Home Vestnik MGSU Library Vestnik MGSU 2016/1

Vestnik MGSU 2016/1

DOI : 10.22227/1997-0935.2016.1

Articles count - 17

Pages - 191

University of real actions

  • Volkov Andrey Anatol`evich - Moscow State University of Civil Engineering (MGSU) , Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.

Pages 5-6

DOI: 10.22227/1997-0935.2016.1.5-6

Download

ARCHITECTURE AND URBAN DEVELOPMENT. RESTRUCTURING AND RESTORATION

Approach to defining the urban development borders of an area on the example of Kuzbass

  • Samoylova Nadezhda Aleksandrovna - Moscow State University of Civil Engineering (National Research University) (MGSU) councellor, Central Office of the Government of the Russian Federation, councellor, Russian Academy of Architecture and Construction Sciences, Assistant Lecturer, Department of Building Design and Urban Planning, Moscow State University of Civil Engineering (National Research University) (MGSU), 26, Yaroslavskoye shosse, Moscow, Russia, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 7-21

ON THE EXAMPLE OF KUZBASS The contemporary urban planning problems are of multifaceted character and are directly relevant to fundamental aspects of the development of the society - social sphere, economy, land and property relations, material environment and its safety, preservation of historical and cultural heritage, ecology. In spacial planning aspect urban planning is, first of all, planning and design, including scientifically justified legal regulation, spatial organization of territorial objects (of a country and its regions, settlements, components of planning structure: planning centers, axes, zones, etc., separate land plots), i.d. forecast of their future state - use, development or reconstruction. All these should be included into town planning documentation. The author specified the range of problematic urban planning issues, which refer to urban border areas. The methods, mechanisms and measures to define urban border areas including several interdependent urban and rural settlements situated in different city regions are offered using the example of Kuzbass. The backgrounds for the creation of BIM system for planning, design, construction and further management and operation of infrastructure objects are created within the formed urban border areas of coal mining.

DOI: 10.22227/1997-0935.2016.1.7-21

References
  1. Samoylova N.A. Sovremennye napravleniya gradostroitel’noy nauki v aspekte territorial’nogo planirovaniya [Modern Trends in Town-Planning Science in Terms of Spacial Planning]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2013, no. 11, pp. 210—217. (In Russian)
  2. Esaulov G.V. Osnovnye polozheniya gradostroitel’noy doktriny Rossiyskoy Federatsii [Fundamentals of Urban Planning Doctrine of the Russian Federation]. Nauchnye i prakticheskie aspekty formirovaniya gorodskikh aglomeratsiy : sbornik materialov po problemam razvitiya gorodskikh aglomeratsiy v stranakh SNG k nauchno-prakticheskoy konferentsii [Scientific and Practical Aspects of Urban Communities Formation : Collection of the Materials on the Problems of Urban Communities Development in CIS Countries to Science and Practice Conference]. Oscow, Minregion razvitiya Rossii Publ., 2011, pp. 9—12. (In Russian)
  3. Gradostroitel’nyy kodeks Rossiyskoy Federatsii : ot 29.12.2004 № 190-FZ (v red. ot 13.07.2015) [Town Planning Code of the Russian Federation from 29.12.2004 no. 190-FZ (edition from 13.07.2015). (In Russian)
  4. Postanovlenie Pravitel’stva RF ot 13.11.2006 № 680 (red. ot 06.02.2012). O sostave skhem territorial’nogo planirovaniya Rossiyskoy Federatsii [RF Government Decree from 13.11.2006 no. 680 (edition from 06.02.2012). On the Composition of Area Planning Schemes of the Russian Federation]. (In Russian)
  5. Postanovlenie Pravitel’stva RF ot 26.11.2012 № 1220 (red. ot 28.10.2014). O sostave, poryadke podgotovki i soglasovaniya proekta skhemy territorial’nogo planirovaniya Rossiyskoy Federatsii v oblasti oborony strany i bezopasnosti gosudarstva, a takzhe poryadke vneseniya izmeneniy v takuyu skhemu [RF Government Decree from 26.11.2012 no. 1220 (edition from 28.10.2014). On the Composition, Preparation and Approval Procedures of Area Planning Scheme of the Russian Federation Concerning National Defense and Safety of the State and the Procedure for the Introduction of Amendments in Such a Scheme]. (In Russian)
  6. SP 42.13330.2011. Gradostroitel’stvo. Planirovka i zastroyka gorodskikh i sel’skikh poseleniy : aktualizirovannaya redaktsiya SNiP 2.07.01—89* [Requirements SP 42.13330.2011. Urban Development. Planning and Development of Urban and Rural Territories : Revised Edition of Construction Rules SNiP 2.07.01—89*]. Moscow, Minregion Rossii Publ., 2011, 109 p. (In Russian)
  7. Metodicheskie rekomendatsii po razrabotke proektov skhem territorial’nogo planirovaniya Rossiyskoy Federatsii v oblastyakh federal’nogo transporta (zheleznodorozhnogo, vozdushnogo, morskogo, vnutrennego vodnogo, truboprovodnogo), avtomobil’nykh dorog federal’nogo znacheniya, energetiki, vysshego obrazovaniya i zdravookhraneniya : utverzhdennye Prikazom Minregiona Rossii ot 25.10.2013 № 452 [Methodological Recommendations on Development of the Projects of Area Planning Schemes of the Russian Federation in the Areas of Federal Transport (Railway, Air, Sea, Inland Water, Pipeline), Automobile Roads of Federal Value, Energy Sector, Higher Education and Health Care : Confirmed by the Decree of the Ministry of Regional Development of the Russian Federation from 25.10.2013 no. 452]. (In Russian)
  8. Metodicheskie rekomendatsii po podgotovke proektov skhem territorial’nogo planirovaniya sub”ektov Rossiyskoy Federatsii : utverzhdennye Prikazom Minregiona Rossii ot 19.04.2013 № 169 [Methodological Recommendations on Preparing the Projects of Area Planning Schemes of the Constituent Territories of the Russian Federation : Confirmed by the Decree of the Ministry of Regional Development of the Russian Federation from 19.04.2013 no. 169. (In Russian)
  9. Metodicheskie rekomendatsii po razrabotke proektov general’nykh planov poseleniy i gorodskikh okrugov : utverzhdennye Prikazom Minregiona Rossii ot 26.05.2011 № 244 [Methodological Recommendations on Developing the Projects of General Layouts of Settlements and Urban Districts : Confirmed by the Decree of the Ministry of Regional Development of the Russian Federation from 26.05.2011 № 244]. (In Russian)
  10. MDS 11-7.2000. Instruktsiya o sostave, poryadke razrabotki, soglasovaniya i utverzhdeniya gradostroitel’noy dokumentatsii : utverzhdennaya postanovleniem Gosstroya Rossii ot 22.12.1993 № 18-58 (ne deystvuet s utverzhdeniya postanovleniya Gosstroya Rossii ot 29 oktyabrya 2002 g. № 150 SNiP 11-04—2003) [MDS 11-7.2000. Instruction on the Composition, Procedure of Development, Approval and Adoption of Urban Planning Documentation: Confirmed by the Decree of the State Committee of the Russian Federation for Construction and the Housing and Utilities Complex from 22.12.1993 no. 18-58 (is not in power since the confirmation of Decree of the State Committee of the Russian Federation for Construction and the Housing and Utilities Complex from October 22, 2002 no. 150 SNiP 11-04—2003)]. (In Russian)
  11. Vil’ner M.Ya. O prostranstvennoy organizatsii obustroystva territorii Rossii na professional’noy osnove [On Spatial Organization of Russian Territory on the Professional Basis]. Gradostroitel’naya kul’tura. Traditsii i perspektivy : materialy Mezhdunarodnoy konferentsii (18—19 sentyabrya 2014 g.) [City Planning Culture. Traditions and Prospects : Materials of the International Conference (September 18—19, 2014)]. Saint Petersburg, Zodchiy Publ., 2014. (In Russian)
  12. Anikeev V.V., Vladimirov V.V. Gradostroitel’nye problemy sovershenstvovaniya administrativno-territorial’nogo ustroystva : trudy RAASN [Town Planning Problems of Advancing Administrative and Territorial Arrangement : Works of the Russian Academy of Architecture and Construction Sciences]. Moscow, Editorial URSS, 2002, 120 p. (Teoreticheskie osnovy gradostroitel’stva) [Theoretical Fundamentals of Urban Development] (In Russian)
  13. Glazychev V.L. Gorod bez granits [City without Borders]. Moscow, Territoriya budushchego Publ., 2011, 400 p. (In Russian)
  14. Krivov A.S. Proekt «Natsional’naya sistema rasseleniya Rossiyskoy Federatsii — XXI vek» [Project “National Settlement System in the Russian Federation — 21st Century]. Available at: http://www.gisa.ru/91719.html. Date of access: 10.11.2014. (In Russian)
  15. Lezhava I.G. Goroda Rossii. Problemy proektirovaniya i realizatsii [Cities of Russia. Problems of Design and Implementation]. Gradostroitel’stvo [Urban Development]. 2013, no. 3 (25), pp. 9—17. (In Russian)
  16. Lola A.M. Gorodskoe i aglomeratsionnoe upravlenie v Rossii. Sostoyanie i chto delat’ [Urban and Agglomeration Management in Russia. State and What is to Be Done]. Moscow, Kanon+ROOI Publ., 2013, 292 p. (In Russian)
  17. Maloyan G.A. Aglomeratsiya — gradostroitel’nye problemy [Agglomeration — Urban Development Problems]. Moscow, ASV Publ., 2010, 120 p. (In Russian)
  18. Lyubovnyy V.Ya., Sdobnov Yu.A. Moskva i stolichnyy region: problemy regulirovaniya sotsial’no-ekonomicheskogo i prostranstvennogo razvitiya [Moscow and Metropolitan Area: Management Problems of Social-Economic and Spatial Development]. Moscow, Ekon-Inform Publ., 2011, 401 p. (In Russian)
  19. Federal’nyy zakon ot 01.12.2007 № 310-FZ. Ob organizatsii i o provedenii XXII Olimpiyskikh zimnikh igr i XI Paraolimpiyskikh zimnikh igr 2014 goda v gorode Sochi, razvitii goroda Sochi kak gornoklimaticheskogo kurorta i vnesenii izmeneniy v otdel’nye zakonodatel’nye akty Rossiyskoy Federatsii [Federal Law from 01.12.2007 no. 310-FZ. On Organization and Hosting 22nd Winter Olympic Games and 11th Winter Paralympic Games of the 2014 in Sochi, Development of Sochi City as Alpine Climatic Resort and Introducing Amendments into Separate Legislative Acts of the Russian Federation]. (In Russian)
  20. Federal’nyy zakon ot 08.05.2009 № 93-FZ. Ob organizatsii provedeniya vstrechi glav gosudarstv i pravitel’stv stran — uchastnikov foruma «Aziatsko-tikhookeanskoe ekonomicheskoe sotrudnichestvo» v 2012 godu, o razvitii goroda Vladivostoka kak tsentra mezhdunarodnogo sotrudnichestva v Aziatsko-Tikhookeanskom regione i o vnesenii izmeneniy v otdel’nye zakonodatel’nye akty Rossiyskoy Federatsii [Federal Law from 08.05.2009 no. 93-FZ. On Holding of a Meeting of the Heads of States and Governments of the Countries — Participants of the Forum “APEC” in 2012, on the Development of Vladivostok City as a Center of International Cooperation in Asia-Pacific Region and on Introducing Amendments into Separate Legislative Acts of the Russian Federation]. (In Russian)
  21. Federal’nyy zakon ot 28.09.2010 № 244-FZ. Ob innovatsionnom tsentre «Skolkovo» [Federal Law from 28.09.2010 no. 244-FZ. On Innovation Center “Skolkovo”]. (In Russian)
  22. Federal’nyy zakon ot 05.04.2013 № 43-FZ. Ob osobennostyakh regulirovaniya otdel’nykh pravootnosheniy v svyazi s prisoedineniem k sub”ektu Rossiyskoy Federatsii — gorodu federal’nogo znacheniya Moskve territoriy i o vnesenii izmeneniy v otdel’nye zakonodatel’nye akty Rossiyskoy Federatsii [Federal Law from 05.04.2013 no. 43-FZ. On Regulatory Aspects of Separate Legal Relations Resulting from Accession of Territories to the Constituent Territory of the Russian Federation — a City of Federal Value Moscow and on Introducing Amendments into Separate Legislative Acts of the Russian Federation]. (In Russian)
  23. Federal’nyy zakon ot 07.06.2013 № 108-FZ. O podgotovke i provedenii v Rossiyskoy Federatsii chempionata mira po futbolu FIFA 2018 goda, Kubka konfederatsiy FIFA 2017 goda i vnesenii izmeneniy v otdel’nye zakonodatel’nye akty Rossiyskoy Federatsii [Federal Law from 07.06.2013 no. 108-FZ. On Preparation and Hosting FIFA World Cup 2018, FCC 2017 in Russian Federation and Introducing Amendments into Separate Legislative Acts of the Russian Federation]. (In Russian)
  24. Federal’nyy konstitutsionnyy zakon № 12-FKZ ot 21.07.2014. O vnesenii izmeneniy v Federal’nyy konstitutsionnyy zakon «O prinyatii v Rossiyskuyu Federatsiyu Respubliki Krym i obrazovanii v sostave Rossiyskoy Federatsii novykh sub”ektov — Respubliki Krym i goroda federal’nogo znacheniya Sevastopolya» [Federal Constitutional Law “On Admission of Republic of Crimea into Russian Federation and Formation of New Constituent Territories within the Russian Federation — Republic of Crimea and a City of Federal Value Sevastopol”]. (In Russian)
  25. Federal’nyy zakon № 473-FZ ot 29.12.2014 g. O territoriyakh operezhayushchego sotsial’no-ekonomicheskogo razvitiya v Rossiyskoy Federatsii [Federal Law no. 473-FZ from 29.12.2014. On the Territories of Faster Social-Economic Development in the Russian Federation]. (In Russian)
  26. Lezhava I.G., Smolyar I.M. Analiz kontseptual’nykh idey v arkhitekture i gradostroitel’stve v razreze reform zhilishchnoy politiki : nauchnyy otchet MARKhI [Analysis of Conceptual Ideas in Architecture and Urban Development from a Perspective of Housing Policy Reforms : Scientific Review of Moscow Institute of Architecture]. July—November 1993. (In Russian)
  27. Ugol’ kuzbassa, kuznetskiy basseyn [Coal of Kuzbass, Kuznets Basin]. Available at: http://www.trans-ugol.ru/spravka/ugol-kuzbassa. Date of access: 05.11.2015. (In Russian)
  28. Alekseev Yu.V., Samoylova N.A. Podkhod k organizatsii gradostroitel’nogo planirovaniya i formirovaniyu granitsy gradostroitel’nogo ugledobyvayushchego areala [Approach to Organization of Urban Development Planning and to Forming Borders of an Urban Development Coal Mining Area]. Arkhitektura i stroitel’stvo Rossii [Architecture and Construction of Russia]. 2015, no. 8, pp. 30—39. (In Russian)
  29. Torzhestvennaya tseremoniya nagrazhdeniya pobediteley professional’nogo konkursa NOPRIZ na luchshiy innovatsionnyy proekt [High-Profile Award Ceremony of the Winners of the Professional Competition NOPRIZ for the Best Innovative Project]. NOPRIZ. Available at: http://nopriz.ru/news/vse_novosti/itogi_torzhestvennoy_tseremonii_nagrazhdeniya_pobediteley_konkursa_nopriz_na_luchshiy_innovatsionnyy/. Date of access: 13.11.2015. (In Russian)
  30. Atlas svetovoy zasvetki [Atlas of Light Flare]. Available at: http://www.lightpollutionmap.info/#zoom=5&lat=7890466.41711&lon=9864932.67908&layers=B0TFFFFTT. Date of access: 15.07.2015. (In Russian)
  31. Rodionovskaya I.S., Uporova P.V. Ekologizatsiya predmagistral’noy sredy: arkhitekturnye tekhnologii [Ecologization of Premainline Environment: Architectural Technologies]. Zhilishchnoe stroitel’stvo [Housing Construction]. 2013, no. 9, pp. 27—29. (In Russian)
  32. Belyaev V.L. Osnovy podzemnogo gradoustroystva [Fundamentals of Underground Urban Development]. Moscow, MGSU Publ., 2012, 255 p. (Biblioteka nauchnykh razrabotok i proektov MGSU) [Library of Scientific Developments and Projects of MGSU] (In Russian)
  33. Alekseev Yu.V., Somov G.Yu. Predproektnaya otsenka gradostroitel’no-investitsionnogo potentsiala slozhivsheysya zhiloy zastroyki [Pre-Project Evaluation of Urban Development and Investment Potential of the Existing Residential Construction]. Moscow, NIU MGSU Publ., 2015, 152 p. (Biblioteka nauchnykh razrabotok i proektov NIU MGSU) [Library of Scientific Developments and Projects of MGSU] (In Russian)
  34. Alekseev Yu.V., Samoylova N.A. Osobennosti formirovaniya gradostroitel’noy informatsionnoy sistemy dlya territorii ugol’nogo basseyna [Formation Features of Urban Development Information System for Coal-Basin Territories]. Gradostroitel’stvo [Urban Development]. 2015, no. 4, pp. 21—27. (In Russian)

