solution to a quantification of stress strain state of a two-layer soil cylinder enclosing a long pile, interacting with the cap. The solution of the problem is considered for two cases: with and without account for the settlement of the heel and the underlying soil. In the first case, the article is offering equations for determining the stresses of pile’s body and the surrounding soil according to their hardness and the ratio of radiuses of the pile and the surrounding soil cylinder, as well as formulating for determining equivalent deformation modulus of the system “cap-pile-surrounding soil” (the system). Assessing the carrying capacity of the soil under pile’s heel is of great necessity. In the second case, the article is solving a second-order differential equation. We gave the formulas for determining the stresses of the pile at its top and heel, as well as the variation of stresses along the pile’s body. The article is also formulating for determining the settlement of the foundation cap and equivalent deformation modulus of the system. It is shown that, pushing the pile into underlying layer results in the reducing of equivalent modulus of the system.

DOI: 10.22227/1997-0935.2015.9.72-83

References
  1. Nadai A. Theory of Flow and Fracture of Solids. Vol. 1. New York, McGraw-Hill, 1950, 572 p.
  2. Florin V.A. Osnovy mekhanicheskikh gruntov [Fundamentals of Mechanical Soil]. Vol. 1. Moscow, Gosstroyizdat Publ., 1959, 356 p. (In Russian)
  3. Telichenko V.I., Ter-Martirosyan Z.G. Vzaimodeystvie svai bol’shoy dliny s nelineyno deformiruemym massivom grunta [Interaction between Long Piles and the Soil Body Exposed to NonLinear Deformations]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2012, no. 4, pp. 22—27. (In Russian)
  4. Ter-Martirosyan Z.G., Nguen Zang Nam. Vzaimodeystvie svay bol’shoy dliny s neodnorodnym massivom s uchetom nelineynykh i reologicheskikh svoystv gruntov [Interaction between Long Piles and a Heterogeneous Massif with Account for Non-linear and Rheological Properties of Soils]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2008, no. 2, pp. 3—14. (In Russian)
  5. Ter-Martirosyan Z.G., Trinh Tuan Viet. Vzaimodeystvie odinochnoy dlinoy svai s osnovaniem s uchetom szhimaemosti stvola svai [Interaction between a Single Long Pile and the Bedding with Account for Compressibility of the Pile Shaft]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2011, no. 8, pp. 104—110. (In Russian)
  6. Mattes N.S., Poulos H.G. Settlement of Single Compressible Pile. Journal SoilMech. Foundation ASCE. 1969, vol. 95, no. 1, pp. 189—208.
  7. Ter-Martirosyan Z.G. Mekhanika gruntov [Soil Mechanics]. Moscow, ASV Publ., 2009, 550 p. (In Russian)
  8. Ter-Martirosyan A.Z., Ter-Martirosyan Z.G., Trinh Tuan Viet, Luzin I.N. Osadka i nesushchaya sposobnost’ dlinnoy svai [Settlement and Bearing Capacity of Long Pile]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2015, no. 5, pp. 52—60. (In Russian)
  9. Coyle H.M., Reese L.C. Load Transfer for Axially Loaded Piles in Clay. Journal Soil Mechanics and Foundation Division, ASCE. March1996, vol. 92, no. 2, pp. 1—26.
  10. Bartolomey A.A., Omel’chak I.M., Yushkov B.S. Prognoz osadok svaynykh fundamentov [Forecasting the Settlement of Pile Foundation]. Moscow, Stroyizdat Publ., 1994, 384 p. (In Russian)
  11. Randolph M.F., Wroth C.P. Analysis of Deformation of Vertically Loaded Piles. Journal of the Geotechnical Engineering Division, American Society of Civil Engineers. 1978, vol. 104, no. 12, pp. 1465—1488.
  12. Van Impe W.F. Deformations of Deep Foundations. Proc. 10th Eur. Conf. SM & Found. Eng., Florence. 1991, vol. 3, pp. 1031—1062.
  13. Prakash S., Sharma H.D. Pile Foundation in Engineering Practice. John Wiley & Sons, 1990, 768 p.
  14. Malyshev M.V., Nikitina N.S. Raschet osadok fundamentov pri nelineynoy zavisimosti mezhdu napryazheniyami i deformatsiyami v gruntakh [Calculation of the Base Settlements in Non-Linear Relation between Stresses and Displacements of Soil]. Osnovaniya, fundamenty i mekhanika gruntov [Bases, Foundations and Soil Mechanics]. 1982, no. 2, pp. 21—25. (In Russian)
  15. Hansen J.B. Revised and Extended Formula for Bearing Capacity. Bulletin 28. Danish Geotechnical Institute, Copenhagen, 1970, pp. 5—11.
  16. Joseph E.B. Foundation Analysis and Design. McGraw-Hill, Inc, 1997, 1240 p.
  17. Ter-Martirosyan Z.G., Strunin P.V., Trinh Tuan Viet. Szhimaemost’ materiala svai pri opredelenii osadki v svaynom fundamente [The Influence of the Compressibility of Pile Material in Determining the Settlement of Pile Foundation]. Zhilishchnoe stroitel’stvo [Housing Construction]. 2012, no. 10, pp. 13—15. (In Russian)
  18. Vijayvergiya V.N. Load-Movement Characteristics of Piles. Proc. Port 77 conference, American Society of Civil Engineers, Long Beach, CA, March 1977, pp. 269—284.
  19. Seed H.B., Reese L.C. The Action of Soft Clay along Friction Piles. Trans., ASCE. 1957, vol. 122, no. 1, pp. 731—754.
  20. Booker J., Poulos H.G. Analysis of Creep Settlement of Pile Foundation. Journal Geotechnical Engineering division. ASCE. 1976, vol. 102, no. 1, pp. 1—14.
  21. Poulos H.G., Davis E.H. Pile Foundation Analysis and Design. New York, John Wiley and Sons, 1980, 397 p.

Download

Safety of building systems. Ecological problems of construction projects. Geoecology Tazina N.G., Darchiya V.I., Chernyshev S.N. Erosion

Erosion protection Phytoreinforcement of SCARP steep slopes of the holy virgin’s DITCH

  • Tazina Natal'ya Georgievna - Russian State Agrarian University - Timiryazev Moscow Agricultural Academy (RSAU-MAA named after K.A. Timiryazev) Candidate of Agricultural Sciences, Associate Professor, Department of Crop Research and Grassland Ecosystems, Russian State Agrarian University - Timiryazev Moscow Agricultural Academy (RSAU-MAA named after K.A. Timiryazev), 127550, 49 Timiryazevskaya str., Moscow, Russian Federation.
  • Darchiya Valentina Ivanovna - Moscow State University of Civil Engineering (National Research University) (MGSU) Junior research worker, Research Institute of Construction Materials and Technologies, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
  • Chernyshev Sergey Nikolaevich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Geological and Mineralogical Sciences, Professor, Department of Engineering Geology and Geoecology, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.

Pages 83-94

Erosion protection landscaping embedment of steep subsoil slopes is a time-sensitive issue of road construction and planning of recreational area that are often fit on a challenging picturesque terrain unsuitable for site development. The article provides the results of a 4-year experiment on landscaping and plant fixing of up to 4.5 m soil slopes with 1:1 and 2:1 grades; the experiment was carried out by the MGSU on the territory of a convent in the south of the Nizhniy Novgorod region. The site has slopes oriented towards all cardinals. At some places the slopes are bedimmed by trees. All these factors create a wide range of geo-ecological conditions for lawns. All the slopes are fixed with geo-fibrefill grids; slopes with 2:1 grade are strengthened by auxiliary grids made of reinforced metal bars, anchors and braces on the bottom of the Holy Moat. The paper recommends composition of grass plants as well as techniques to build up lawns suitable for various micro-climate conditions. It also advises the structure of multi-tier plant entity. The suggested methods are tested during a 3-year maintenance of slopes built for constant use.