Download

Reconstruction project of a bell tower of Joseph of Volokolamsk monastery: architectural, town-planning and structural aspects

  • Tsvetkov Konstantin Aleksandrovich - Moscow State University of Civil Engineering (National Research University) (MGSU) Candidate of Technical Sciences, Associate Professor, Department of Strength of Materials, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Naumova Yuliya Igorevna - Moscow State University of Civil Engineering (National Research University) (MGSU) Master student on the program “Reconstruction and Restoration of Buildings and Structures”, Department of Architecture of Civil and Industrial Buildings, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 22-34

ASPECTS All over the world a lot of unique architectural monuments are lost according to different reasons. The role of cultural objects can hardly be overestimated and their total loss is irretrievable. Preservation of architectural monuments and complexity of their investigation and design solutions development depend on many factors: age of the monument, structural peculiarities, geographical position, their value as objects of cultural heritage, etc. The article offers the description of a reconstruction project of a bell tower in Joseph of Volokolamsk Monastery, which had been destructed in 1941. The bell tower in Joseph of Volokolamsk Monastery situated in Volokolamsk region of the Moscow Region near village Teryaevo is an outstanding example of the architecture and construction technologies of the 16th-17th centuries. The design group conducted extensive research, made a conclusion on the state of the surviving elements and offered several variants of bell tower reconstruction. It was decided to reconstruct the bell tower over the surviving first tier with transferring the loads to the new bearing structure. The first tier is being reconstructed and preserved.

DOI: 10.22227/1997-0935.2016.1.22-34

References
  1. Zhilenko O.B., Alekseenko V.N. Rezul’taty obsledovaniya pamyatnika arkhitektury XIX veka — khrama Svyatykh Apostolov Petra i Pavla v g. Sevastopole [Inspection Results of the Architectural Monument of the 19th Century — St. Peter and St. Paul’s Church in Sevastopol]. Stroitel’stvo unikal’nykh zdaniy i sooruzheniy [Construction of Unique Buildings and Structures]. 2014, no. 12 (27), pp. 90—111. (In Russian)
  2. Kopylova N.S., Korzun N.L. Restavratsiya pamyatnikov arkhitektury v Irkutske (na primere dokhodnogo doma po ulitse Fridrikha Engel’sa, byvshey Zhandarmskoy) [Restoration of Architectural Monuments in Irkutsk (on the Example of the Tenement Building on Friedrich Engels Street, the Former Zhandarmskaya Street)]. Izvestiya vuzov. Investitsii. Stroitel’stvo. Nedvizhimost’ [News of Higher Educational Institutions. Investment. Construction. Real Estate]. 2014, no. 1 (6), pp. 111—125. (In Russian)
  3. Meshcheryakov V.V. Muzeefikatsiya dvortsa Menshikova v Sankt-Peterburge [Museumification of Menshikov Palace in Saint Petersburg]. Vestnik Sankt-Peterburgskogo universiteta. Seriya 2: Istoriya [Vestnik of Saint-Petersburg University. Series 2. History]. 2008, no. 3, pp. 173—183. (In Russian)
  4. Osmanov E.E Mecheti Biyuk Khan-Dzhami i Takhtaly-Dzhami v Bakhchisarae [The Mosques Juma-Jami and Tahtali-Jami in Bakhchisarai]. Uchenye zapiski Tavricheskogo natsional’nogo universiteta im. V.I. Vernadskogo. Seriya «Istoricheskie nauki» [Scientific Notes of Taurida National V.I. Vernadsky University. Series: Historical Sciences]. 2014, vol. 27 (66), no. 4, pp. 65—75. (In Russian)
  5. Beloyarskaya I.K. Istoriko-restavratsionnye issledovaniya teploy tserkvi Bogoyavleniya Georgievskogo prikhoda v gorode Vologde [Historical and Restoration Investigations of the Ward Church of the Church of the Epiphany of the Saint George Parish in Vologda]. Arkhitekton: izvestiya vuzov. Teoriya arkhitektury [Architecton: Proceedings of Higher Education. Theory of Architecture]. 2015, no. 50. Available at: http://archvuz.ru/2015_2/9. Date of access: 04.08.2015. (In Russian)
  6. Darley G. A Future for Farm Buildings. London, SAVE Britain`s heritage, 1988.
  7. Volker Stoll, Carsten Leibenart. Geotechnische und Hydrogeologische Arbeiten fur den Wiederaufbau der Frauenkirche Dresden und deren Umfeld. Prirodnye usloviya stroitel’stva i sokhraneniya khramov pravoslavnoy Rusi : sbornik tezisov 5-go Mezhdunarodnogo nauchno-prakticheskogo simpoziuma [Natural Conditions of Construction and Preservation of the Cathedrals of Orthodox Russia : Collection of Abstracts of the 5th International Science and Practice Symposium]. N. Novgorod, 2013, pp. 41—49. (In Russian)
  8. Stubbs J.H., Makaš E.G., Bouchenaki M. Architectural Conservation in Europe and the Americas. Hoboken, New Jersey, John Willey & Sons, Inc., 2011, 512 p.
  9. Zhidkov A.A., Nazarov I.A., Gorelov V.A. Instrumental’nye obmery Khrama Khrista Spasitelya: vossozdanie dukhovnogo velichiya [Tool Measurements of the Cathedral of Christ the Saviour: Reconstruction of the Spiritual Greatness]. Geodezist” [Geodesist]. 2001, no. 5, pp. 20—21. (In Russian)
  10. Katrunova E.I. Proekt rekonstruktsii tserkvi Uspeniya Bogoroditsy na Sennoy ploshchadi arkhitektora D.A. Butyrina [Reconstruction Project of the Church of Dormition of the Mother of God on Sennaya Square by the Architect D.A. Butrin]. Aktual’nye problemy teorii i istorii iskusstva : sbornik statey 3-ey Mezhdunarodnoy konferentsii molodykh spetsialistov [Current Problems of the Theory and History of Art : Collection of Articles of the 3rd International Conference of Young Specialists]. 2012. Available at: http://www.actual-art.org/131-st2012/rus19/512-katrunova-tserkov-uspeniya-na-sennoj.html. Date of access: 04.08.2015. (In Russian)
  11. Drobotushenko E.V. Arkhitekturnyy ansambl’ Chikoyskogo Ioanno-Predtechenskogo monastyrya kak ob”ekt istoricheskogo izucheniya. Po materialam polevykh issledovaniy [Architectural Complex of the Chikoysk John- Predtechensky Monastery as an Object of Historical Investigation]. Balandinskie chteniya [Balandinsk Readings]. 2014, no. 1, pp. 222—228. (In Russian)
  12. Kozlova G.S. Revalorizatsiya arkhitekturnogo ansamblya Chudotvorskoy tserkvi v g. Irkutske [Revaluation of the Architectural Complex of Thaumaturgy Church in Irkutsk]. Balandinskie chteniya [Balandinsk Readings]. 2014, vol. 9, no. 2, pp. 31—40. (In Russian)
  13. Kuznetsova-Pavskaya E.S., Letvinova O.G. Graficheskaya rekonstruktsiya tserkvi Vozneseniya v sele Khaldeevo Tomskoy gubernii [Graphical Reconstruction of the Ascension Church in Khaldeevo Village of Tomsk Province]. Izbrannye doklady 60-y nauchno-tekhnicheskoy konferentsii studentov i molodykh uchenykh. (24—25 aprelya 2014 g.) [Selected Works of the 60th Science and Technical Conference of Students and Young Scientists (April 24—25, 2014)]. Tomsk, TGASU Publ., 2015, pp. 261—267. (In Russian)
  14. Blagovidova N.G. Novo-Ierusalimskiy monastyr’ kak unikal’nyy dukhovno-prosvetitel’skiy tsentr [New Jerusalem Monastery as a Unique Spiritual and Educational Center]. Arkhitekton: izvestiya vuzov. Istoriya arkhitektury [Architecton: Proceedings of Higher Education. History of Architecture]. 2013, no. 41. Available at: http://archvuz.ru/2013_1/13. Date of access: 04.08.2015. (In Russian)
  15. Kurlaev E.A. Rekonstruktsiya oblika metallurgicheskogo zavoda XVIII v. v vide komp’yuternoy modeli [Reconstruction of the Appearance of Ironworks of the 18th Century as a Computer Model]. Ekonomicheskaya istoriya [Economical History]. 2008, no. 6, pp. 9—17. (In Russian)
  16. Dragomirov D.Yu. Komp’yuternaya trekhmernaya rekonstruktsiya pamyatnikov arkhitektury [Computer 3D Reconstruction of Architectural Monuments]. Vestnik Udmurtskogo universiteta [The Bulletin of Udmurt University]. 2006, no. 12, pp. 141—144. (In Russian)
  17. Anikeeva S.O. Ob opyte ispol’zovaniya tekhnologii BIM dlya muzeefikatsii derevyannykh pamyatnikov arkhitektury [On the Experience of Using BIM Technology for Museumification of Wooden Architectural Monuments]. Vestnik Tomskogo gosudarstvennogo universiteta. Kul’turologiya i iskusstvovedenie [Tomsk State University Journal. Culturology and Art History]. 2014, no. 1 (13), pp. 31—36. (In Russian)
  18. Anikeeva S.O. Vossozdanie utrachennykh pamyatnikov istorii i arkhitektury s pomoshch’yu tekhnologii BIM (na primere doma s pechkoy, s. Panovo, Krasnoyarskiy kray) [Reconstruction of the Lost Historical and Architectural Monuments Using BIM Technologies (on the Example of a House with a Stove, Village Panovo, Krasnodar Region]. Vestnik Tomskogo gosudarstvennogo universiteta. Istoriya [Tomsk State University Journal. History]. 2013, no. 3 (23), pp. 7—9. (In Russian)
  19. RGADA. F. 1192.Op. 3. D. 10a. [Russian State Archive of Ancient Documents].(In Russian)
  20. RGADA. F. 280. Op. 3. D. 211. [Russian State Archive of Ancient Documents].(In Russian)
  21. TsIAM. F. 206. Op. 1. D. 1528. [Russian State Archive of Ancient Documents].(In Russian)
  22. RGADA. F. 1192. Op. 4. D. 1. [Russian State Archive of Ancient Documents].(In Russian)
  23. TsIAM. F. 454. Op. 3. D. 6. [Russian State Archive of Ancient Documents]. (In Russian)
  24. Ob okhrane i ispol’zovanii pamyatnikov istorii i kul’tury (v red. Ukazov Prezidiuma VS RSFSR ot 18.01.1985 g., Federal’nogo zakona ot 25.06.2002. № 73-FZ) St. 35 [On Preservation and Use of Historical and Cultural Monuments (in Edition of the Decree of the Supreme Soviet of the Russian Soviet Federative Socialist Republic from 18.01.1985, Federal Law from 25.06.2002. No. 73-FZ), article 35]. (In Russian)
  25. Ob ob”ektakh kul’turnogo naslediya (pamyatnikakh istorii i kul’tury) narodov Rossiyskoy Federatsii : federal’nyy zakon Rossiyskoy Federatsii ot 25 iyunya 2002 g. № 73-FZ (s izmeneniyami na 13 iyulya 2015 goda) [On Objects of Cultural Heritage (Historical and Cultural Monuments) of the Peoples of the Russian Federation from June 25, 2002 no. 73-FZ (with Amendments from July, 13, 2015]. Rosiyskaya gazeta [Russian Newspaper]. 2003, March, article 5.1. (In Russian)
  26. RGADA. F. 1192. Op. 4. D. 1. L. 65. [Russian State Archive of Ancient Documents]. (In Russian)

Download

DESIGNING AND DETAILING OF BUILDING SYSTEMS. MECHANICS IN CIVIL ENGINEERING

Calculation of dynamic load impact on reinforced concrete arches in the ground

  • Barbashev Nikita Petrovich - Moscow State University of Civil Engineering (National Research University) (MGSU) Senior Lecturer, Department of Reinforced Concrete and Masonry Structures, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow,129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 35-43

Concrete arches are widely used in the construction of underground facilities. The analysis of their work under dynamic loads (blasting, shock, seismic) will improve the efficiency of design and application. The article addresses the problems of calculation of reinforced concrete arches in the ground in terms of the action of dynamic load - compression wave. The calculation is made basing on the decision of a closed system of equations that allows performing the calculation of elastic-plastic curved concrete structures under dynamic loads. Keeping in mind the properties of elastic-plastic reinforcement and concrete in the process of design variations, σ-ε diagrams are variable. The calculation is performed by the direct solution of differential equations in partial derivatives. The result is based on a system of ordinary differential equations of the second order (expressing the transverse and longitudinal oscillations of the structure) and the system of algebraic equations (continuity condition of deformation). The computer program calculated three-hinged reinforced concrete arches. The structural calculations were produced by selection of the load based on the criteria of reaching the first limit state: ultimate strain of compressed concrete; ultimate strain tensile reinforcement; the ultimate deformation of the structure. The authors defined all the characteristics of the stress-strain state of the structure. The presented graphs show the change of bending moment and shear force in time for the most loaded section of the arch, the dependence of stresses and strains in concrete and reinforcement, stress changes in time for the cross-sectional height. The peculiarity of the problem is that the action of the load provokes the related dynamic forces - bending moment and longitudinal force. The calculations allowed estimating the carrying capacity of the structure using the criteria of settlement limit states. The decisive criterion was the compressive strength of concrete.