DOI: 10.22227/1997-0935.2015.9.83-94

References
  1. Volodina, L.A., Khaydukov K.P. Vliyanie agrokhimicheskikh pokazateley pochvy na ustoychivoe razvitie travyanogo pokrova na sklonakh muzeya-zapovednika «Kolomenskoe» [The Influence of Agrochemical Parameters of Soil on the Sustainable Development of Grass Cover on the Slopes of Reserve Museum “Kolomenskoye”]. Nauchnoe obozrenie [Scientific Review]. 2014, no. 5, pp. 47—52. (In Russian)
  2. Uren H.V., Dzidic P.L., Bishop B.J. Exploring Social and Cultural Norms to Promote Ecologically Sensitive Residential Garden Design. Landscape and Urban Planning. May 01, 2015, vol. 137, pp. 76—84. DOI: http://dx.doi.org/10.1016/j.landurbplan.2014.12.008.
  3. Burt J.W. Developing Restoration Planting Mixes for Active Ski Slopes: A Multi-Site Reference Community Approach. Environmental Management. 2012, vol. 49, no. 3, pp. 636—648. DOI: http://dx.doi.org/10.1007/s00267-011-9797-y.
  4. Volodina L.A., Chernyshev S.N. Metodika opredeleniya skorosti ploskostnogo smyva dlya proektirovaniya sooruzheniy na sklonakh [Method of Determining the Speed of Washout for Design of Structures on Slopes]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2014, no. 8, pp. 54—61. (In Russian)
  5. Chernyshev S.N., Volodina L.A. Zavisimost' skorosti ploskostnoy erozii ot naklona poverkhnosti sklona [The Dependence of Sheet Erosion Velocity on Slope Angle]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2014, no. 8, pp. 157—164. (In Russian)
  6. Goldberg S. Of Erosion, Soils, and Seeds: The Right Mix of Vegetation Can Make All the Difference in Stabilization. Erosion Control. 2014, vol. 21, no. 1, pp. 16—23.
  7. Fan C.-C., Lai Y.-F. Influence of the Spatial Layout of Vegetation on the Stability of Slopes. Plant and Soil. 2014, vol. 377, no. 1—2, pp. 83—95. DOI: http://dx.doi.org/10.1007/s11104-012-1569-9.
  8. Verrascina T. Surface Protection of Slopes by Grass Covering Techniques. 2nd World Landslide Forum, WLF 2011, Rome; Italy. Landslide Science and Practice: Risk Assessment, Management and Mitigation. 2013, vol. 6, pp. 631—637. DOI: http://dx.doi.org/10.1007/978-3-642-31319-6_80.
  9. Ma K.-C., Lin Y.-J., Maa S.-Y., Tan Y.-C. Evaluation of the Effect of Hysteretic Flow and Root System on Shallow Landslide. Soil Research. 2012, vol. 50, no. 7, pp. 616—624. DOI: http://dx.doi.org/10.1071/SR12104.
  10. Shcherbina E.V. Geosinteticheskie materialy v stroitel'stve [Geotechnical Materials in the Construction]. Moscow, ASV Publ., 2004, 112 p. (In Russian)
  11. Chang I., Shin Y., Cho G.-C. Optimum Thickness Decision of Biopolymer Treated Soil for Slope Protection on the Soil Slope. Computer Methods and Recent Advances in Geomechanics : Proceedings of the 14th Int. Conference of International Association for Computer Methods and Recent Advances in Geomechanics, IACMAG 2014. Kyoto, Japan, 2015, pp. 1643—1648.
  12. Chernyshev S.N., Shcherbina E.V. Svyataya Bogorodichnaya Kanavka: prirodnye usloviya i tekhnicheskie resheniya po vossozdaniyu [The Holy Mother of God Moat: Natural Conditions and Technical Solutions for Reconstruction]. Prirodnye usloviya stroitel'stva i sokhraneniya khramov Pravoslavnoy Rusi : trudy 2-go Mezhdunarodnogo nauchno-prakticheskogo simpoziuma [Proceedings of the 2nd International Scientific and Practical Symposium “Natural Conditions for the Construction and Preservation of the Orthodox Churches of Russia”]. Sergiyev Posad, Patriarshiy izdatel'sko-poligraficheskiy tsentr Publ., 2005, pp. 247—253. (In Russian)
  13. Wang J., Hu Z.-L., Zhang J.-R., Zhang M.-Z. Pore Properties of Eco-Material for Erosion Control of Slope and Its Fractal Features. Key Engineering Materials. 2008, vol. 385—387, pp. 461—464. DOI: http://dx.doi.org/10.4028/www.scientific.net/KEM.385-387.461.
  14. Darchiya V.I., Pashkevich S.A., Pulyaev I.S., Pustovgar A.P., Chernyshev S.N. Vliyanie usloviy osveshchennosti otkosov na ekspluatatsionnye svoystva geosinteticheskikh setok na osnove poliamida-6 [Influence of Ambient Light on Slopes on the Performance Properties of Geosynthetic Grids Based on Polyamide-6]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2013, no. 12, pp. 101—108. (In Russian)
  15. Lepkovich I.P. Gazony [Lawns]. Moscow, Saint Petersburg, Dilya Publ., 2003, 237 p. (In Russian)
  16. Tyul'dyukov V.A., Andreev N.G., Voronkov V.A., Savitskaya V.A. Lugovodstvo [Grassland Science]. Moscow, Kolos Publ., 1995, 415 p. (In Russian)
  17. Tyul'dyukov V.A., Kobozev I.V., Parakhin N.V. Gazonovedenie i ozelenenie naselennykh territoriy [Lawn Science and Planting of Inhabited Territories]. Moscow, KolosS Publ., 2002, 264 p. (In Russian)
  18. Hou X.-Q., Li R., Han Q.-F., Jia Z.-K., Wang W., Yan B., Yang B.-P. Effects of Strip Planting and Fallow Rotation on the Soil and Water Loss and Water Use Efficiency of Slope Farmland. Chinese Journal of Applied Ecology. 2012, vol. 23, no. 8, pp. 2191—2198.
  19. Amini F., Li L. Failure Mechanism of Earthen Levee Strengthened by Vegetated HPTRM System and Design Guideline for Hurricane Overtopping Conditions. International Foundations Congress and Equipment Expo 2015, IFCEE 2015; San Antonio; United States, Geotechnical Special Publication, Volume GSP 256, 2015, pp. 2452—2461. DOI: http://dx.doi.org/10.1061/9780784479087.227.
  20. Tazina N.G., Darchiya V.I., Chernyshev S.N. Ozelenenie i zakreplenie otkosov rva i vala Svyatoy Bogorodichnoy Kanavki v Diveeve [Greening and Strengthening of Graff and Rampart Slopes of Holy Virgin’s Ditch in Diveevo]. Prirodnye usloviya stroitel'stva i sokhraneniya khramov Pravoslavnoy Rusi : sbornik trudov 5-go Mezhdunarodnogo nauchno-prakticheskogo simpoziuma [Natural Conditions for the Construction and Preservation of the Orthodox Churches of Russia : Proceedings of the 5th International Science and Practice Symposium]. Sergiev Posad, 2014, pp. 207—230. (In Russian)
  21. Chernyshev S.N. Svyataya Bogorodichnaya Kanavka v Diveeve. Istoriya i vossozdanie [The Holy Virgin’s Ditch in Diveevo. History and Recreation]. Mir Bozhiy [The World of God]. 2009, no. 13, pp. 108—112. (In Russian)
  22. SP 131.13330.2012. Stroitel'naya klimatologiya. Aktualizirovannaya versiya SNiP 23-01-99* [Requirements SP 131.13330.2012. Building Climatology. The Updated Edition of thе Construction Norms SNiP 23-01-99*]. Moscow, Minregion Rossii Publ., 2012, 112 p. (In Russian)
  23. Stéfanon M., Drobinski P., D'Andrea F., Lebeaupin-Brossier C., Bastin S. Soil Moisture-Temperature Feedbacks at Meso-Scale during Summer Heat Waves over Western Europe. Climate Dynamics. 2014, vol. 42, no. 5—6, pp. 1309—1324. DOI: http://dx.doi.org/10.1007/s00382-013-1794-9.
  24. Volodina L.A. Vliyanie svetovogo rezhima na ustoychivoe razvitie travyanogo pokrova na sklonakh Kolomenskogo [The Influence of Light Regime on the Sustainable Development of Grass Cover on the Slopes of Kolomenskoye]. Nauchnoe obozrenie [Scientific Review]. 2014, no. 2, pp. 33—37. (In Russian)
  25. Siebert F., Scogings P. Browsing Intensity of Herbaceous Forbs across a Semi-Arid Savanna Catenal Sequence. South African Journal of Botany. Sept. 01, 2015, vol. 100, pp. 69—74. DOI: http://dx.doi.org/10.1016/j.sajb.2015.05.007.

Download

SCIENTIFIC METHODOLOGICAL APPROACHES TO CREATION OF COMPLEX CONTROL SYSTEM MODEL FOR THE STREAMS OF BUILDING WASTE

  • Tskhovrebov Eduard Stanislavovich - Research Institute “Center for Environmental Industrial Policy” (Research Institute “CEIP”) Candidate of Economics, Associate Professor, Deputy Director, Research Institute “Center for Environmental Industrial Policy” (Research Institute “CEIP”), 42 Olimpiyskiy pr., Mytishchi, Moscow Region, Russian Federation, 141006.
  • Velichko Evgeniy Georgievich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Sciences, Professor, Department of Construction Materials, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.

Pages 95-110

In 2011 in Russia a Strategy of Production Development of Construction Materials and Industrial Housing Construction for the period up to 2020 was approved as one of strategic documents in the sphere of construction. In the process of this strategy development all the needs of construction complex were taken into account in all the spheres of economy, including transport system. The strategy also underlined, that the construction industry is a great basis for use and application in secondary economic turnover of dangerous waste from different production branches. This gives possibility to produce construction products of recycled materials and at the same time to solve the problem of environmental protection. The article considers and analyzes scientific methodological approaches to creation of a model of a complex control system for the streams of building waste in frames of organizing uniform ecologically safe and economically effective complex system of waste treatment in country regions.