DOI: 10.22227/1997-0935.2016.1.35-43

References
  1. Rastorguev B.S., Vanus D.S. Otsenka bezopasnosti zhelezobetonnykh konstruktsiy pri chrezvychaynykh situatsiyakh tekhnogennogo kharaktera [Safety Estimation of Reinforced Concrete Structures in Case of Emergencies]. Stroitel’stvo i rekonstruktsiya [Construction and Reconstruction]. 2014, no. 6 (56), pp. 83—89. (In Russian)
  2. Rastorguev B.S. Obespechenie zhivuchesti zdaniy pri osobykh dinamicheskikh vozdeystviyakh [Providing Reliability of Buildings in Case of Specific Dynamic Loads]. Seysmostoykoe stroitel’stvo. Bezopasnost’ sooruzheniy [Antiseismic Construction. Safety of Structures]. 2003, no. 4, pp. 45—48. (In Russian)
  3. Tamrazyan A.G. Rekomendatsii k razrabotke trebovaniy k zhivuchesti zdaniy i sooruzheniy [Recommendations to the Development of Requirements to Reliability of Buildings and Structures]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2011, no. 2—1, pp. 77—83. (In Russian)
  4. Modena C., Tecchio G., Pellegrino C., da Porto F., Donà M., Zampieri P., Zaninix M.A.Reinforced Concrete and Masonry Arch Bridges in Seismic Areas: Typical Deficiencies and Retrofitting Strategies. Structure and Infrastructure Engineering. 2014, vol. 11, issue 4,pp. 415—442. DOI: http://dx.doi.org/10.1080/15732479.2014.951859.
  5. Wu Q.X., Lin L.H., Chen B.C. Nonlinear Seismic Analysis of Concrete Arch Bridge with Steel Webs. International Efforts in Lifeline Earthquake Engineering : Proceedings of the 6th China-Japan-US Trilateral Symposium on Lifeline Earthquake Engineering. 2014,
  6. pp. 385—392. DOI: http://dx.doi.org/10.1061/9780784413234.050.
  7. Tamrazyan A.G. K otsenke riska chrezvychaynykh situatsiy po osnovnym priznakam ego proyavleniya na sooruzhenie [Emergency Risk Estimation According to Its Main Indicators]. Beton i zhelezobeton [Concrete and Reinforced Concrete]. 2001, no. 5, pp. 8—10.(In Russian)
  8. Filimonova E.A. Metodika poiska optimal’nykh parametrov zhelezobetonnykh konstruktsiy s uchetom riska otkaza [Identification of Optimal Parameters of Reinforced Concrete Structures with Account for the Probability of Failure]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2012, no. 10, pp. 128—133.
  9. Tamrazyan A.G., Dudina I.V. Obespechenie kachestva sbornykh zhelezobetonnykh konstruktsiy na stadii izgotovleniya [Providing the Quality of Precast Reinforced Concrete Structures on Production Stage]. Zhilishchnoe stroitel’stvo [Housing Construction]. 2001,no. 3, pp. 8—10. (In Russian)
  10. Tamrazyan A.G. Analiz riska kak instrument prinyatiya resheniy stroitel’stva podzemnykh sooruzheniy [Risk Analysis as an Instrument of Decision Making in Underground Construction]. Zhilishchnoe stroitel’stvo [Housing Construction]. 2012, no. 2, pp. 6—7.(In Russian)
  11. Gorbatov S.V., Smirnov S.G. Raschet prochnosti vnetsentrenno-szhatykh zhelezobetonnykh elementov pryamougol’nogo secheniya na osnove nelineynoy deformatsionnoy modeli [Calculating the Stability of Reinforced Concrete Beam Columns with Rectangular Cross-section Basing on Nonlinear Deformation Model]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2011, no. 2, vol. 1, pp. 72—76. (In Russian)
  12. Zharnitskiy V.I., Belikov A.A. Eksperimental’noe izuchenie voskhodyashchikh i niskhodyashchikh uchastkov diagramm soprotivleniya betonnykh i zhelezobetonnykh prizm [Experimental Investigation of Upward and Downward Areas of a Diagram of a Resistance Log of Concrete and Reinforced Concrete Wedges]. Nauchnoe obozrenie [Scientific Review]. 2014, no. 7—1, pp. 93—98. (In Russian)
  13. Kurnavina S.O. Tsiklicheskiy izgib zhelezobetonnykh konstruktsiy s uchetom uprugoplasticheskikh deformatsiy armatury i betona [Cyclic Bending of Reinforced Concrete Structures with Account for Elastic-Plastic Deformetions of Reinforcement and Conncrete]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2011, no. 2, vol. 1, pp. 154—158. (In Russian)
  14. Zharnitskiy V.I., Golda Yu.L., Kurnavina S.O. Otsenka seysmostoykosti zdaniya i povrezhdeniy ego konstruktsiy na osnove dinamicheskogo rascheta s uchetom uprugoplasticheskikh deformatsiy materialov [Evaluation of Seismic Resistance of a Building and Damages of its Structures Besing on the Dynamic Calculation with Account for Elastic-Plastic Deformations of a Material]. Seysmostoykoe stroitel’stvo. Bezopasnost’ sooruzheniy [Antiseismic Construction. Safety of Structures]. 1999, no. 4, p. 7. (In Russian)
  15. Schiesser W.E. and Griffiths G.W. A Compendium of Partial Differential Equation Models: Method of Lines Analysis with Matlab. United Kingdom, City University, 1 January 2009, pp. 1—476.
  16. Saucez P., Vande Wouwer A. Schiesser W.E., Zegeling P. Method of Lines Study of Nonlinear Dispersive Waves. Journal of Computational and Applied Mathematics. 1 July 2004, vol. 168, issue 1—2, pp. 413—423. DOI: http://dx.doi.org/10.1016/j.cam.2003.12.012.
  17. Bakhvalov N.S., Zhidkov N.P., Kobel’kov G.M. Chislennye metody [Numerical Methods]. 3rd edition, revised and enlarged. Moscow, BINOM. Laboratoriya znaniy Publ., 2012, 640 p. (In Russian)
  18. Timoshenko S.P. Kolebaniya v inzhenernom dele [Oscillations in Engineering]. Translated from English. 3rd edition. Moscow, KomKniga Publ., 2007, 440 p. (In Russian)
  19. Zharnitskiy V.I., Barbashev N.P. Kolebaniya krivolineynykh zhelezobetonnykh konstruktsiy pri deystvii intensivnykh dinamicheskikh nagruzok [Oscillations of Curved Reinforced Concrete Structures in Case of Intensive Dynamic Loads]. Nauchnoe obozrenie [Scientific Review]. 2015, no. 4, pp. 147—154. (In Russian)
  20. Belikov A.A., Zharnitskiy V.I. Uprugoplasticheskie kolebaniya zhelezobetonnykh balok pri deystvii poperechnoy i prodol’noy dinamicheskikh nagruzok [Elastic-Plastic Oscillations of Reinforced Concrete Beams in Case of Transverse and Longitudinal Dynamic Loads]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2011, no. 2—1, pp. 145—147. (In Russian)
  21. Barbashev N.P. K raschetu zhelezobetonnogo kol’tsa v grunte na deystvie volny szhatiya [Calculation of a Reinforced Concrete Circle in Soil in Case of Compression Wave Action]. Nauchnoe obozrenie [Scientific Review]. 2015, no. 10—1, pp. 79—83. (In Russian)

Download

Initial forces values in the double-layer metal dome in case of elimination of normal and meridional imperfections of installation

  • Grigoryan Artem Akopovich - Moscow State University of Civil Engineering (National Research University) (MGSU) postgraduate student, Department of Metal Structures, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Lebed' Evgeniy Vasil’evich - Moscow State University of Civil Engineering (National Research University) (MGSU) Candidate of Technical Sciences, Associate Professor, Department of Metal Structures, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 44-56

OF INSTALLATION Computer analysis of the values of the initial forces due to force elimination of assembly errors of double-layer framed metal dome has been performed. The position errors of nodes of pair meridional ribs were considered in the normal and meridional directions at installation of the dome frame with temporary central support. For selected nodes concentrated forces were applied to eliminate the relative deviations of adjacent ribs and the resulting internal forces in the bars were registered. The values of these internal forces were compared to the forces in bars resulting from the dead load and design load. The results of the investigation are presented in the form of figures, diagrams, tables and graphs. Based on the analysis of the data obtained, conclusions are made about the influence of initial forces on the stress state of the frame of the dome.

DOI: 10.22227/1997-0935.2016.1.44-56

References
  1. Mosyagin D.L., Golovanov V.A., Il’in E.G. Fakticheskie nesovershenstva formy poverkhnosti kupol’nykh pokrytiy rezervuarov ob
  2. Lebed’ E.V. Tochnost’ vozvedeniya sterzhnevykh prostranstvennykh metallicheskikh pokrytiy i ee prognozirovanie [Accuracy in the Construction of Metal Space Framed Roofs and Its Prediction]. Vestnik Rossiyskogo universiteta druzhby narodov. Seriya: Inzhenernye issledovaniya [Bulletin of Peoples’ Friendship University of Russia. Series: Engineering Researches]. 2013, no. 4, pp. 5—12. (In Russian)
  3. Kotlov A.F. Dopuski i tekhnicheskie izmereniya pri montazhe metallicheskikh i zhelezobetonnykh konstruktsiy [Tolerances and Technical Measurements in the Installation of Metal and Concrete Structures]. Moscow, Stroyizdat Publ., 1988, 304 p. (In Russian)
  4. Lebed’ E.V., Shebalina O.V. Otsenka vozmozhnykh otkloneniy ot ideal’noy geometricheskoy formy pri sborke sostavnykh konstruktsiy [Evaluation of Possible Deviations from the Ideal Geometric Shape When Assembling Composite Structures]. Montazhnye i spetsial’nye stroitel’nye raboty. Izgotovlenie metallicheskikh i montazh stroitel’nykh konstruktsiy : informatsionnyy sbornik TsBNTI [Mounting and Special Construction Works. Manufacture of Metal Structures and Installation of Building Structures : Informational Collection of TsBNTI]. Moscow, 1992, no. 1, pp. 1—6. (In Russian)
  5. Lebed’ E.V., Shebalina O.V. Analiz iskazheniy geometricheskoy formy pri sborke sostavnykh metallicheskikh konstruktsiy [Analysis of Distortions of the Geometric Shape in the Assembly of Composite Metal Structures]. Promyshlennoe stroitel’stvo [Industrial Construction]. 1992, no. 5, pp. 23—24. (In Russian)
  6. Lebed’ E.V., Shebalina O.V. K raschetu tochnosti sborki sostavnoy konstruktsii [Calculation of the Accuracy of Composite Structures Assembling]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. 1993, no. 9, pp. 27—28. (In Russian)
  7. Gvamichava A.S. Opredelenie veroyatnykh znacheniy nachal’nykh usiliy i iskazheniy formy sterzhnevykh konstruktsiy [Estimating Probable Values of the Initial Efforts and Distortions of the Shape of Beam Structures]. Stroitel’naya mekhanika i raschet sooruzheniy [Structural Mechanics and Calculation of Structures]. 1989, no. 1, pp. 65—68. (In Russian)
  8. Lebed’ E.V. Komp’yuternoe modelirovanie tochnosti vozvedeniya dvukhpoyasnykh metallicheskikh kupolov [Computer Modeling of the Accuracy of Erecting Two-Layer Metal Domes]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. 2013, no. 12, pp. 89—92. (In Russian)
  9. Savel’ev V.A., Lebed’ E.V., Shebalina O.V. Matematicheskoe modelirovanie montazha prostranstvennykh konstruktsiy [Mathematical Modeling of Spatial Structures Installation]. Promyshlennoe stroitel’stvo [Industrial Construction]. 1991, no. 1, pp. 18—20. (In Russian)
  10. Kudishin Yu.I. K voprosu ucheta nachal’nykh nesovershenstv pri raschete stal’nykh sterzhnevykh sistem po deformirovannoy skheme [On the Issue of Accounting for Initial Imperfections When Calculating Steel Bar Systems Using the Distorted Scheme]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. 2011, no. 3, pp. 6—9. (In Russian)
  11. Bondarev A.B., Yugov A.M. Otsenka montazhnykh usiliy v metallicheskom pokrytii s uchetom sborki [Evaluation of Installation Efforts in Metal Coatings, Allowing for Assembly Process]. Inzhenerno-stroitel’nyy zhurnal [Magazine of Civil Engineering]. 2015, no. 4 (56), pp. 28—37. (In Russian)
  12. Ishchenko I.I. Montazh stal’nykh i zhelezobetonnykh konstruktsiy [Installation of Steel and Reinforced Concrete Structures]. Moscow, Vysshaya shkola Publ., 1991, 287 p. (In Russian)
  13. Gofshteyn G.E., Kim V.G., Nishchev V.N., Sokolova A.D. Montazh metallicheskikh i zhelezobetonnykh konstruktsiy [Installation of Metal and Reinforced Concrete Structures]. Moscow, Stroyizdat Publ., 2004, 528 p. (In Russian)
  14. Lebed' E.V. Osobennosti vypolneniya boltovykh soedineniy konstruktsiy dvukhpoyasnykh metallicheskikh kupolov iz-za pogreshnostey ikh izgotovleniya i montazha [Design Features of Bolted Connections of Structural Elements of Two-Layer Metal Domes Resulting from the Errors of Their Fabrication and Installation]. Vestnik Rossiyskogo universiteta druzhby narodov. Seriya: Inzhenernye issledovaniya [Bulletin of Peoples’ Friendship University of Russia. Series: Engineering Researches]. 2014, no. 4, pp. 90—97. (In Russian)
  15. Lebed' E.V., Grigoryan A.A. Nachal’nye usiliya v dvukhpoyasnykh metallicheskikh kupolakh iz-za pogreshnostey izgotovleniya i montazha ikh konstruktsiy [Initial Stresses in Two-Layer Metal Domes Due to Imperfections of Their Production and Assemblage]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2015, no. 4,pp. 69—79. (In Russian)
  16. Chandiwala Anuj. Analysis and Design of Steel Dome Using Software. International Journal of Research in Engineering and Technology (IJRET). eSAT Publishing House, Bangalore, India. 2014, vol. 3, no. 3, pp. 35—39. Available at: http://esatjournals.net/ijret/2014v03/i03/IJRET20140303006.pdf.
  17. Demidov N.N. Konstruktivno nelineynye stal’nye konstruktsii [Structurally Nonlinear Steel Structures]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. 2000, no. 11, pp. 37—38. (In Russian)
  18. Chen W., Fu G., He Y. Geometrically Nonlinear Stability Performances for Partial Double Layer Reticulated Steel Structures. Proceedings of the Fifth International Conference on Space Structures on 19—21 august 2002. UK, Guildford, University of Surrey. London, 2002, vol. 2, pp. 957—966.
  19. Vasil’kin A.A., Shcherbina S.V. Postroenie sistemy avtomatizirovannogo proektirovaniya pri optimizatsii stal’nykh stropil’nykh ferm [Development of a Computer-Aided Design System for Optimization of Steel Trusses]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2015, no. 2, pp. 21—37. (In Russian)
  20. Tusnin A.R., Prokic M. Prochnost’ dvutavrovykh profiley pri stesnennom kruchenii s uchetom razvitiya plasticheskikh deformatsiy [Resistance of I-beams in Warping Torsion with Account for the Development of Plastic Deformations] Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2014, no. 1, pp. 75—82. (In Russian)
  21. Jadhav H.S., Patil Ajit S. Parametric Study of Double Layer Steel Dome with Reference to Span to Height Ratio. International Journal of Science and Research (IJSR). India Online, 2012, vol. 2, issue 8, pp. 110—118. DOI: http://dx.doi.org/ 10.9780/22307850.
  22. Handruleva A., Matuski V., Kazakov K. Combined Mechanisms of Collapse of Discrete Single-Layer Spherical Domes. Study of Civil Engineering and Architecture (SCEA). December 2012, vol. 1, issue 1, pp. 19—27.
  23. Gorodetskiy A.S., Evzerov I.D. Komp’yuternye modeli konstruktsiy [Computer Models of Structures]. Kiev, Fakt Publ., 2005, 344 p. (In Russian)
  24. Mukaiyama Youichi, Fujino Terumasa, Kuroiwa Yoshihiko, UEKI Takashi. Erection Methods for Space Structures. Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium 2009, Valencia. Evolution and Trends in Design, Analysis and Construction of Shell and Spatial Structures. Spain, Universidad Politecnica de Valencia, 28 September — 2 October 2009, pp. 1951—1962.
  25. Lipnitskiy M.E. Kupola. (Raschet i proektirovanie) [Domes. (Calculation and Design)]. Leningrad, Stroyizdat Publ., 1973, 129 p. (In Russian)
  26. Torkatyuk V.I. Montazh konstruktsiy bol’sheproletnykh zdaniy [Installation of Structures of Large-Span Buildings]. Moscow, Stroyizdat Publ., 1985, 170 p. (In Russian)
  27. Lebed' E., Grigoryan A. Determination of Initial Forces in Two-Layer Large Span Metal Domes Due to Assembling Errors. Proceedings of the METNET Seminar 2014 in Moscow. Pp. 173—178.
  28. Lebed' E.V., Grigoryan A.A. Vliyanie montazhnykh raschetnykh skhem reber dvukhpoyasnogo metallicheskogo kupola na nachal’nye usiliya pri ustranenii pogreshnostey [Influence of Assembly Analytical Models of the Ribs of a Double-Layer Metal Dome on the Initial Forces in Case of Elimination of Imperfections]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2015, no. 8, pp. 66—79. (In Russian)