DOI: 10.22227/1997-0935.2015.9.95-110

References
  1. Strategiya razvitiya promyshlennosti stroitel’nykh materialov i industrial’nogo domostroeniya na period do 2020 goda. Utverzhdena prikazom Ministerstva regional’nogo razvitiya RF ot 30 maya 2011 g. № 262 [Development Strategy of Building Materials Production and Industrial Housing Construction for the Period up to 2020. Approved by the Order of the Ministry of Regional Development of the Russian Federation dated 30 May 2011, no. 262]. Moscow, 2011, 56 p. (In Russian)
  2. Golubin A.K., Klepatskaya I.E. Razvitie rynochnykh otnosheniy v sisteme obrashcheniya s otkhodami [Development of Market Relations in the System of Waste Management]. Transportnoe delo Rossii [Transport Business of Russia]. 2009, no. 4, pp. 104—106. (In Russian)
  3. Zheltobryukhov V.F., Rybal’skiy N.G., Yakovlev A.S., editors. Deyatel’nost’ po obrashcheniyu s opasnymi otkhodami : v 2-kh tt. [Activities for Hazardous Waste Management : in 2 vols.]. Moscow, REFIA Publ., 2003, vol. 2, 444 p. (In Russian)
  4. Jackson K., Watkins E. «Musornaya» politika ES: instrumenty kontrolya [EU Waste Law: the Instruments of Control]. Tverdye bytovye otkhody [Municipal Solid Waste]. 2013, no. 1 (79), pp. 54—57. (In Russian)
  5. Tikhotskaya I.S. Yaponiya: Innovatsionnyy podkhod k upravleniyu TBO [Japan: an Innovative Approach to Solid Waste Management]. Tverdye bytovye otkhody [Municipal Solid Waste]. 2013, no. 6 (84), pp. 52—57. (In Russian)
  6. Celik N., Antmann E., Shi X., Hayton B. Simulation-Based Optimization for Planning of Effective Waste Reduction, Diversion, and Recycling Programs. Proc. of the 2012 Industrial and Systems Engineering Research Conference. Available at: http://www.coe.miami.edu/celik/swmwebsite/publications/Y1_ConferencePaper_I.pdf. Date of access: 16.03.2015.
  7. Nixon J.D., Wright D.G., Dey P.K., Ghosh S.K., Davies P.A. A Comparative Assessment of Waste Incinerators in the UK. Waste Management. 2013, vol. 33, no. 11, pp. 2234—2244. DOI: http://dx.doi.org/10.1016/j.wasman.2013.08.001.
  8. Vahdani B., Tavakkoli-Moghaddam R., Baboli A., Mousavi S. A New Fuzzy Mathematical Model in Recycling Collection Networks: A Possibilistic Approach. World Academy of Science, Engineering and Technology. 2013, vol. 78, pp. 45—49.
  9. Tskhovrebov E.S., Chetvertakov G.V., Shkanov S.I. Ekologicheskaya bezopasnost’ v stroitel’noy industrii [Environmental Safety in the Construction Industry]. Moscow, Al’fa-M Publ., 2014, 304 p. (Sovremennye tekhnologii [Modern Technologies]) (In Russian)
  10. Tskhovrebov E.S., Velichko E.G. Voprosy okhrany okruzhayushchey sredy i zdorov’ya cheloveka v protsesse obrashcheniya stroitel’nykh materialov [The Issues of Environmental Protection and Human Health in the Process of Building Materials Treatment]. Stroitel’nye materialy [Construction Materials]. 2014, no. 5, pp. 99—103. (In Russian)
  11. Gubenko V.K., Lyamzin A.A., Pomazkov M.V., Gubenko O.V. Logistika otkhodov v megapolise [Waste Logistics in the Metropolis]. Materialy 11 Mezhdunarodnoy nauchno-prakticheskoy konferentsii [Proceedings of the 11th International Scientific and Practical Conference]. Kiev, Ministry of transport and communications of Ukraine, 2009, 200 p. (In Russian)
  12. Sadov A.V., Tskhovrebov E.S. Puti resheniya problemy obrashcheniya s otkhodami na urovne regiona [Solutions to the Problems of Waste Management in the Region]. Vestnik RAEN [Bulletin of the Russian Academy of Natural Sciences]. 2011, no. 5, pp. 29—31. (In Russian)
  13. Tskhovrebov E.S., Yayli E.A., Tserenova M.P., Yur’ev K.V. Obespechenie ekologicheskoy bezopasnosti pri proektirovanii ob”ektov nedvizhimosti i provedenii stroitel’nykh rabot [Ensuring Environmental Safety When Designing Real Estate Objects and Construction Works]. Monograph. Saint Petersburg, RGGMU Publ., 2013, 360 p. (In Russian)
  14. Kutsenko V.V., Tskhovrebov E.S., Sidorenko S.N., Tserenova M.P., Kirichuk A.A. Problemy obespecheniya ekologicheskoy bezopasnosti regiona [Problems of Environmental Security of the Region]. Vestnik Rossiyskogo universiteta druzhby narodov. Seriya: Ekologiya i bezopasnost’ zhiznedeyatel’nosti [PFUR Bulletin. Series: Ecology and Safety of Living]. 2013, no. 2, pp. 75—82. (In Russian)
  15. Belevi H., Baccini P. Long-term Emission from Municipal Solid Waste Landfills. Landfills of waste: Leachate. London, 1992, pp. 12—15.
  16. Vaysman Ya.I., Tagilova O.A., Sadokhina E.L. Razrabotka metodologicheskikh printsipov sozdaniya i optimizatsii ucheta dvizheniya otkhodov s tsel’yu povysheniya ekologo- ekonomiko-sotsial’noy effektivnosti upravleniya ikh obrashcheniem [Development of Methodological Principles of Creating and Optimizing Account for the Movement of Waste with the Aim of Improving the Ecologic, Economic and Social Efficiency of Their Treatment Management]. Ekologiya i promyshlennost’ Rossii [Ecology and Industry of Russia]. 2013, no. 12, pp. 40—45. (In Russian)
  17. Kolotyrin K.P. Osobennosti tekhnologicheskogo obespecheniya protsessa obrashcheniya s otkhodami potrebleniya [Peculiarities of the Technological Process of Consumption Waste Treatment]. Vestnik Saratovskogo gosudarstvennogo tekhnicheskogo universiteta [Vestnik of Saratov State Technical University]. 2008, vol. 3, no. 1 (34), pp. 164—174. (In Russian)
  18. Kostarev S.N., Murynov A.I. Avtomatizirovannoe proektirovanie, upravlenie i sistemnyy analiz prirodno-tekhnicheskikh ob
  19. Abramova M.V., Bachurina N.D. Setevaya model’ upravleniya potokami otkhodov Network Model of Waste Streams]. Vestnik Vostochnoukrainskogo universiteta im. V. Dalya [Bulletin of the Technological Institute of East Ukraine Volodymyr Dahl National University]. 2008, no. 3 (121), pp. 73—78. (In Russian)
  20. Alimov A. Ispol’zovanie vozmozhnostey logistiki v modernizatsii raboty s otkhodami proizvodstva (logistika otkhodov) [Use of Logistics Capabilities in the Modernization of waste Management (Waste Logistics)]. RISK: Resursy, Informatsiya, Snabzhenie, konkurentsiya [RISK: Resources, Information, Supply, Competition]. 2009, no. 1, pp. 37—39. (In Russian)
  21. Aleksanin A.V. Avtomatizatsiya upravleniya otkhodami stroitel’nogo proizvodstva [Automation of Construction Waste Management]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. 2014, no. 10, pp. 79—81. (In Russian)
  22. Levkin G.G. Ekologicheskie aspekty upravleniya tsepyami postavok [Environmental Aspects of Supply Chain Management]. Logistika [Logistics]. 2009, no. 2, pp. 24—25. (In Russian)
  23. Terent’ev P.A. Klassifikatsii i modeli logistiki vozvratnykh potokov [The Classification and Models of Logistics of Return Flows]. Logistika segodnya [Logistics Today]. 2010, no. 4, pp. 242—251. (In Russian)
  24. Sevimoglu O., Tansel B. Effect of Persistent Compounds in Landfill Gas on Engine Performance during Energy Recovery: A Case Study. Waste Management. 2013, vol. 33, no. 1, pp. 74—80. DOI: http://dx.doi.org/10.1016/j.wasman.2012.08.016.
  25. Perekal’skiy V.A. Otechestvennyy i zarubezhnyy opyt ekonomiko-matematicheskogo modelirovaniya v sfere upravleniya obrashcheniem s otkhodami [Domestic and Foreign Experience of Economic Mathematical Modeling in Waste Management]. Strategii biznesa [Business Strategies]. 2013, no. 2 (2), pp. 38—41. (In Russian)
  26. Haight F. Mathematical Theories of Traffic Flows. Academic Press, N.Y., 1963.
  27. Gasnikov A.V., Klenov S.L., Nurminskiy E.A., Kholodov Ya.A., Shamray N.B. Vvedenie v matematicheskoe modelirovanie transportnykh potokov [Introduction of Traffic Flows to Mathematical Modeling]. Moscow, Publishing house of the Moscow Center for Continuous Mathematical Education, 2012, 428 p. (In Russian)
  28. Smirnov N.N., Kiselev A.B., Nikitin V.F., Yumashev M.V. Matematicheskoe modelirovanie avtotransportnykh potokov [Mathematical Modeling of Road Traffic Flows]. Moscow, MGU Publ., 1999, 184 p. (In Russian)
  29. Marković D., Janošević D., Jovanović M., Nikolić V. Application Method for Optimization in Solid Waste Management System in the City of Niš. Facta universitatis. Series: Mechanical Engineering. 2010, vol. 8, no. 1, pp. 65—67.
  30. Kornilov A.M., Pazyuk K.T. Ekonomiko-matematicheskoe modelirovanie retsiklinga tverdykh bytovykh otkhodov i ispol’zovanie vtorichnogo material’nogo syr’ya [Economic and Mathematical Modeling of Solid Waste Recycling and the Use of Secondary Raw Material]. Vestnik Tikhookeanskogo gosudarstvennogo universiteta [Proceedings of Pacific National University]. 2008, no. 2 (9), pp. 69—80. (In Russian)

Download

HYDRAULICS. ENGINEERING HYDROLOGY. HYDRAULIC ENGINEERING

JUSTIFICATION OF THE MAIN PARAMETERS FOR HPP’S SUCTION PIPES

  • Bal’zannikov Mikhail Ivanovich - Samara State University of Architecture and Civil Engineering (SSUACE) Doctor of Technical Sciences, Professor, Department of Environment Protective and Hydrotechnical Construction, Samara State University of Architecture and Civil Engineering (SSUACE), 194 Molodogvardeyskaya str., Samara, 443001, Russian Federation.

Pages 111-121

Hydraulic turbine suction pipes at hydropower plants (HPPs) play an important role for providing high power indices of HPP operation. At the same time for channel type HPPs with vertical reactive hydraulic turbines curved large size suction tubes are used and this leads to great costs for their installation. That is why the significance of economic analysis for justification of the size of such suction pipes is underlined. Minimally possible sizes of curved pipes (height and length) are determined by hydraulic turbine normal operation requirements and are given in reference books. Nevertheless often such conditions arise when the correction of their size leading to their enlargement becomes inevitable. In particular, when there are rocks at a small depth below of the project position of the foundation slab it is feasible to increase a suction pipe’s height to place the foundation concrete on the strong rock. Or if it is necessary to make a motorway at the downstream side of a channel HPP lengthening of a suction pipe appears sensible. In such cases economic calculations are necessary on feasibility of suction pipe size change proposals. The use of an integral effect technique for such an analysis is proposed. The article provides a criterion for economic efficiency of the given technique. In conformity with it the calculations for a hydraulic turbine with 9 m diameter under acting head of 24 m are made. The calculation results are presented as graphs of dependencies of integral effect on varying parameters. The analysis of the results shows that a parameter being changed (suction pipe lengthening) has a distinct optimal value, which in the investigated variants is 2.5...3.0 m. Herewith a maximal value of economically justified hydrogenerator suction pipe lengthening satisfying the criterion adopted is in the range of 7.5...8.0 m. It is also shown that the value of the integral effect depends significantly on electric energy tariffs and the conditions of HPP operation.