Download

Comparison of linear spectral and nonlinear dynamic calculation method for tie frame building structure in case of earthquakes

  • Mkrtychev Oleg Vartanovich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Sciences, head, Scientific Laboratory of Reliability and Seismic Resistance of Structures, Professor, Department of Strength of Materials, Moscow State University of Civil Engineering (National Research University) (MGSU), ; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Bunov Artem Anatol’evich - Moscow State University of Civil Engineering (National Research University) (MGSU) Candidate of Technical Sciences, engineer, Department of Strength of Materials, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Dorozhinskiy Vladimir Bogdanovich - Moscow State University of Civil Engineering (National Research University) (MGSU) Candidate of Technical Sciences, Assistant Lecturer, Department of Strength of Materials, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 57-67

An earthquake is a rapid highly nonlinear process. In effective normative documents there is a coefficient K1, which takes into account limit damage of building structures, i.e. non-linear work of building materials and structures during seismic load. Its value depends on the building constructive layout. However, because of the development of construction and new constructive solutions this coefficient should be defined according to design-basis justification. The article considers the five-storey building calculation on seismic impact by linear-spectral and direct dynamic methods. Our research shows that the coefficient K1 for this building is 0.4, which was calculated using nonlinear dynamic method. According to effective normative documents K1 is 0.25…0.3 for buildings of this type. Thus we get a lack of seismic stability of bearing structures by 1.5…2 times. In order to ensure the seismic safety of buildings and facilities, especially of unique objects, the coefficient K1 should be determined by calculations with sufficient scientific justification, particularly with the use of non-linear dynamic methods.

DOI: 10.22227/1997-0935.2016.1.57-67

References
  1. Khavroshkin O.B., Tsyplakov V.V. Nelineynaya seysmologiya: nekotorye fundamental’nye i prikladnye problemy razvitiya [Nonlinear Seismology: Some Fundamental and Applied Problems of Development]. Fundamental’nye nauki — narodnomu khozyaystvu : sbornik [Fundamental Sciences to National Economy : Collection]. Moscow, Nauka Publ., 1990, pp. 363—367. (In Russian)
  2. Polyakov S.V. Posledstviya sil’nykh zemletryaseniy [Consequences of Strong Earthquakes]. Moscow, Stroyizdat Publ., 1978, 311 p. (In Russian)
  3. Tyapin A.G. Raschet sooruzheniy na seysmicheskie vozdeystviya s uchetom vzaimodeystviya s gruntovym osnovaniem [Structural Analysis on Seismic Effects with Account for Interaction with Soil Foundation]. Moscow, ASV Publ., 2013, 399 p. (In Russian)
  4. Aptikaev F.F. Mery po snizheniyu ushcherba ot zemletryaseniy [Measures to Reduce Earthquake Damage]. Prirodnye opasnosti Rossii [Natural Hazards of Russia]. Moscow, Kruk Publ., 2000, chapter 7, pp. 165—195. (In Russian)
  5. Mkrtychev O.V. Bezopasnost’ zdaniy i sooruzheniy pri seysmicheskikh i avariynykh vozdeystviyakh [Safety of Buildings and Structures in Case of Seismic and Emergency Loads]. Moscow, MGSU Publ., 2010, 152 p. (In Russian)
  6. Bednyakov V.G., Nefedov S.S. Otsenka povrezhdaemosti vysotnykh i protyazhennykh zdaniy i sooruzheniy zheleznodorozhnogo transporta pri seysmicheskikh vozdeystviyakh [Evaluation of Seismic Damage to High and Extended Buildings and Structures of Railway Transport]. Transport: nauka, tekhnika, upravlenie [Transport: Science, Technology, Management]. 2003, no. 12, pp. 24—32. (In Russian)
  7. Radin V.P., Trifonov O.V., Chirkov V.P. Model’ mnogoetazhnogo karkasnogo zdaniya dlya raschetov na intensivnye seysmicheskie vozdeystviya [A Model of Multi-Storey Frame Buildings for Calculations on Intensive Seismic Effects]. Seysmostoykoe stroitel’stvo. Bezopasnost’ sooruzheniy [Antiseismic Construction. Safety of Structures]. 2001, no. 1, pp. 23—26. (In Russian)
  8. Pshenichkina V.A., Zolina T.V., Drozdov V.V., Kharlanov V.L. Metodika otsenki seysmicheskoy nadezhnosti zdaniy povyshennoy etazhnosti [Methods of Estimating Seismic Reliability of High-Rise Buildings]. Vestnik Volgogradskogo gosudarstvennogo arkhitekturno-stroitel’nogo universiteta. Seriya: Stroitel’stvo i arkhitektura [Bulletin of Volgograd State University of Architecture and Civil Engineering. Series: Construction and Architecture]. 2011, no. 25, pp. 50—56. (In Russian)
  9. Stefanishin D.V. K voprosu otsenki i ucheta seysmicheskogo riska pri prinyatii resheniy [Assessment and Consideration of Seismic Risk in Decision-Making]. Predotvrashchenie avariy zdaniy i sooruzheniy : sbornik nauchnykh trudov [Preventing Accidents of Buildings and Structures: Collection of Scientific Works]. 10.12.2012. Available at: http://www.pamag.ru/pressa/calculation_seismic-risk. (In Russian)
  10. Simbort E.Kh.S. Metodika vybora koeffitsienta reduktsii seysmicheskikh nagruzok K1 pri zadannom urovne koeffitsienta plastichnosti m [Methodology of Selecting Seismic Loads Gear Ratio of Reduction K1 with Given Plastic Ratio µ]. Inzhenerno-stroitel’nyy zhurnal [Engineering and Construction Journal]. 2012, vol. 27, no. 1, pp. 44—52. (In Russian)
  11. Khachatryan S.O. Spektral’no-volnovaya teoriya seysmostoykosti [Spectral-Wave Theory of Seismic Stability]. Seysmostoykoe stroitel’stvo. Bezopasnost’ sooruzheniy [Antiseismic Construction. Structures Safety]. 2004, no. 3, pp. 58—61. (In Russian)
  12. Chopra Anil K. Elastic Response Spectrum: A Historical Note. Earthquake Engineering and Structural Dynamics. 2007, vol. 36, no. 1, pp. 3—12. DOI: http://dx.doi.org/10.1002/eqe.609.
  13. Mkrtychev O.V., Dzhinchvelashvili G.A. Analiz ustoychivosti zdaniya pri avariynykh vozdeystviyakh [Analysis of Building Sustainability during Emergency Actions]. Nauka i tekhnika transporta [Science and Technology on Transport]. 2002, no. 2, pp. 34—41. (In Russian)
  14. Mkrtychev O.V., Yur’ev R.V. Raschet konstruktsiy na seysmicheskie vozdeystviya s ispol’zovaniem sintezirovannykh akselerogramm [Structural Analysis on Seismic Effects Using Synthesized Accelerograms]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. 2010, no. 6, pp. 52—54. (In Russian)
  15. Dzhinchvelashvili G.A., Mkrtychev O.V. Effektivnost’ primeneniya seysmoizoliruyushchikh opor pri stroitel’stve zdaniy i sooruzheniy [Effectiveness of Seismic Isolation Bearings during the Construction of Buildings and Structures]. Transportnoe stroitel’stvo [Transport Construction]. 2003, no. 9, pp. 15—19. (In Russian)
  16. Datta T.K. Seismic Analysis of Structures. John Wiley & Sons (Asia) Pte Ltd. 2010, 464 p.
  17. Dr. Sudhir K. Jain, Dr. C.V.R. Murty. Proposed Draft Provisions and Commentary on Indian Seismic Code IS 1893 (Part 1). Kanpur, Indian Institute of Technology Kanpur, 2002, 158 p.
  18. Guo Shu-xiang, Lü Zhen-zhou. Procedure for Computing the Possibility and Fuzzy Probability of Failure of Structures. Applied Mathematics and Mechanics. 2003, vol. 24, no. 3, pp. 338—343. DOI: http://dx.doi.org/10.1007/BF02438271.
  19. Housner G.W. The Plastic Failure of Frames during Earthquakes. Proceedings of the 2nd WCEE, Tokyo&Kyoto. Japan, 1960, vol. II, pp. 997—1012.
  20. Pintoa P.E., Giannini R., Franchin P. Seismic Reliability Analysis of Structures. Pavia, Italy, IUSS Press, 2004, 370 p.

Download

Calculation of reinforced concrete beam reliability on operation stage by crack length criterion

  • Utkin Vladimir Sergeevich - Vologda State University (VStU) Doctor of Technical Sciences, Professor, Department of Industrial and Civil Engineering, Vologda State University (VStU), 15 Lenina str., Vologda, 16000, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Solov’ev Sergey Aleksandrovich - Vologda State University (VStU) postgraduate student, Assistant Lecturer, Department of Industrial and Civil Engineering, Vologda State University (VStU), 15 Lenina str., Vologda, 16000, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 68-79

The mechanical (structural) reliability of a building, safety of people and continuity of the technological processes in buildings and structures depend on the reliability of the bearing structures on operation stage, including reinforced concrete beams. One of the measures to provide safety and reliability is the probability of no-failure operation of structural elements or systems of elements. For reliability calculation the Russian State Standard recommends to apply probability and statistical methods when possessing enough data on variability of the controlled parameters in the mathematical model of the limit state, in particular, when the amount of data allows conducting its statistical analysis. In the current time there appear the works pointing, that the future advancing of calculation methods for building structures requires the wide use of reliability theory. The article describes the methods for calculating the reliability of a reinforced concrete beam according to the criterion of crack length with the limited statistical information about controlled parameters. The authors illustrate the application of the theory of evidence to determine the statistical mathematical expectation of reliability in the presence of a subset of reliability intervals. Each design case is followed by numerical examples. The article underlines the importance of applying fracture mechanics for the further development of the methods of calculation of reinforced concrete structures.

DOI: 10.22227/1997-0935.2016.1.68-79

References
  1. Krasnoshchekov Yu.V., Zapoleva M.Yu. Veroyatnostnoe proektirovanie konstruktsiy po zadannomu urovnyu nadezhnosti [The Probabilistic Design of Structures for a Given Level of Reliability]. Vestnik Sibirskoy gosudarstvennoy avtomobil’no-dorozhnoy akademii [Bulletin of Siberian State Automobile and Highway Academy]. 2015, no. 1 (41), pp. 68—73. (In Russian)
  2. Rayzer V.D. Ocherk razvitiya teorii nadezhnosti i norm proektirovaniya stroitel’nykh konstruktsiy [Review of the Development of Reliability Theory and Equipment Design of Building Structures]. Seysmostoykoe stroitel’stvo. Bezopasnost’ sooruzheniy [Earthquake Engineering and Security of Structures]. 2014, no. 2, pp. 29—35. (In Russian)
  3. Perel’muter A.V. Razvitie trebovaniy k bezotkaznosti sooruzheniy [Development of the Requirements to Reliability of Structures]. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel’nogo universiteta [Vestnik Tomsk State University of Architecture and Building]. 2015, no. 1, pp. 81—101. (In Russian)
  4. Rzhanitsyn A.R. Teoriya rascheta stroitel’nykh konstruktsiy na nadezhnost’ [Theory of the Reliability Calculation of Building Structures]. Moscow, Stroyizdat Publ.,1978, 239 p.
  5. Spaethe G. Die Sicherheit tragender Baukonstruktionen. 1992, Springer-Verlag Wien, 306 p. DOI: http://dx.doi.org/10.1007/978-3-7091-6690-1.
  6. Tamrazyan A.G. Otsenka riska i nadezhnosti nesushchikh konstruktsiy i klyuchevykh elementov — neobkhodimoe uslovie bezopasnosti zdaniy i sooruzheniy [Risk and Reliability Assessment of Bearing Structures and Key Elements — a Necessary Condition for the Safety of Buildings and Structures]. Vestnik NITs Stroitel’stvo [Proceedings of Scientific Research Center for Construction]. 2009, no. 1, pp. 160—171. (In Russian)
  7. Iskhakov Sh.Sh., Kovalev F.E., Vaskevich V.M., Ryzhkov V.Yu. Otsenka nadezhnosti ekspluatatsii zdaniy i sooruzheniy po metodikam vozniknoveniya riska ikh nerabotosposobnykh sostoyaniy [Estimating the Reliability of Buildings and Structures according to the Methods of the Risk of Unserviceability]. Inzhenerno-stroitel’nyy zhurnal [Magazine of Civil Engineering]. 2012, vol. 33, no. 7, pp. 76—88. (In Russian)
  8. Utkin V.S., Kaberova A.A. Raschet nadezhnosti osnovaniya fundamenta, slozhennogo prosadochnymi gruntami, po kriteriyu deformatsii s uchetom izmenchivosti tolshchin sloev grunta [Calculating the Reliability of Building Foundation Laid by Collapsing Soil Accoding to Deformation Criterion with Account for Variability of Soil Layer Thickness]. Spravochnik. Inzhenernyy zhurnal s prilozheniem [Handbook. An Engineering Journal with Appendix]. 2015, no. 11, pp. 17—22. (In Russian)
  9. Utkin V.S., Utkin L.V. Novye metody raschetov nadezhnosti stroitel’nykh konstruktsiy [New Methods of Reliability Calculation of Building Structures]. Vologda, VoGTU Publ., 2011, 98 p. (In Russian)
  10. Piradov K.A., Savitskiy N.V. Mekhanika razrusheniya i teoriya zhelezobetona [Fracture Mechanics and the Theory of Reinforced Concrete]. Beton i zhelezobeton [Concrete and Reinforced Concrete]. 2014, no. 4, pp. 23—25. (In Russian)
  11. Klyueva N.V., Kolchunov V.I., Yakovenko N.A. Problemnye zadachi razvitiya gipotez mekhaniki razrusheniya primenitel’no k raschetu zhelezobetonnykh konstruktsiy [Problem Tasks for the Development of the Hypotheses of Fracture Mechanics Applied to Reinforced Concrete Structures Calculation]. Izvestiya Kazanskogo gosudarstvennogo arkhitekturno-stroitel’nogo universiteta [News of Kazan State University of Architecture and Construction]. 2014, no. 3, pp. 41—45. (In Russian)
  12. Perfilov V.A. Kontrol’ deformatsii i razrusheniya betonov metodami mekhaniki razrusheniya i akusticheskoy emissii [Control of Deformation and Fracture of Concrete by the Methods of Fracture Mechanics and Acoustic Emission]. Vestnik Volgogradskogo gosudarstvennogo arkhitekturno-stroitel’nogo universiteta. Seriya: Stroitel’stvo i arkhitektura [Bulletin of Volgograd State University of Architecture and Civil Engineering. Series: Construction and Architecture]. 2014, no. 38, pp. 75—84. (In Russian)
  13. Druzhinin P.S. Raschet parametrov mekhaniki razrusheniya v Ansys mechanical 15.0 [Calculation of the Parameters of Fracture Mechanics in Ansys Mechanical 15.0]. SAPR i grafika [SAPR and Graphics]. 2014, no. 7 (213), pp. 58—61. (In Russian)
  14. Baranova T.I., Zalesov A.S. Karkasno-sterzhnevye raschetnye modeli i inzhenernye metody rascheta zhelezobetonnykh konstruktsiy [Frame-and-Rod Design Models and Engineering Methods of Calculation of Reinforced Concrete Structures]. Moscow, ASV Publ., 2003, 240 p. (In Russian)
  15. Utkin V.S., Solov’ev S.A. Opredelenie ostatochnoy nesushchey sposobnosti zhelezobetonnykh balok na stadii ekspluatatsii po kriteriyu dliny treshchiny [Calculation of Residual Bearing Capacity of Reinforced Concrete Beams on Operation Stage by Crack Length Criterion]. Beton i zhelezobeton [Concrete and Reinforced Concrete]. 2015, no. 5 (596), pp. 21—23. (In Russian)
  16. Bedov A.I., Saprykin V.F. Obsledovanie i rekonstruktsiya zhelezobetonnykh i kamennykh konstruktsiy ekspluatiruemykh zdaniy i sooruzheniy [Inspection and Reconstruction of Reinforced Concrete and Masonry Structures of Operating Buildings and Structures]. Moscow, ASV Publ., 1995, 192 p. (In Russian)
  17. Instrumental’nye sredstva nerazrushayushchego kontrolya tekhnicheskogo sostoyaniya zdaniy [Tools of Non-Destructive Control of Technical Condition of Buildings]. Biblioteka nauchno-tekhnicheskogo portala «Tekhnar’» [Library of Scientific and Technical Portal “Engineering Expert”]. Available at: http://tehlib.com/ispy-taniya-i-obsledovaniya-zdanij-i-sooruzhenij/instrumentalnye-sredstva-nerazrushayuschego-kontrolya-tehnicheskogo-sostoyaniya-zdanij/. Date of access: 21.10.2015. (In Russian)
  18. Peresypkin E.N. Raschet sterzhnevykh zhelezobetonnykh elementov [Calculation of Rod Reinforced Concrete Elements]. Moscow, Stroyizdat, 1988. 168 p. (In Russian)
  19. Dyubua D., Prad A. Teoriya vozmozhnostey. Prilozheniya k predstavleniyu znaniy v informatike [The Theory of Possibilities. Application to Knowledge Representation in Informatics]. Translated from French. Moscow, Radio i svyaz’ Publ., 1990, 288 p. (In Russian)
  20. Utkin V.S., Solov’ev S.A., Kaberova A.A. Znachenie urovnya sreza (riska) pri raschete nadezhnosti nesushchikh elementov vozmozhnostnym metodom [The Value of the Level Slicer (Risk) in the Calculation of Reliability of Bearing Elements by Possibilistic Method]. Stroitel’naya mekhanika i raschet sooruzheniy [Structural Mechanics and Calculation of Structures]. 2015, no. 6, pp. 63—67. (In Russian)
  21. Zaden L.A. Fuzzy Sets. Information and Control. 1965, vol. 8, no. 3, pp. 338—353. DOI: http://dx.doi.org/10.1016/S0019-9958(65)90241-X.
  22. Alimov A.G., Karpunin V.V. Patent 2279069 RU, MPK G01N 29/07. Sposob ul’trazvukovogo kontrolya betonnykh i zhelezobetonnykh konstruktsiy sooruzheniy v protsesse ekspluatatsii na nalichie glubokikh treshchin [Russian Patent 2279069 RU, MPK G01N 29/07. [Ultrasonic Control Method of Concrete and Reinforced Concrete Structures during Operation for the Presence of Deep Cracks]. Patent holder VIAPI. No. 2005110012/28 ; appl. 06.04.2005; publ. 27.06.2006, bulletin no. 18. (In Russian)
  23. Zhang Z., Jiang C., Han X., Dean Hu., Yu S. A Response Surface Approach for Structure Reliability Analysis Using Evidence Theory. Advanced in Engineering Software. 2014, vol. 69, pp. 37—45. DOI: http://dx.doi.org/10.1016/j.advengsoft.2013.12.005.
  24. Utkin V.S., Solov’ev S.A. Opredelenie nesushchey sposobnosti i nadezhnosti stal’noy balki na stadii ekspluatatsii s ispol’zovaniem teorii svidetel’stv Dempstera — Shefera [Calculation of bearing capacity and reliability of a steel beam at the operation stage using the theory of evidence of Dempster — Sheffer]. Deformatsiya i razrushenie materialov [Deformation and Fracture of Materials]. 2015, no. 7, pp. 10—15. (In Russian)
  25. Utkin L.V. Analiz riska i prinyatie resheniy pri nepolnoy informatsii [Risk Analysis and Decision Making with Incomplete Information]. Saint Petersburg, Nauka Publ., 2007, 404 p. (In Russian)
  26. Utkin V.S., Solov’ev S.A. Raschet nadezhnosti elementov konstruktsiy po kriteriyu nesushchey sposobnosti s ispol’zovaniem teorii svidetel’stv Dempstera-Shefera [Calculation of Reliability of Structural Elements according to the Criteria of the Bearing Capacity Using the Theory of Evidence]. Stroitel’naya mekhanika i raschet sooruzheniy [Structural mechanics and calculation of structures]. 2015, no. 5 (262), pp. 38—44. (In Russian)