DOI: 10.22227/1997-0935.2015.9.111-121

References
  1. Elistratov V.V. Vozobnovlyaemaya energetika [Renewable Power Engineering]. 2nd edition, revised. Saint Petersburg, Nauka Publ., 2013, 308 p. (In Russian)
  2. Elistratov V.V. Ispol’zovanie vozobnovlyaemykh istochnikov energii — put’ k ustoychivomu razvitiyu i energoeffektivnosti [Use of Renewable Energy Sources Is a Way to Sustainable Development and Energy Efficiency]. Nauchno-tekhnicheskie vedomosti SPbGPU [St. Petersburg State Polytechnical University Journal]. 2012, no. 3 (154), pp. 77—83. (In Russian)
  3. Svitala F., Evdokimov S.V., Galitskova Yu.M. Osobennosti konstruktsiy gidrotekhnicheskikh sooruzheniy i agregatnykh zdaniy pervykh gidroelektrostantsiy [Structural Peculiarities of Hydrotechnical Structures and Aggregate Buildings of First Power Plants]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. 2014, no. 12, pp. 87—90. (In Russian)
  4. Svitala F., Galitskova Yu.M. Ispol’zovanie gidravlicheskikh energoagregatov s naklonnoy os’yu dlya malykh gidroelektrostantsiy [Use of Hydraulic Energy Installations with Inclined Axis at Small HPPs]. Nauchnoe obozrenie [Scientific Review]. 2014, no. 10 (2), pp. 450—456. (In Russian)
  5. Bal’zannikov M.I., Evdokimov S.V., Galitskova Yu.M. Razvitie vozobnovlyaemoy energetiki — vazhnyy vklad v obespechenie zashchity okruzhayushchey sredy [Development of Renewable Energy Engineering as a Significant Contribution to Providing Environmental Protection]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. 2014, no. 3, pp. 16—19. (In Russian)
  6. Evdokimov S.V., Dormidontova T.V. Otsenka nadezhnosti gidrotekhnicheskikh sooruzheniy [Hydrotechnical Structures’ Reliability Estimation]. Vestnik SGASU. Gradostroitel’stvo i arkhitektura [Vestnik of SSUACE. Town Planning and Architecture]. 2012, no. 1 (5), pp. 64—68. (In Russian)
  7. Evdokimov S.V. Problemy bezopasnosti stroitel’stva energeticheskikh ustanovok, akkumuliruyushchikh netraditsionnye (vozobnovlyaemye) istochniki energii [Problems of Construction Safety for Power Installations Accumulating Non-Traditional (Renewable) Energy Sources]. Vestnik SGASU. Gradostroitel’stvo i arkhitektura [Vestnik of SSUACE. Town Planning and Architecture]. 2012, no. 2 (6), pp. 68—74. (In Russian)
  8. Piyavskiy S.A., Evdokimov S.V. Obosnovanie konstruktsiy vodopropusknykh gidrotekhnicheskikh sooruzheniy v usloviyakh neopredelennosti [Reasoning for Design of Culvert Hydrotechnical Structures under Uncertainty Conditions]. Izvestiya vysshikh uchebnykh zavedeniy. Stroitel’stvo [News of Higher Educational Institutions. Construction]. 2012, no. 6 (643), pp. 36—42. (In Russian)
  9. Bal’zannikov M.I., Evdokimov S.V., Shekhova N.V. Ekologo-ekonomicheskoe obosnovanie effektivnosti gidroakkumuliruyushchikh i vetrovykh elektrostantsiy [Ecological and Economic Evaluation of the Effectiveness of Pumped Storage and Wind Power Plants]. Ekonomika i upravlenie sobstvennost’yu [Economy and Property Management]. 2015, no. 1, pp. 68—72. (In Russian)
  10. Bal’zannikov M.I. Obosnovanie ustanovlennoy moshchnosti GES energeticheskogo gidrouzla [Justification of a HPP’s Set Capacity at Power Waterworks]. Izvestiya vysshikh uchebnykh zavedeniy. Stroitel’stvo [News of Higher Educational Institutions. Construction]. 2014, no. 8 (668), pp. 32—40. (In Russian)
  11. Bal’zannikov M.I., Seliverstov V.A. Characteristics of Substantiation of Water-Intake Parameters at WSPP as Component Parts of the Power Complex. Power Technology and Engineering. 2015, vol. 49, no. 1, pp. 22—26. DOI: http://dx.doi.org/10.1007/s10749-015-0567-5.
  12. Urishev B.U., Mukhammadiev M.M., Nosirov F., Zhuraev S.R. Snizhenie zaileniya avankamery meliorativnykh nasosnykh stantsiy [Reduction of Forebays Siltation at Ameliorative Pump Stations]. Vestnik SGASU. Gradostroitel’stvo i arkhitektura [Vestnik of SSUACE. Town Planning and Architecture]. 2013, no. 4 (12), pp. 49—53. (In Russian)
  13. Bal’zannikov M.I., Elistratov V.V. Rezul’taty energogidravlicheskikh issledovaniy pryamotochnogo vodovypuska krupnoy nasosnoy stantsii [Results of Power Hydraulic Investigations of Straight-Through Output of a Large Pump Plant]. Gidrotekhnicheskoe stroitel’stvo [Hydrotechnical Construction]. 1994, no. 12, pp. 19—22. (In Russian)
  14. Vasil’ev Yu.S., Kubyshkin L.I. O tekhnologii proektirovaniya ob
  15. Mikhaylov I.E. Spiral’nye kamery obratimykh gidromashin i tsentrobezhnykh nasosov [Spiral Chambers of Combined Pump-Turbine Units and Centrifugal Pumps]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2012, no. 2, pp. 112—116. (In Russian)
  16. Bal’zannikov M.I., Seliverstov V.A. Osobennosti vybora osnovnykh parametrov konstruktsii vodovypusknogo sooruzheniya sektsionnogo tipa krupnoy nasosnoy stantsii [Peculiarities of Main Design Parameters Selection for Section-Type Water Output Structure of a Large Pump Plant]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. 2010, no. 8, pp. 17—19. (In Russian)
  17. Elistratov V.V., Konishchev M.A., Davydov K.I. Laboratornye energeticheskie issledovaniya nizkonapornogo bloka mikro-GES [Laboratory Power Investigations of a Micro HPP Low Pressure Block]. Nauchno-tekhnicheskie vedomosti SPbGPU [St. Petersburg State Polytechnical University Journal]. 2012, no. 154—2, pp. 189—194. (In Russian)
  18. Bakhtina I.A., Ivanov V.M., Il’inykh S.V., Stepanova P.V., Elizarov E.S. Eksperimental’nye issledovaniya mikro-GES s osevoy gidroturbinoy na gidravlicheskom stende [Experimental Tests of Micro-HPP with Axial Hydroturbine at the Hydraulic Stand]. Polzunovskiy vestnik [Polzunovsky Vestnik]. 2013, no. 4—2, pp. 12—19. (In Russian)
  19. Ivanov V.M., Bakhtina I.A., Ivanova T.Yu., Il’inykh S.V. Elektrosnabzhenie i energosberezhenie s ispol’zovaniem vozobnovlyaemykh istochnikov energii energii [Electric Power Supply and Energy Saving When Using Renewable Energy Sources]. Vestnik SGASU. Gradostroitel’stvo i arkhitektura [Vestnik of SSUACE. Town Planning and Architecture]. 2015, no. 2 (19), pp. 88—93. (In Russian)
  20. Ivanov V.M., Ivanova T.Yu., Stoyan I.A., Pchelintsev S.G. Osevaya gidroturbina novoy konstruktsii i stend dlya modelirovaniya protochnykh chastey gidroturbin [Axial Hydro Turbine of a New Design and a Stand for Flow-Through Hydro Turbine Parts Simulation]. Vestnik Severo-Kavkazskogo federal’nogo universiteta [Herald of North-Caucasus Federal University]. 2011, no. 4, pp. 102—106. (In Russian)
  21. Krivchenko G.I. Gidravlicheskie mashiny: turbiny i nasosy [Hydraulic Machines: Turbines and Pumps]. Moscow, Energatomizdat Publ., 1983, 320 p. (In Russian)
  22. Balzannikov M.I. The Use of Low-Head Waterpower Developments in Making Cargo Passages through Lowland Rivers. Procedia Engineering. 2015, no. 111, pp. 65—71. DOI: http://dx.doi.org/10.1016/j.proeng.2015.07.040.
  23. Timofeev V. Cheboksarskaya GES [HPP in Cheboksary]. AirFotoVideo.ru. Available at: http://www.airfotovideo.ru/photos/photo434/byuser36.html. Date of access: 01.12.2014.

Download

THE BORDERS OF THE RIDGE FORMS OF SEDIMENT MOVEMENT

  • Khodzinskaya Anna Gennadievna - Moscow State University of Civil Engineering (National Research University) (MGSU) Candidate of Technical Sciences, Associate Professor, Department of Hydraulic Engineering, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.

Pages 122-129

The article describes the active equilibrium motion of bed forms, which occurs in rivers during high water periods. The authors consider the relation between an average size of the particles of which little bed-forms (rifles) are formed and an average size of non-cohesive material in case of which armoring is formed in a river. These particles have a diameter of 0.5…0.6 mm. This boundary is associated with different mechanisms of stability loss for smaller particles, for which the probability of weighing is greater than for the larger particles. The article offers the extrapolation of the dependence of the ratio of average speed to critical speed received by V.N. Goncharov at small depths (up to 0.2 m) at the depth of 5 m on the basis of the experiments presented by V. Rijn. It is shown that the ratio of the dynamic speed to its critical value decreases with the increase in the size of alluvial particles, for bed formation and wash moments. For the moments of bed formation reaching the maximum bed height (maximum resistance in the channel) and erosion of the bed-forms was well confirmed by the values of the dimensionless parameter (the ratio of average velocity to hydraulic size taking into account the flow regime) for a particle size of about 1 mm.

DOI: 10.22227/1997-0935.2015.9.122-129

References
  1. Allen J.R.L. River Bedforms: Progress and Problems. Modern and Ancient Fluvial Systems. Oxford, Blackwell Publishing Ltd., 2009, pp. 19—33. DOI: http://dx.doi.org/10.1002/9781444303773.ch2.
  2. Gaeuman D., Jacobson R.B. Field Assessment of Alternative Bed Load Transport Estimators. J. Hydraulic Eng. 2007, vol. 133, no. 12, pp. 1319—1328. DOI: http://dx.doi.org/10.1061/(ASCE)0733-9429(2007)133:12(1319).
  3. Rijn Van L.C. Sediment Transport Part III Bed Forms and Alluvial Roughness. J. Hydraul Eng. 1984, vol. 110, no. 12, pp. 1433—1454. DOI: http://dx.doi.org/10.1061/(ASCE)0733-9429(1984)110:12(1733).
  4. Bogardi J. Sediment Transport in Alluvial Streams. Budapest, Akademia Riado Publ., 1974, 826 p.
  5. Grishanin K.V. Gidravlicheskie soprotivleniya estestvennykh rusel [Hydraulic Resistances of Natural channels]. Leningrad, Gidrometeoizdat Publ., 1992, 184 p. (In Russian)
  6. Senturk F.A. Definition of Resistance Bed-Load in Streams. Proc. XII Congr. IAHR. Vol. 1. 1967, pp. 165—170.
  7. Yalin M.S. Mechanics of Sediment Transport. 2nd. ed. Oxford, New York, Pergamon Press, 1977, 290 p.
  8. Mazhidov T.Sh. Eksperimental’noe issledovanie vliyaniya sostava nanosov na kharakteristiki potoka i rusla [Experimental Study of the Effect of Sediment Composition on the Characteristics of Flow and Bed]. Trudy V Vsesoyuznogo gidrologicheskogo s”ezda [Proceedings of the 5th All-Union Hydrological Congress]. Vol. 10, book. 2. Leningrad, Gidrometeoizdat Publ., 1988, pp. 40—47. (In Russian)
  9. Rossinskiy K.I., Debol’skiy V.D. Rechnye nanosy [River Loads]. Moscow, Nauka Publ., 1980, 266 p. (In Russian)
  10. Volgina L.V. Statisticheskie kharakteristiki turbulentnosti [Statistical Characteristics of Turbulence]. Materialy IV nauchno-prakticheskoy konferentsii molodykh uchenykh, aspirantov i doktorantov [Proceedings of the 4th Science and Practice Conference of Young Scientists, Postgraduates and Doctoral Students]. Moscow, MGSU Publ., 2001, pp. 61—63. (In Russian)
  11. Mirtskhulava Ts.E. Razmyv rusel i metodika otsenki ikh ustoychivosti [Erosion of Channels and Methods of Evaluating Their Sustainability]. Moscow, Kolos Publ., 1967, 170 p. (In Russian)
  12. Korn G., Korn T. Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov [Mathematical Handbook for Scientists and Engineers]. Moscow, Nauka Publ., 1973, 832 p. (In Russian)
  13. Verbitskiy V.S., Khodzinskaya A.G. Uchet form dvizheniya nanosov pri opredelenii gidravlicheskikh soprotivleniy ruslovykh potokov [Account for the Motion Forms of Sediment in Determining the Hydraulic Resistance of Channel Flows]. Gidrotekhnicheskoe stroitel’stvo [Hydrotechnical Construction]. 2005, no. 8, pp. 46—50. (In Russian)
  14. Sidorchuk A.Yu. Otsenka stoka vlekomykh nanosov v rechnom rusle s uchetom dannykh ob aktivnoy i passivnoy dinamike gryad [Runoff Assessment of Bed Loads in River Channel Based on the Data on the Active and Passive Dynamics of the Ridges]. Vodnye resursy [Water Resources]. 2015, vol. 42, no. 1, pp. 31—44. (In Russian)
  15. Allen J.R.L. River Bedforms: Progress and Problems. Modern and Ancient Fluvial Systems. Oxford, Blackwell Publishing Ltd., 2009, pp. 19—33. DOI: http://dx.doi.org/10.1002/9781444303773.ch2.
  16. Gaeuman D., Jacobson R.B. Field Assessment of Alternative Bed Load Transport Estimators. J. Hydraulic Eng. 2007, vol. 133, no. 12, pp. 1319—1328. DOI: http://dx.doi.org/10.1061/(ASCE)0733-9429(2007)133:12(1319).
  17. Verbitskiy V.S. Ob
  18. Rijn Van L.C. Sediment Transport Part III Bed Forms and Alluvial Roughness. J. Hydraul Eng. 1984, vol. 110, no. 12, pp. 1433—1454. DOI: http://dx.doi.org/10.1061/(ASCE)0733-9429(1984)110:12(1733).
  19. Bogardi J. Sediment Transport in Alluvial Streams. Budapest, Akademia Riado Publ., 1974, 826 p.
  20. Grishanin K.V. Gidravlicheskie soprotivleniya estestvennykh rusel [Hydraulic Resistances of Natural channels]. Leningrad, Gidrometeoizdat Publ., 1992, 184 p. (In Russian)
  21. Senturk F.A. Definition of Resistance Bed-Load in Streams. Proc. XII Congr. IAHR. Vol. 1. 1967, pp. 165—170.
  22. Yalin M.S. Mechanics of Sediment Transport. 2nd. ed. Oxford, New York, Pergamon Press, 1977, 290 p.
  23. Mazhidov T.Sh. Eksperimental’noe issledovanie vliyaniya sostava nanosov na kharakteristiki potoka i rusla [Experimental Study of the Effect of Sediment Composition on the Characteristics of Flow and Bed]. Trudy V Vsesoyuznogo gidrologicheskogo s”ezda [Proceedings of the 5th All-Union Hydrological Congress]. Vol. 10, book. 2. Leningrad, Gidrometeoizdat Publ., 1988, pp. 40—47. (In Russian)
  24. Rossinskiy K.I., Debol’skiy V.D. Rechnye nanosy [River Loads]. Moscow, Nauka Publ., 1980, 266 p. (In Russian)
  25. Volgina L.V. Statisticheskie kharakteristiki turbulentnosti [Statistical Characteristics of Turbulence]. Materialy IV nauchno-prakticheskoy konferentsii molodykh uchenykh, aspirantov i doktorantov [Proceedings of the 4th Science and Practice Conference of Young Scientists, Postgraduates and Doctoral Students]. Moscow, MGSU Publ., 2001, pp. 61—63. (In Russian)
  26. Goncharov V.N. Osnovy dinamiki ruslovykh potokov [Basics of the Dynamics of Channel Flows]. Leningrad, Gidrometeoizdat, 1954, 452 p. (In Russian)
  27. Mirtskhulava Ts.E. Razmyv rusel i metodika otsenki ikh ustoychivosti [Erosion of Channels and Methods of Evaluating Their Sustainability]. Moscow, Kolos Publ., 1967, 170 p. (In Russian)
  28. Korn G., Korn T. Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov [Mathematical Handbook for Scientists and Engineers]. Moscow, Nauka Publ., 1973, 832 p. (In Russian)
  29. Goncharov V.N. Dvizhenie nanosov [Movement of Sediments]. Moscow, ONTI Publ., 1938, 312 p. (In Russian)
  30. Klaven A.B., Kopaliani Z.D. Eksperimental’nye issledovaniya i gidravlicheskoe modelirovanie rechnykh techeniy i ruslovogo protsessa [Experimental Studies and Hydraulic Modeling of River Flows and Channel Process]. Saint Petersburg, Nestor-Istoriya Publ., 2011, 543 p. (In Russian)
  31. Kogan L.D., Uglov V.P. Formy transporta i raskhod nanosov [Transportation Forms and Dascharge of Sediments]. Gidrofizicheskie protsessy v rekakh i vodokhranilishchakh [Hydrophysical Processes in Rivers and Reservoirs]. Moscow, Nauka Publ., 1985, pp. 131—137. (In Russian)
  32. Mikhaylova N.A. Perenos tverdykh chastits turbulentnymi potokami vody [Transfer of Solid Particles by Turbulent Flows of Water]. Leningrad, Gidrometeoizdat Publ., 1966, 232 p. (In Russian)
  33. Verbitskiy V.S., Khodzinskaya A.G. Uchet form dvizheniya nanosov pri opredelenii gidravlicheskikh soprotivleniy ruslovykh potokov [Account for the Motion Forms of Sediment in Determining the Hydraulic Resistance of Channel Flows]. Gidrotekhnicheskoe stroitel’stvo [Hydrotechnical Construction]. 2005, no. 8, pp. 46—50. (In Russian)
  34. Sidorchuk A.Yu. Otsenka stoka vlekomykh nanosov v rechnom rusle s uchetom dannykh ob aktivnoy i passivnoy dinamike gryad [Runoff Assessment of Bed Loads in River Channel Based on the Data on the Active and Passive Dynamics of the Ridges]. Vodnye resursy [Water Resources]. 2015, vol. 42, no. 1, pp. 31—44. (In Russian)
  35. Allen J.R.L. River Bedforms: Progress and Problems. Modern and Ancient Fluvial Systems. Oxford, Blackwell Publishing Ltd., 2009, pp. 19—33. DOI: http://dx.doi.org/10.1002/9781444303773.ch2.
  36. Gaeuman D., Jacobson R.B. Field Assessment of Alternative Bed Load Transport Estimators. J. Hydraulic Eng. 2007, vol. 133, no. 12, pp. 1319—1328. DOI: http://dx.doi.org/10.1061/(ASCE)0733-9429(2007)133:12(1319).
  37. Verbitskiy V.S. Obedinennoe opisanie gidravlicheskikh soprotivleniy otkrytykh potokov [United Description of Hydraulic Resistances in Open Flows]. Dinamika i termika rek, vodokhranilishch i pribrezhnoy zony morey : trudy VIII Mezhdunarodnoy nauchno-prakticheskoy konferentsii (24—27 noyabrya 2014 g., Moskva) [Dynamics and Cloud of Rivers, Reservoirs and Coastal Areas of the Seas. Proceedings of the 8th International Scientific and Practical Conference]. Moscow, RUDN Publ., 2014, vol. 2, pp. 38—53. (In Russian)
  38. Rijn Van L.C. Sediment Transport Part III Bed Forms and Alluvial Roughness. J. Hydraul Eng. 1984, vol. 110, no. 12, pp. 1433—1454. DOI: http://dx.doi.org/10.1061/(ASCE)0733-9429(1984)110:12(1733).
  39. Bogardi J. Sediment Transport in Alluvial Streams. Budapest, Akademia Riado Publ., 1974, 826 p.
  40. Grishanin K.V. Gidravlicheskie soprotivleniya estestvennykh rusel [Hydraulic Resistances of Natural channels]. Leningrad, Gidrometeoizdat Publ., 1992, 184 p. (In Russian)
  41. Senturk F.A. Definition of Resistance Bed-Load in Streams. Proc. XII Congr. IAHR. Vol. 1. 1967, pp. 165—170.
  42. Yalin M.S. Mechanics of Sediment Transport. 2nd. ed. Oxford, New York, Pergamon Press, 1977, 290 p.
  43. Mazhidov T.Sh. Eksperimental’noe issledovanie vliyaniya sostava nanosov na kharakteristiki potoka i rusla [Experimental Study of the Effect of Sediment Composition on the Characteristics of Flow and Bed]. Trudy V Vsesoyuznogo gidrologicheskogo s”ezda [Proceedings of the 5th All-Union Hydrological Congress]. Vol. 10, book. 2. Leningrad, Gidrometeoizdat Publ., 1988, pp. 40—47. (In Russian)
  44. Rossinskiy K.I., Debol’skiy V.D. Rechnye nanosy [River Loads]. Moscow, Nauka Publ., 1980, 266 p. (In Russian)
  45. Volgina L.V. Statisticheskie kharakteristiki turbulentnosti [Statistical Characteristics of Turbulence]. Materialy IV nauchno-prakticheskoy konferentsii molodykh uchenykh, aspirantov i doktorantov [Proceedings of the 4th Science and Practice Conference of Young Scientists, Postgraduates and Doctoral Students]. Moscow, MGSU Publ., 2001, pp. 61—63. (In Russian)
  46. Goncharov V.N. Osnovy dinamiki ruslovykh potokov [Basics of the Dynamics of Channel Flows]. Leningrad, Gidrometeoizdat, 1954, 452 p. (In Russian)
  47. Mirtskhulava Ts.E. Razmyv rusel i metodika otsenki ikh ustoychivosti [Erosion of Channels and Methods of Evaluating Their Sustainability]. Moscow, Kolos Publ., 1967, 170 p. (In Russian)
  48. Korn G., Korn T. Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov [Mathematical Handbook for Scientists and Engineers]. Moscow, Nauka Publ., 1973, 832 p. (In Russian)
  49. Goncharov V.N. Dvizhenie nanosov [Movement of Sediments]. Moscow, ONTI Publ., 1938, 312 p. (In Russian)
  50. Klaven A.B., Kopaliani Z.D. Eksperimental’nye issledovaniya i gidravlicheskoe modelirovanie rechnykh techeniy i ruslovogo protsessa [Experimental Studies and Hydraulic Modeling of River Flows and Channel Process]. Saint Petersburg, Nestor-Istoriya Publ., 2011, 543 p. (In Russian)
  51. Kogan L.D., Uglov V.P. Formy transporta i raskhod nanosov [Transportation Forms and Dascharge of Sediments]. Gidrofizicheskie protsessy v rekakh i vodokhranilishchakh [Hydrophysical Processes in Rivers and Reservoirs]. Moscow, Nauka Publ., 1985, pp. 131—137. (In Russian)
  52. Mikhaylova N.A. Perenos tverdykh chastits turbulentnymi potokami vody [Transfer of Solid Particles by Turbulent Flows of Water]. Leningrad, Gidrometeoizdat Publ., 1966, 232 p. (In Russian)

Download

TRANSPORTATION SYSTEMS

INVESTMENT OF THE DEVELOPMENT OF ROAD-BUILD MEANS, AUTOMATIC AND INFORMATIONAL SYSTEMS TO INCREASE TRAFFIC SAFETY IN VEHICLE SYSTEMS

  • Shirokov Lev Alekseevich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Sciences, Professor, Department of Electrical Engineering and Electrical Drive, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Shirokova Ol’ga L’vovna - Moscow State University of Civil Engineering (National Research University) (MGSU) Candidate of Economical Sciences, Associate Professor, Department of Economy and Applied Mathematics, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Palaguta Konstantin Alekseevich - Moscow State Industrial University (MSIU) Candidate of Technical Sciences, Professor, Department of Automation and Control in Technical Systems, Moscow State Industrial University (MSIU), 16 Avtozavodskaya str., Moscow, 115280, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 130-145

The modern transport system is a complex integrated object, which includes various road pavements, different technical means to provide vehicles motion, organizational systems of traffic management. In the contemporary conditions of construction industry functioning the task to create vehicle systems is of a great economic importance. Great labour and material resources are used for production of transport means for providing construction works and operation of these means. The authors consider the questions of theoretical and informational foundation development for the formation of the criteria basis of investment optimization task during construction of automatical and informational systems for increase of traffic safety in transport systems, providing zero accident rate.