Download

ENGINEERING RESEARCH AND EXAMINATION OF BUILDINGS. SPECIAL-PURPOSE CONSTRUCTION

Experience of using modern technologies in the tasks of high-rise buildings geodetic monitoring

  • Shul’ts Roman Vladimirovich - Kyiv National University of Construction and Architecture (KNUCA) Doctor of Technical Sciences, Professor, Dean, Department of Geoinformation Systems and Territory Management, Kyiv National University of Construction and Architecture (KNUCA), 31 Vozdukhoflotskiy prospekt, Kiev, 03680, Ukraine.
  • Annenkov Andrey Aleksandrovich - Donbas National Academy of Civil Engineering and Architecture (DonNACEA) Candidate of Technical Sciences, Associate Professor, Department of Engineering Geodesy, Donbas National Academy of Civil Engineering and Architecture (DonNACEA), 72 Shkadinova str., Kramatorsk, 84313, Donetsk Region, Ukraine; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Kulichenko Natal’ya Valentinovna - Kyiv National University of Construction and Architecture (KNUCA) postgraduate student, Department of Engineering Geodesy, Kyiv National University of Construction and Architecture (KNUCA), 31 Vozdukhoflotskiy prospekt, Kiev, 03680, Ukraine; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 80-93

DOI: 10.22227/1997-0935.2016.1.80-93

References
  1. Sytnik V.S., Klyushin A.B. Geodezicheskiy kontrol’ tochnosti vozvedeniya monolitnykh zdaniy i sooruzheniy [Geodetic Control of the Construction Precision of Monolithic Buildings and Structures]. Moscow, Stroyizdat Publ., 1981, 119 p. (In Russian)
  2. Korgina M.A. Ispol’zovanie sovremennykh tekhnologiy prostranstvenno-koordinatnykh geodezicheskikh izmereniy i MKE-analiza napryazhenno-deformirovannogo sostoyaniya nesushchikh konstruktsiy v khode monitoringa tekhnicheskogo sostoyaniya otvetstvennykh zdaniy i sooruzheniy [Using Modern Technologies of Space-Coordinate Geodetic Measurements and FEM Analysis of Stress-Strain State of Bearing Structures in the Course of Monitoring the Technical Condition of Responsible Buildings and Structures]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2009, no. 2, pp. 140—146. (In Russian)
  3. Gheorghe M.T. Rădulescu, Mihai V. Rădulescu, Adrian T. Rădulescu. Research on the Development of Tools, Methods and Technologies Involved in the Structural Monitoring Process of Buildings, in Static and Dynamic Regime. International Journal of Engineering and Applied Sciences. 2014, vol. 6, issue 2, pp. 1—13.
  4. Rubtsov I.V., Pyatnitskaya T.A. Naznachenie i sovremennye sposoby provedeniya instrumental’nogo geodezicheskogo monitoringa pamyatnikov grazhdanskoy arkhitektury [Purpose and Advanced Methods of Geodetic Tool Monitoring for Monuments of Civil Architecture]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2013, no. 5, pp. 80—86. (In Russian)
  5. Simonyan V.V., Kuznetsov A.I., Chernenko E.S., Pyatnitskaya T.A. Instrumental’noe opredelenie krenov sten Borisogleskgo monastyrya [Instrumental Estimation of the Borisoglebsky Monastery Walls Slants]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2011, no. 1-2, pp. 239—243. (In Russian)
  6. Korgin A.V., Ranov I.I., Korgina M.A. Primenenie prostranstvenno-koordinatnoy geodezicheskoy s”emki dlya otsenki tekhnicheskogo sostoyaniya zdaniy i sooruzheniy [The Use of Space-Coordinate Surveying to Assess the Technical Condition of Buildings and Structures]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2008, no. 1, pp. 66—69. (In Russian)
  7. Yanhua Mi, Lixin Liu, Hong Zhao. Automatic Monitoring System Concerning Extra-high-rise Building Oscillating Based on Measurement Robot. Proceedings of the 2010 IEEE International Conference on Robotics and Biomimetrics. December 14—18, 2010, Tianjin, China. Pp. 662—666. DOI: http://www.doi.org/10.1109/ROBIO.2010.5723405.
  8. Zakharchenko M.A., Korgin A.V. Sozdanie eksperimental’noy sistemy GPS monitoringa vysotnogo zdaniya pri vetrovom vozdeystvii [Creation of Experimental GPS-System for Monitoring of High-Rise Building Response to Wind Load]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2011, no. 8, pp. 200—205. (In Russian)
  9. Wan Abdul Aziz Wan Mohd Akib, Shu Kian Kok, Zulkarnaini Mat Amin. High Rise Building Deformation Monitoring with GPS. International Symposium and Exhibition on Geoinformation (ISG) 2004, 21—23 Sept 2004, Kuala Lumpur, Malaysia. Available at: http://eprints.utm.my/1372/1/high_rise_building.pdf.
  10. Ogaja C., Li X., Rizos C. Advances in Structural Monitoring with Global Positioning System Technology: 1997—2006. Journal of Applied Geodesy. 2008, vol. 1, issue 3, pp. 171—179. DOI: http://www.doi.org/10.1515/jag.2007.019.
  11. Ting-Hua Yi, Hong-Nan Li, Ming Gu. Recent Research and Applications of GPS-Based Monitoring Technology for High-Rise Structures. Structural Control and Health Monitoring. 2013, vol. 20, issue 5, pp. 649—670. DOI: http://www.doi.org/10.1002/stc.1501.
  12. Hyo Seon Park, Hong Gyoo Sohn, Ill Soo Kim, Jae Hwan Park. Application of GPS to Monitoring of Wind-Induced Responses of High-Rise Buildings. The Structural Design of Tall and Special Buildings. 2008, vol. 17, no. 1, pp. 117—132. DOI: http://www.doi.org/10.1002/tal.335.
  13. Se Woon Choi, Ill Soo Kim, Jae Hwan Park, Yousok Kim, Hong Gyoo Sohn, Hyo Seon Park. Evaluation of Stiffness Changes in a High-Rise Building by Measurements of Lateral Displacements Using GPS Technology. Sensors. 2013, issue 13 (11), pp. 15489—15503. DOI: http://www.doi.org/10.3390/s131115489.
  14. Milind N. Phatak, Sumedh Y. Mhaske. Tower Verticality for Tall Building using DGPS. International Journal of Innovative Research in Advanced Engineering (IJIRAE). 2014, vol. 1, issue 4, pp. 64—68.
  15. Wunderlich Th. Optical Plumbing versus RTK-GNSS — Staking out on High Levels. INGEO 2014 — 6th International Conference on Engineering Surveying Prague, Czech republic, April 3—4, 2014. Pp. 47—52.
  16. Ermakov V.A. Usovershenstvovanie metodiki monitoringa prostranstvennykh deformatsiy sterzhnevykh konstruktsiy sooruzheniy s pomoshch’yu lazernogo skanirovaniya [Improvement of the Method for Monitoring Space Deformations of Building Bar Structures Using Laser Scanning]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2011, no. 8, pp. 206—211. (In Russian)
  17. Kapustian N., Voznyuk A., Klimov A. Long-Term Monitoring of High-Rise Buildings in Moscow. 7th European Workshop on Structural Health Monitoring. July 8—11, 2014. La Cité, Nantes, France, pp. 1918—1924.
  18. Abdelrazaq A. Validating the Structural Behavior and Response of Burj Khalifa: Synopsis of the Full Scale Structural Health Monitoring Programs. Available at: http://www.ctbuh.org/LinkClick.aspx?fileticket=DUN2DTspi%2Fs%3D&tabid=468&language=en-US.
  19. Rubtsov I.V., Nazarov I.A., Lavrinenko I.D., Savushkina V.P. Uchet temperaturnykh deformatsiy pri geodezicheskom soprovozhdenii stroitel’stva vysotnykh monolitnykh zdaniy [Accounting for the Thermal Strains in the Geodetic Support of the Construction of High-Rise Monolithic Buildings]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2010, no. 4-5, pp. 329—334. (In Russian)
  20. Douglas Mcl Hayes, Ian R Sparks, Joël Van Cranenbroeck. Core Wall Survey Control System for High Rise Buildings. Shaping the Change. XXIII FIG Congress. Munich, Germany, October 8—13, 2006. Pp. 1—12.