DOI: 10.22227/1997-0935.2015.9.130-145

References
  1. Elvik R., Hoye A., Vaa T., Erke A., Sorensen M. The Handbook of Road Safety Measures. Emerald Group Publishing, 2009, 1140 p.
  2. Martin J.L. Relationship between Crash Rate and Hourly Traffic Flow on Interurban Motorways. Accident Analysis & Prevention. 2002, vol. 34, no. 5, pp. 619—629. DOI: http://dx.doi.org/10.1016/S0001-4575(01)00061-6.
  3. Palaguta K.A. Evaluation of the Effectiveness of Car Safety Systems. Innovative Information Technologies : International Scientific — Practical Conference. Praha, 2014, pp. 292—295.
  4. Pavlov V.V. Nachala teorii ergaticheskikh system [Fundamentals of the Theory of Ergatic Systems]. Kiev, Naukova dumka Publ., 1975, 240 p. (In Russian)
  5. Palaguta K.A., Shirokov L.A. Ierarkhicheskaya struktura avtotransportnoy sistemy [Hierarchical Structure of Transport System]. Innovatsionnye informatsionnye tekhnologii : materialy Mezhdunarodnoy nauchno-prakticheskoy konferentsii [Innovative Information Technologies : Materials of the International Science and Practice Conference]. Moscow, MIEM NIU VShE Publ., 2013, vol. 3, no. 2, pp. 289—293. (In Russian)
  6. Palaguta K.A. Samoupravlyaemyy avtomobil’ kak odin iz vozmozhnykh sposobov povysheniya bezopasnosti transportnykh sredstv [Autonomous Car as One of the Possible Ways to Increase Transport Safety]. Innovatsionnye informatsionnye tekhnologii : materialy Mezhdunarodnoy nauchno-prakticheskoy konferentsii [Innovative Information Technologies : Materials of the International Science and Practice Conference]. Moscow, MIEM NIU VShE Publ., 2013, vol. 3, no. 2, pp. 284—289. (In Russian)
  7. Statistical Database of the UN Economic Commission for Europe (UNECE). Available at: http://w3.unece.org/pxweb/. Date of Access: 25.11.2014.
  8. Improving Global Road Safety. General Assembly Sixty-fourth Session Agenda Item 46 Resolution Adopted by the General Assembly. 64/255. 2010, 6 p.
  9. Vishnevskiy A., Fattakhov T. DTP i smertnost’ v Rossii [Road Traffic Accidents and Death Rate in Russia]. Available at: http://demoscope.ru/weekly/2012/0527/tema03.php. Date of access: 15.03.2015. (In Russian)
  10. Bulletin of the World Health Organization. 2004, vol. 82, no. 3, pp. 160—238. Available at: http://www.who.int/bulletin/volumes/82/3/en/. Date of access: 15.03.2015.
  11. Vsemirnyy doklad o preduprezhdenii dorozhno-transportnogo travmatizma [World Report on Prevention of Road Accidents]. 2004. Available at: http://www.who.int/violence_injury_prevention/publications/road_traffic/world_report/ru/. Date of access: 20.05.2015. (In Russian)
  12. Svedeniya o pokazatelyakh sostoyaniya bezopasnosti dorozhnogo dvizheniya [Data on Safety State of Road Traffic]. Available at: http://www.gibdd.ru/stat/. Date of access: 12.03.2015. (In Russian)
  13. Shirokov L.A., Shirokova O.L. Modelirovanie okruzhayushchey sredy promyshlennykh zon dlya optimizatsii prirodookhrannykh investitsiy [Environmental Modeling of Industrial Zones for Environmental Investments Optimization]. Ekologiya urbanizirovannykh territoriy [Ecology of Urban Areas]. 2013, no. 2, pp. 16—22. (In Russian)
  14. Statistical database of the UN Economic Commission for Europe (UNECE). Available at: http://w3.unece.org/pxweb/. Date of access: 14.03.2015.
  15. Karlaftis M.G., Golias I. Effects of Road Geometry and Traffic Volumes on Rural Roadway Accident Rate. Accident Analysis and Prevention. 2002, vol. 34, no. 3, pp. 357—365.
  16. Roy B. Multicriteria Methodology for Decision Aiding. Dordrecht, Kluwer Academic Publishers, 1996, 423 p.
  17. Hinloopen E., Nijkamp P. Qualitative Discrete Multiple Criteria Choice Analysis: The Dominant Regime Method. Quality and Quantity. 1990, vol. 24, no. 1, pp. 37—56. DOI: http://dx.doi.org/10.1007/BF00221383.
  18. Elvik R. A Framework for a Rational Analysis of Road Safety Problems. Institute of Transport Economics, Oslo, Norway, 2005, 102 p.
  19. Bryce J., Flintsch G., Hall R. A Multi Criteria Decision Analysis Technique for Including Environmental Impacts in Sustainable Infrastructure Management Business Practices. Transportation Research Part D: Transport and Environment. 2014, vol. 32, pp. 435—445. DOI: http://dx.doi.org/10.1016/j.trd.2014.08.019.
  20. Koorosh Gharehbaghi, Maged Georgy. Utilization of Infrastructure Gateway System (IGS) as a Transportation Infrastructure Optimization Tool. International Journal of Traffic and Transportation Engineering. 2015, vol. 4, no. 1, pp. 8—15. DOI: http://dx.doi.org/10.5923/j.ijtte.20150401.02.

Download

ECONOMICS, MANAGEMENT AND ORGANIZATION OF CONSTRUCTION PROCESSES

ESTIMATION OF LONG-TERM INVESTMENT PROJECTS WITH ENERGY-EFFICIENT SOLUTIONS BASED ON LIFE CYCLE COSTS INDICATOR

  • Bazhenov Viktor Ivanovich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Sciences, Professor, Department of Water Disposal and Water Ecology, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
  • Ustyuzhanin Andrey Vadimovich - Moscow State University of Civil Engineering (National Research University) (MGSU) postgraduate student, Department of Water Disposal and Water Ecology, Moscow State University of Civil Engineering (National Research University) (MGSU), .

Pages 146-157

The starting stage of the tender procedures in Russia with the participation of foreign suppliers dictates the feasibility of the developments for economical methods directed to comparison of technical solutions on the construction field. The article describes the example of practical Life Cycle Cost (LCC) evaluations under respect of Present Value (PV) determination. These create a possibility for investor to estimate long-term projects (indicated as 25 years) as commercially profitable, taking into account inflation rate, interest rate, real discount rate (indicated as 5 %). For economic analysis air-blower station of WWTP was selected as a significant energy consumer. Technical variants for the comparison of blower types are: 1 - multistage without control, 2 - multistage with VFD control, 3 - single stage double vane control. The result of LCC estimation shows the last variant as most attractive or cost-effective for investments with economy of 17,2 % (variant 1) and 21,0 % (variant 2) under adopted duty conditions and evaluations of capital costs (Cic + Cin) with annual expenditure related (Ce+Co+Cm). The adopted duty conditions include daily and seasonal fluctuations of air flow. This was the reason for the adopted energy consumption as, kW∙h: 2158 (variant 1),1743...2201 (variant 2), 1058...1951 (variant 3). The article refers to Europump guide tables in order to simplify sophisticated factors search (Cp /Cn, df), which can be useful for economical analyses in Russia. Example of evaluations connected with energy-efficient solutions is given, but this reference involves the use of materials for the cases with resource savings, such as all types of fuel. In conclusion follows the assent to use LCC indicator jointly with the method of determining discounted cash flows, that will satisfy the investor’s need for interest source due to technical and economical comparisons.

DOI: 10.22227/1997-0935.2015.9.146-157

References
  1. Avrorin A.V. Ekologicheskoe domostroenie. Stroitel’nye materialy i ekologiya : Analiticheskiy obzor [Ecological Housing Construction. Construction Materials and Ecology : Analytical Review]. Novosibirsk, 1999, pp. 1—68. (Ecological Series, issue 53) (In Russian)
  2. Telichenko V.I., Zavoloko L.M. Formirovanie baz dannykh dlya realizatsii informatsionnoy tekhnologii analiza zhiznennogo tsikla i otsenki ekologicheskoy bezopasnosti ob
  3. Telichenko V.I., Pavlov A.S., Zavoloko L.M. Metodologicheskie osnovy otsenki ekologicheskoy bezopasnosti stroitel’nykh ob
  4. Gasilov V.V., Karpovich M.A., Shitikov D.V., Dao T.B. Kriterii opredeleniya pobediteley torgov na zaklyuchenie kontraktov zhiznennogo tsikla [Criteria for Choosing Successful Bidders for Lifecycle Contracting]. Perspektivnoe razvitie nauki, tekhniki i tekhnologiy : materialy Mezhdunarodnoy nauchno-prakticheskoy konfeentsii [Prospective Development of Science, Equipment and Technologies : Materials of the International Science and Practice Conference]. Moscow, 2011, pp. 56—59. (In Russian)
  5. Gasilov V.V., Karpovich M.A., Shitikov D.V. Formirovanie kriteriya optimal’nosti i sistemy ogranicheniy dlya realizatsii kontraktov zhiznennogo tsikla v dorozhnom stroitel’stve [Criteria Formation of Optimality and Constraint System for Lifecycle Contract Implementation in Road Construction]. FES: Finansy. Ekonomika. Strategiya [FES: Finance. Economy. Strategy]. 2014, no. 3, pp. 19—22. (In Russian)
  6. Piskarev A.I. Ekspertiza ekonomicheskoy effektivnosti gosudarstvennogo zakaza [State Order Economic Efficiency Examination]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2014, no. 10, pp. 177—187. (in Russian)
  7. Benuzh A.A., Podshivalenko D.V. Otsenka sovokupnoy stoimosti zhiznennogo tsikla zdaniya s uchetom energoeffektivnosti i ekologicheskoy bezopasnosti [Determining the Aggregate Cost of Lifecycle of a Building with Account for Energy Efficiency and Ecological Safety]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. 2014, no. 10, pp. 43—46. (In Russian)
  8. Losev K.Yu. Sozdanie i vnedrenie tekhnologii upravleniya zhiznennym tsiklom ob
  9. Glass J., Dyer T., Georgopoulos C., Goodier C., Paine K., Tony Parry T., Baumann H., Gluch P. Future Use of Life-Cycle Assessment in Civil Engineering. Proceedings of the ICE: Construction Materials. 2013, vol. 166, no. 4, pp. 204—212. DOI: http://dx.doi.org/10.1680/coma.12.00037.
  10. Gluch P., Baumann H. The Life Cycle Costing (LCC) Approach: A Conceptual Discussion of Its Usefulness for Environmental Decision-Making. Building and Environment. 2004, vol. 39, no. 5, pp. 571—580. Available at: http://publications.lib.chalmers.se/records/fulltext/local_2423.pdf. Date of access: 16.08.2015. DOI: http://dx.doi.org/10.1016/j.buildenv.2003.10.008.
  11. Kulikova V.V., Belokonskaya E.G. O vozmozhnom podkhode k snizheniyu zatrat na predpriyatii vodosnabzheniya i vodootvedeniya [On the Possible Approach to Reducing Costs for Water Supply and Water Disposal]. Problemy ekonomiki, finansov i upravleniya proizvodstvom : Sbornik nauchnykh trudov vuzov Rossii [Problems of Economy, Finance and Industrial Management : Collection of Scientific Works of the Universities of Russia]. 2013, no. 33, pp. 83—89. (In Russian)
  12. Bazhenov V.I., Krivoshchekova N.A. Ekonomicheskiy analiz sistem biologicheskoy ochistki stochnykh vod na osnove pokazatelya — zatraty zhiznennogo tsikla [Economical Analysis of Wastewater Biological Treatment Systems Based on the Index of Lifecycle Cost]. Vodosnabzhenie i sanitarnaya tekhnika [Water Supply and Sanitary Engineering]. 2009, no. 2, pp. 69—74. (In Russian)
  13. Frenning L., editor. Pump Life Cycle Costs: A Guide to LCC Analysis for Pumping Systems. New Jersey, Hydraulic Institute Europump, 2001, 194 p.
  14. Emblemsveg J. Life-cycle Costing : Using Activity-Based Costing and Monte Carlo Methods to Manage Future Costs and Risk. John Wiley & Sons, Inc., Hoboken, New Jersey, 2003, 320 p.
  15. Pashatskaya T.S. Otsenka i monitoring investitsionnykh proektov [Estimation and Monitoring of Investment Projects]. Ekonomika. Biznes. Banki [Economy. Business. Banks]. 2014, vol. 3, pp. 236—244. (In Russian)
  16. Novoselov A.L., Lobkovskiy V.A. Ekologo-ekonomicheskiy analiz zameshcheniya vidov topliva pri proizvodstve teplovoy i elektricheskoy energii [Ecological and Economical Analysis of Fuel Types Substitution during Production of Thermal and Electrical Power]. Problemy regional’noy ekologii [Problems of Regional Ecology]. 2014, no. 3, pp. 71—76. (In Russian)
  17. Mulyar V.Yu. Ispol’zovanie modifitsirovannogo integral’nogo pokazatelya effektivnosti investitsiy v kachestve osnovopolagayushchego kriteriya [Use of Modified Integral Efficiency Index of Investments as a Basic Criterion]. Voprosy ekonomiki i prava [Issues of Economy and Law]. 2014, no. 69, pp. 88—92. (In Russian)
  18. Skiba A.A., Ginzburg A.V. Kolichestvennaya otsenka riskov stroitel’no-investitsionnogo proekta [Quantitative Assessment of Risks for an Investment Project in the Construction Industry]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2013, no. 3, pp. 201—206. (In Russian)
  19. Visconti R.M. Managing Healthcare Project Financing Investments: A Corporate Finance Perspective. Journal of Investment and Management. 2013, vol. 2, no. 1, pp. 10—22. Available at: http://www.sciencepublishinggroup.com/journal/archive.aspx?journalid=179&issueid=179020. Date of access: 16.08.2015. DOI: http://dx.doi.org/10.11648/j.jim.20130201.12.
  20. Oliveira W.S., Fernandes A.J., Gouveia J.J.B. Economic Metrics for Wind Energy Projects. International Journal of Energy and Environment. 2011, vol. 2, no. 6, pp. 1013—1038. Available at: http://www.ijee.ieefoundation.org/vol2/issue6/IJEE_06_v2n6.pdf. Date of access: 16.08.2015.
  21. Dhillon B.S. Life Cycle Costing for Engineers. CRC Press, Taylor & Francis Group, USA, 2010, 204 p.
  22. Hennecke F.-W. A Comparative Study of Pump Life Cycle Costs. Paper Technology. 2006, no. 10—11, pp. 20—27. Available at: http://www.hydra-cell.eu/docs/PT20-27.pdf . Date of access: 16.08.2015.
  23. Bazhenov V.I., Berezin S.E., Ustyuzhanin A.V. Obosnovanie stroitel’stva vozdukhoduvnykh stantsiy na baze ekonomicheskogo analiza zatrat zhiznennogo tsikla [Justification of the Construction of Blowing Houses Based on Economical Analysis of Lifecycle Costs]. Vodosnabzhenie i sanitarnaya tekhnika [Water Supply and Sanitary Engineering]. 2015, no. 2, pp. 46—53. (In Russian)
  24. Tipovoy proekt 902-1-135.88 Nasosno-vozdukhoduvnaya stantsiya s 8 turbokompressorami TV-300-1,6 [Typical Project 902-1-135.88 Pump-Blowing House with 8 Turbo-Compressors TV-300-1,6]. Available at: http://www.normacs.ru/Doclist/doc/UVUC.html. Date of access: 16.08.2015. (In Russian)

Download

METHODOLOGICAL BASES OF THE OPTIMIZATION OF ORGANIZATIONAL MANAGEMENT STRUCTURE AT IMPLEMENTING THE MAJOR CONSTRUCTION ENTERPRISE STRATEGY

  • Rodionova Svetlana Vladimirovna - Moscow State University of Civil Engineering (National Research University) (MGSU) Senior Lecturer, Department of Construction Economy and Management, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
  • Vlasenko Vyacheslav Aleksandrovich - Voronezh State University of Architecture and Civil Engineering (Voronezh SUACE) Candidate of Technical Sciences, Associate Professor, chair, Department of Design and Construction of Linear Objects, Voronezh State University of Architecture and Civil Engineering (Voronezh SUACE), 84 20-letiya Oktyabrya str., Voronezh, 394006, Russian Federation.

Pages 158-167

Planning and implementation of innovations on the microlevel of management and on the higher levels is a process of innovative projects portfolio implementation. Project management is aimed at some goal; therefore, defining the mission and aims of implementation is of primary importance. These are the part of the notion of development strategy of an enterprise. Creating a strategy for big construction holding companies is complicated by the necessity to account for different factors effecting each business-block and subsidiary companies. The authors specify an algorithm of development and implementation of the activity strategy of a big construction enterprise. A special importance of the correspondence of organizational management structure to the implemented strategy is shown. The innovative character of organizational structure change is justified. The authors offer methods to optimize the organizational management structure based on communication approach with the use of the elements graph theory. The offered methodological provisions are tested on the example of the Russian JSC “RZhDstroy”.

DOI: 10.22227/1997-0935.2015.9.158-167

References
  1. Kolodyazhnyy S.A., Uvarova S.S., Belyaeva S.V., Vlasenko V.A., Panenkov A.A. Organizatsionno-ekonomicheskie izmeneniya investitsionno-stroitel’nogo kompleksa na innovatsionnoy osnove kak protsess obespecheniya ego ustoychivogo razvitiya [Organizational and Economic Changes of Investment and Construction Complex on the Innovative Base as a Process to Provide its Sustainable Development]. Voronezh, VGASU Publ., 2014, 288 p. (In Russian)
  2. Meshcheryakov I.G., Syuryun A.V. Organizatsionnoe novovvedenie — neobkhodimoe uslovie zapuska mekhanizma upravleniya organizatsionnymi innovatsiyami [Organizational Innovation — a Necessary Condition of Starting the Control Mechanism of Organizational Innovations]. Sovremennye problemy nauki i obrazovaniya [Modern Problems of Science and Education]. 2013, no. 6. Available at: http://www.science-education.ru/pdf/2013/6/910.pdf. Date of access: 10.06.2015. (In Russian)
  3. Rodionova S.V. Kontseptual’nye osnovy realizatsii organizatsionnykh innovatsiy na predpriyatiyakh na osnove kommunikatsionnogo podkhoda [Conceptual Bases of Organizational Innovations Implementation on Enterprises Based on Communication Approach]. Ekonomika i predprinimatel’stvo [Economy and Entrepreneurship]. 2015, no. 4-2 (57-2), pp. 612—615. (In Russian)
  4. Uvarova S.S., Papel’nyuk O.V., Panenkov A.A. Kontseptual’nye i metodicheskie aspekty upravleniya innovatsionnym razvitiem stroitel’nogo predpriyatiya v proektsii teorii organizatsionno-ekonomicheskikh izmeneniy [Conceptual and Methodological Management Aspects of Innovative Development of a Construction Enterprise in the Theory of Organizational and Economical Changes]. Ekonomika i predprinimatel’stvo [Economy and Entrepreneurship]. 2015, no. 3—2 (56—2), pp. 809—811. (In Russian)
  5. Uvarova S.S., Kankhva V.S., Belyaeva S.V. Organizatsionno-ekonomicheskie izmeneniya investitsionno-stroitel’nogo kompleksa na mikrourovne: upravlenie i analiz [Organizational and Economical Changes in Investment and Construction Complex on Microlevel: Management and Analisys]. Moscow, MGSU Publ., 2014, 187 p. (Biblioteka nauchnykh razrabotok i proektov NIU MGSU [Library of Scientific Developments and Projects of MGSU]). (In Russian)
  6. Egbu C.O., Henry J., Kaye G.R., Quintas P., Schumacher T.R., Young B.A. Managing Organizational Innovations in Construction. Available at: http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=A6937EBCC5FF70764A82DE485682FFBC?doi=10.1.1.473.4422&rep=rep1&type=pdf/. Date of access: 10.06.2015.
  7. Vlasenko V.A. Razrabotka obshchey innovatsionnoy strategii krupnogo stroitel’nogo predpriyatiya [Development of a New Innovative Strategy of a Big Construction Enterprise]. Novoe slovo v nauke i praktike: gipotezy i aprobatsiya rezul’tatov issledovaniy v ekonomike, upravlenii proektami, pedagogike, prave, istorii, kul’turologii, yazykoznanii, prirodopol’zovanii, rastenievodstve, biologii, zoologii, khimii, politologii, psikhologii, meditsine, filologii, filosofii, sotsiologii, matematike, tekhnike, fizike, informatike, gradostroitel’stve : sbornik nauchnykh statey po itogam Mezhdunarodnoy nauchno-prakticheskoy konferentsii (28—29 noyabrya 2014 g., Sankt-Peterburg) [New Word in Science and Practice: Hypotheses and Tests of Investigation Results in Economy, Project Management, Pedagogics, Law, History, Culturology, Linguistics, Nature Management, Pland Growingm Biology, Zoology, Chemistry, Politology, Psychology, Medicine, Philology, Philosophy, Sociology, Mathematics, Technology, Physics, Informatics, Urban Development : Collection of the Scientific Articles on the Results of International Science and Practice Conference (November, 28—29, 2014, Saint Petersburg)]. Saint Petersburg, Kul’t-Inform-Press Publ., 2014, pp. 64—67. (In Russian)
  8. Vlasenko V.A., Rodionova S.V. Formirovanie strategii stroitel’nogo predpriyatiya s tochki zreniya teorii organizatsionnykh izmeneniy [Formation of a Construction Enterprise Strategy in Terms of Organizational Changes Theory]. Sovremennoe sostoyanie i prioritetnye napravleniya razvitiya ekonomiki : materialy Mezhdunarodnoy zaochnnoy nauchno-praktichesko. konferentsii [Modern State and Priority Directions of Economical Development : Materials of the International Distance Science and Practice Conference]. NGAU, Novosibirsk, 2014, pp. 37—41. (In Russian)
  9. Gumba Kh.M., Vlasenko V.A. Metodika razrabotki antikrizisnoy strategii krupnogo stroitel’nogo predpriyatiya [Methods of Anti-Crisis Strategy Development of a Major Construction Enterprise]. Ekonomika i predprinimatel’stvo [Economy and Entrepreneurship]. 2015, no. 3—2 (56—2), pp. 671—673. (In Russian)
  10. Gumba Kh.M., Vlasenko V.A. Obosnovanie teoreticheskikh osnov formirovaniya obshchey i innovatsionnoy strategii krupnogo stroitel’nogo predpriyatiya [Substantiation of Theoretical Bases of General and Innovative Strategy Formation of a Big Construction Enterprise]. Ekonomika i predprinimatel’stvo [Economy and Entrepreneurship]. 2014, no. 12—2 (53—2), pp. 789—791. (In Russian)
  11. Gumba Kh.M. Teoreticheskie osnovy innovatsionnogo razvitiya predpriyatiy stroitel’noy otrasli [Theoretical Bases of an Innovative Development of Construction Enterprises]. Moscow, MGSU Publ., 2012, 200 p. (In Russian)
  12. Semenova K.A., Gilev G.A. Proektno-orientirovannyy podkhod k upravleniyu organizatsionnymi innovatsiyami [Project-Oriented Approach to Organizational Innovations Management]. Budushchee nauki — 2013 : materialy Mezhdunarodnoy molodezhnoy nauchnoy konferentsii [Future of Science — 2013 : Materials of the International Youth Scientific Conference]. Kursk, 2013, pp. 216—220. (In Russian)
  13. Silka D.N., Ermolaev E.E. Tekhnologicheskie platformy kak instrument rasshireniya organizatsionno-ekonomicheskikh predelov razvitiya [Technological Platforms as an Instrument of Widening the Organizational and Economical Boundaries of the Development]. Naukovedenie [Science Studies]. 2014, no. 1 (20). Available at: http://naukovedenie.ru/PDF/25EVN114.pdf. Date of access: 10.06.2015. (In Russian)
  14. Papel’nyuk O.V., Sizova E.I. Empiricheskoe obosnovanie spetsificheskikh osobennostey innovatsionnoy deyatel’nosti stroitel’nykh predpriyatiy v zavisimosti ot masshtaba deyatel’nosti [Empirical Substantiation of the Specific Features of Innovative Activity in Construction Enterprises Dependent from the Range of Activity]. Vestnik Belgorodskogo gosudarstvennogo tekhnologicheskogo universiteta im. V.G. Shukhova [Bulletin of BSTU named after V.G. Shukhov]. 2015, no. 1, pp. 124—127. (In Russian)
  15. Strategiya razvitiya kholdinga «RZhD» na period do 2030 goda (osnovnye polozheniya) [Development Strategy of “RZhD” Holding Company for the Period before 2030 (Fundamental Principles)]. Ofitsial’nyy sayt RZhD [Official Site of RZhD]. Available at: http://doc.rzd.ru/doc/public/ru?STRUCTURE_ID=704&layer_id=5104&id=6396. Date of Access: 10.06.2015. (In Russian)
  16. Gennadiy Talashkin. Pervyy zamestitel’ general’nogo direktora OAO «RZhDstroy», predsedatel’ pravleniya NP SRO «MOOZhS» [Gennadiy Talashkin. Deputy Director General LLC “LZhDStroy”, Chairman of the Management Board NP SRO “MOOZhS”]. Samoregulirovanie i biznes [Self-Regulation and Business]. 2012, no. 12 (32), p. 7. (In Russian)
  17. Yas’kova N.Yu., Silka D.N. Upravlenie investitsionno-stroitel’noy deyatel’nost’yu v tsiklicheskoy dinamike [Management of Investment and Construction Activity in Cyclical Behavior]. Moscow, MGSU Publ., 2011, 214 p. (In Russian)
  18. Brannen L. Best Practices in Planning and Management Reporting. Business Finance. Oct. 1, 2003. Available at: http://businessfinancemag.com/planning-budgeting-amp-reporting/upfront-best-practices-planning-and-management-reporting/. Date of access: 10.06.2015.
  19. Howe L.D. Innovation for Organizations. Available at. http://www.innovationgame.com/pdf/igpaper.pdf. Date of access: 10.06.2015.
  20. Jablin F.M., Putnam L.L. The New Handbook of Organizational Communication: Advances in Theory, Research, and Methods. Thousand Oaks, CA: Sage Publications, 2001, 942 p.
  21. Gumba Kh.M., Rodionova S.V. Organizatsionnye innovatsii v stroitel’stve: sushchnost’ i effektivnost’ [Organizational Innovations in Construction: Essence and Efficiency]. Akademicheskaya nauka — problemy i dostizheniya : sbornik materialov V Mezhdunarodnoy nauchno-prakticheskoy konferentsii (1—2 dekabrya 2014 g., North Charleston, SC, USA) [Academic Science — Problems and Achievements : Collection of the Materials of the 5th International Science and Practice Conference (December, 1—2, 2014, North Charleston, SC, USA)]. North Charleston, SC, USA, GreatSpace, 2014, vol. 1, pp. 199—202. (In Russian)
  22. Rodionova S.V. Razrabotka metodiki otsenki effektivnosti organizatsionnykh innovatsiy s tochki zreniya kommunikatsionnogo podkhoda [Efficiency Estimation Method of Organizational Innovations in the Context of Communicational Approach]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2015, no. 6, pp. 131—139. (In Russian)

Download

ENGINEERING GEOMETRY AND COMPUTER GRAPHICS

FEATURES OF COMPUTER IMPLEMENTATION OF CONSTRUCTING PLANAR DESARGUES CONFIGURATION

  • Ivashchenko Andrey Viktorovich - Union of Designers of Moscow Candidate of Technical Sciences, designer, Union of Designers of Moscow, 90/17 Shosseynaya str., SFGA, room 206, 109383, Moscow, Russian Federation.
  • Znamenskaya Elena Pavlovna - Moscow State University of Civil Engineering (National Research University) (MGSU) Candidate of Technical Sciences, Associate Professor , Department of Descriptive Geometry and Graphics, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.

Pages 168-177

The authors present the main properties of the planar configuration of Desargues, which open the possibility of its widespread use in architectural design and the design of complex volumes, consisting of a series of simple overlapping forms. However, the computer implementation of Desargues configuration construction is associated with certain difficulties caused by the fact that the monitor can only discretely represent the graphical information. In this article we identified and analyzed the properties of Desargues configuration, the use of which allows overcoming these difficulties and solving the problem of the limited capacity of monitors in the development of complex architectural forms with the help of computer graphics. Along with this, the use of the allocated properties allows predicting complex effects of the perception of architectural forms, for example, the difference of perception of architectural objects near and afar with account for perspective distortion, and they are also the basis for the development of the algorithm of construction sequence during design.

DOI: 10.22227/1997-0935.2015.9.168-177

References
  1. Isaeva M.A., Martynyuk A.N., Matveev O.A., Ptitsyna I.V. Vvedenie v deystvitel’nuyu proektivnuyu geometriyu [Introduction to the Real Projective Geometry]. Moscow, MGOU Publ., 2010, 138 p. (In Russian)
  2. Vol’berg O.A. Osnovnye idei proektivnoy geometrii [Basic Ideas of Projective Geometry]. 4th edition. Moscow, URSS Publ., 2009, 192 p. (Nauku vsem! — Shedevry nauchno-populyarnoy literatury [Science to Everyone! — Masterpieces of Popular Scientific Literature]) (In Russian)
  3. Martynyuk A.N., Matveev O.A., Ptitsyna I.V. Elementy proektivnoy geometrii [Elements of projective geometry]. Moscow, MGOU Publ., 2010, 134 p. (In Russian)
  4. Zacharias M. Vvedenie v proektivnuyu geometriyu [Introduction into Projective Geometry]. Transl. from German. Moscow, URSS Publ., 2010, 90 p. (Fiziko-matematicheskoe nasledie: matematika (geometriya) [Physical and Mathematical Heritage: Mathematics (Geometry)]) (In Russian)
  5. Smirnov S.A. Proektivnaya geometriya [Projective Geometry]. Moscow, Nedra Publ., 1976, 176 p. (In Russian)
  6. Chetverukhin N.F. Proektivnaya geometriya [Projective Geometry]. 8th edition. Moscow, Prosveshchenie Publ., 1969, 368 p. (In Russian)
  7. Glagolev N.A. Proektivnaya geometriya [Projective Geometry]. 2nd edition, revised. Moscow, Vysshaya shkola Publ., 1963, 343 p. (In Russian)
  8. Gorshkova L.S., Pan’zhenskiy V.N., Marina E.V. Proektivnaya geometriya [Projective Geometry]. Moscow, URSS Publ., 2007, 168 p. (In Russian)
  9. Hartshorne R. Foundations of Projective Geometry. Ishi Press, 2009, 190 p.
  10. Busemann H., Kelly P.J. Projective Geometry and Projective Metrics. 2005, Dover Publications, 352 p.
  11. Baer R. Linear Algebra and Projective Geometry. 2005, Dover Publications, 336 p.
  12. Berger M. Geometriya : v 2-kh tomakh [Geometry : in 2 Volumes]. Transl. from French. Moscow, Mir Publ., 1984, vol. 1, 560 s. ; T. 2. 368 s. (In Russian)
  13. Hilbert D., Cohn-Vossen S. Anschauliche Geometrie. Springer; Auflage: 2. Aufl. 1996, 364 p.
  14. Young. J.W., Oswald V. Projective geometry. Boston Ginn, 1918, 370 p.
  15. Skiena S. Algoritmy. The Algorithm Design Manual. Springer; 2nd ed. 2008 edition, 730 p.
  16. Faux I.D., Pratt M.J. Computational Geometry for Design and Manufacture. Chichester, West Sussex, John Willey & sons, 1979, 331 p.
  17. Preparata F.P., Shamos M. Computational Geometry. An Introduction. 1985, Springer-Verlag New York, 398 p. DOI: http://dx.doi.org/ 10.1007/978-1-4612-1098-6.
  18. Ivashchenko A.V., Znamenskaya E.P. Konfiguratsiya Dezarga v arkhitekturnom i dizayn-proektirovanii [Configuration of Desargue in Architectural and Design Engineering]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2014, no. 9, pp. 154—160. (In Russian)
  19. Gamayunov V.N. Proektivografiya. Geometricheskie osnovy khudozhestvennogo konstruirovaniya dlya aspirantov slushateley FPK i studentov khuzhozhestvenno-graficheskogo fakul’teta [Projectography. Geometric Foundations of Artistic Design for Postgraduate Students of FPK and Students of Artistic-Graphical Department]. Moscow, MGPI im. V.I. Lenina, 1976, 25 p. (In Russian)
  20. Ivashchenko A.V., Kondrat’eva T.M. Proektivograficheskiy analiz mnogogrannikov Dzhonsona [Analysis of Johnson’s Polyhedra Using Projective Geometry Techniques]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2013, no. 5, pp. 226—229. (In Russian)
  21. Ivashchenko A.V., Kondrat’eva T.M. Avtomatizatsiya polucheniya proektivograficheskikh chertezhey tel Dzhonsona [Automatic Receipt of Projective Geometry Drawings of Johnson Bodies]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2014, no. 6, pp. 179—183. (In Russian)

Download