Download

RESEARCH OF BUILDING MATERIALS

Investigation of the effect of additives on the basis of pickling solutions containing iron salts on the structure and strength of fine concrete

  • Lukuttsova Natal’ya Petrovna - Federal State Educational Institution of Higher Education Bryansk State Technological University of Engineering Doctor of Technical Sciences, Professor, chair, Department of Building Structures Production, Federal State Educational Institution of Higher Education Bryansk State Technological University of Engineering, prospekt Stanke Dimitrova str., Bryansk, 241037, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Pashayan Ararat Aleksandrovich - Federal State Educational Institution of Higher Education Bryansk State Technological University of Engineering Doctor of Chemical Sciences, Professor, chair, Department of Chemistry, Federal State Educational Institution of Higher Education Bryansk State Technological University of Engineering, prospekt Stanke Dimitrova str., Bryansk, 241037, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Khomyakova Ekaterina Nikolaevna - Federal State Educational Institution of Higher Education Bryansk State Technological University of Engineering postgraduate student, Department of Building Structures Production, Federal State Educational Institution of Higher Education Bryansk State Technological University of Engineering, prospekt Stanke Dimitrova str., Bryansk, 241037, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 94-104

The modern tendencies of construction industry development are connected with the use of new high-efficient materials with the application of resource- and energy-saving technologies of their generation. The use of industrial man-made products as the components improving the characteristics of construction products is now a promising field of research. The article presents the results of the use of waste pickling solutions of steel rolling factories, containing salts of iron as nanomodified additives for the products based on cement binder. The effectiveness of the influence of the considered additives on the structure and strength of fine-grained concrete is shown. If using this additive in the amount of 0.32 % from the mass of cement for 28 days of natural hardening, the fine concrete strength is growing by 1.8 times due to additional formation of hydrosilicates, densification of structure and reduction of the total porosity of the cement system by 2 times.

DOI: 10.22227/1997-0935.2016.1.94-104

References
  1. Volodchenko A.A., Zagorodnyuk L.Kh., Prasolova E.O., Akhmed A.A., Kulik N.V., Kolomatskiy A.S. Problema ratsional’nogo prirodopol’zovaniya [Problems of Sustainable Nature Management]. Vestnik Belgorodskogo gosudarstvennogo tekhnicheskogo universiteta im. V.G. Shukhova [Bulletin of BSTU named after V.G. Shukhov]. 2014, no. 6, pp. 7—10. (In Russian)
  2. Bazhenov S.I., Alimov L.A. Vysokokachestvennye betony s ispol’zovaniem otkhodov promyshlennosti [High-quality Concretes with the Use Industrial Wastes]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2010, no. 1, pp. 226—230. (In Russian)
  3. Ramesh M., Karthic K.S., Karthikeyan T., Kumaravel A. Construction Materials from Industrial Wastes — A Review of Current Practices. International Journal of Environmental Research and Development. 2014, no. 4, pp. 317—324.
  4. Pati D.J., Iki K., Homma R. Solid Waste as a Potential Construction Material for Cost-Efficient Housing in India. 3rd World Conference on Applied Sciences, Engineering & Technology. Kathmandu, 2014, pp. 240—245.
  5. Oreshkin D.V. Problemy stroitel’nogo materialovedeniya i proizvodstva stroitel’nykh materialov [Problems of Building Material Science and Building Materials Production]. Stroitel’nye materialy [Construction Materials]. 2010, no. 11, pp. 6—9. (In Russian)
  6. Alfimova N.I., Cherkasov V.S. Perspektivy ispol’zovaniya otkhodov proizvodstva keramzita v stroitel’nom materialovedenii [Prospects for the Use of Claydite Production Waste in Building Material Science]. Vestnik Belgorodskogo gosudarstvennogo tekhnicheskogo universiteta im. V.G. Shukhova [Bulletin of BSTU named after V.G. Shukhov]. 2010, no. 3, pp. 21—24. (In Russian)
  7. Buldyzhov A.A., Alimov L.A. Samouplotnyayushchiesya betony s nanomodifikatorami na osnove tekhnogennykh otkhodov [Self-Compacting Concretes with Nanomodifiers on the Basis of Industrial Waste]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. 2014, no. 8, pp. 86—88. (In Russian)
  8. Alfimova N.I., Sheychenko M.S., Karatsupa S.V., Yakovlev E.A., Kolomatskiy A.S., Shapovalov N.N. Features of Application of High-Mg Technogenic Raw Materials as a Component of Composite Binders. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2014, no. 5, vol. 5, pp. 1586—1591.
  9. Shapovalov N.N., Kalatozi V.V., Yurakova T.G., Yakovlev O.A. Kompozitsionnye vyazhushchie s ispol’zovaniem tekhnogenogo alyumosilikatnogo syr’ya [Composite Binders with the Use Technogenic Aluminosilicate Raw Material]. Vestnik Belgorodskogo gosudarstvennogo tekhnicheskogo universiteta im. V.G. Shukhova [Bulletin of BSTU named after V.G. Shukhov]. 2015, no. 3, pp. 44—48. (In Russian)
  10. Tukhareli V.D., Akchurin T.K., Cherednichenko T.F. Effektivnyy modifitsirovannyy beton s ispol’zovaniem otkhodov neftepererabotki dlya monolitnogo stroitel’stva [Effective Modified Concrete for Monolithic Construction with the Use of Refinery Wastes]. Vestnik Volgogradskogo arkhitekturno-stroitel’nogo universiteta. Stroitel’stvo i arkhitektura [Bulletin of Volgograd State University of Architecture and Civil Engineering. Series: Construction and Architecture]. 2014, no. 37 (56), pp. 112—120. (In Russian)
  11. Lesovik V.S., Strokova V.V. O razvitii nauchnogo napravleniya «nanosistemy v stroitel’nom materialovedenii» [On the Development of Scientific Direction “Nanosystems in Building Material Science”]. Stroitel’nye materialy [Construction Materials]. 2006, no. 9, pp. 93—101. (In Russian)
  12. Figovskiy O.L., Beylin D.A., Ponomarev A.N. Uspekhi primeneniya nanotekhnologiy v stroitel’nykh materialakh [Success of Applying Nanotechnologies in Construction Materials]. Nanotekhnologii v stroitel’stve: nauchnyy Internet-zhurnal [Nanotechnologies in the Construction : Scientific Online Magazine]. 2012, vol. 4, no. 3, pp. 6—21. Available at: http://nanobuild.ru/ru_RU/journal/Nanobuild_3_2012_RUS.pdf. Date of access: 15.10.2015. (In Russian)
  13. Yakovlev G.I., Polyanskikh M.S., Machyulaytis R., Kerene Ya., Malayshkene Yu., Kizinevich O., Shaybadullina A.V., Gordina A.F. Nanomodifitsirovanie keramicheskikh materialov stroitel’nogo naznacheniya [Nanomodification of Ceramic Materials for Construction Application]. Stroitel’nye materialy [Construction Materials]. 2013, no. 4, pp. 62—64. (In Russian)
  14. Lukuttsova N.P., Pykin A.A. Stability of Nanodisperse Additives Based on Metakaolin. Glass and Ceramics. 2015, vol. 71, no. 11, pp. 383—386. DOI: http://dx.doi.org/10.1007/s10717-015-9693-7.
  15. Lukuttsova N.P., Lesovik V.S., Postnikova O.A., Gornostaeva E.Y., Vasunina S.V., Suglobov A.V. Nano-Disperse Additive Based on Titanium Dioxide. International Journal of Applied Engineering Research. 2014, no. 22, vol. 9, pp. 16803—16811.
  16. Lukuttsova N., Pykin A. Application of Nanodispersed Schungite as Functional Concrete Admixture. Scientific Israel. Technological Advantages. 2010, vol. 12, no. 3, pp. 40—43.
  17. Pykin A.A. Svoystva i struktura betona s dobavkoy nanodispersnogo shungita [Properties and Structure of Concrete with Addition of Nanosized Shungite]. Tekhnologiya betonov [Concrete Technologies]. 2011, no. 3, pp. 52—54. (In Russian)
  18. Khomyakova E.N., Pashayan A.A., Lukuttsova N.P. Issledovanie svoystv tsementnogo kamnya, nanomodifitsirovannogo dobavkami na osnove soley zheleza [Research of the Properties of Cement Stone Nanomodified by the Additive Based on Iron Salts]. Mezhdunarodnyy nauchno-issledovatel’skiy zhurnal [International Research Journal]. 2015, no. 5—2 (36), pp. 111—113. (In Russian)
  19. Vinnikova O.S., Lukashov S.V. Potentsiometrirovanie otrabotannykh zhelezosoderzhashchikh travil’nykh rastvorov [Potentiometric Titration of Spent Pickling Solutions Containing Iron]. Vestnik Mezhdunarodnoy akademii nauk ekologii i bezopasnosti zhiznedeyatel’nosti [Bulletin of the International Academy of Sciences of Ecology and Life Safety]. 2010, no. 5, pp. 112—116. (In Russian)
  20. Ovcharenko G.I., Gil’miyarov D.I. Fazovyy sostav avtoklavnykh izvestkovo-zol’nykh materialov [The Phase Composition of Autoclaved Lime-Ash Materials]. Izvestiya vysshikh uchebnykh zavedeniy. Stroitel’stvo [News of Higher Educational Institutions. Construction]. 2013, no. 9 (657), pp. 28—33. (In Russian)
  21. Tarakanov O.V., Belyakova E.A. Vliyanie tonkodispersnykh aktivnykh dobavok na svoystva napolnennykh tsementnykh kompozitsiy [Influence of Fine Active Additives on the Properties of Filled Cement Compositions]. Rosnauka. Stroitel’stvo [Russian Science. Construction]. 2013, no. 4. Available at: http://www.rusnauka.com/12_KPSN_2013/Stroitelstvo/4_135868.doc.htm. Date of access: 11.11.2015. (In Russian)

Download

SAFETY OF BUILDING SYSTEMS. ECOLOGICAL PROBLEMS OF CONSTRUCTION PROJECTS. GEOECOLOGY

Mathematical modeling of the emission of heavy metals into water bodies from building materials derived from production waste

  • Pugin Konstantin Georgievich - Perm National Research Polytechnic University (PNRPU) Candidate of Technical Sciences, Associate Professor, Department of Automobiles and Production Machines, Perm National Research Polytechnic University (PNRPU), 29 Komsomol’skiy prospekt, Perm, 614990, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Vaysman Yakov Iosifovich - Perm National Research Polytechnic University (PNRPU) Doctor of Medical Sciences, Professor, Scientific Supervisor, Department of Environmental Protection, Perm National Research Polytechnic University (PNRPU), 29 Komsomol’skiy prospekt, Perm, 614990, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Boyarshinov Mikhail Gennad’evich - Perm National Research Polytechnic University (PNRPU) Doctor of Technical Sciences, Professor, Department of Automobiles and Production Machines, Perm National Research Polytechnic University (PNRPU), 29 Komsomol’skiy prospekt, Perm, 614990, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 105-117

At the present time industrial waste is considered to be an alternative to primary natural resources when producing construction materials and products. The use of industrial waste in the construction branch allows reducing ecological load on the environment and population as a result of reducing the amount of unrecyclable waste and reducing the use of primary natural resources. Though when involving waste products as raw material in the preparation of building materials there occur environmental risks of anthropogenic impact increase on the environment. These risks are related to possible emission of heavy metals from construction materials in use. The article describes a tool which allows predicting this issue, depending on the acidity of the medium, the residence time of the material in the environment. The experimental data obtained in determining the migration activity of metals from cement concretes to aqueous solutions served as the basis for the mathematical model. The proposed model allows us to make a prediction of anthropogenic impact on the environment and commensurate this impact with the possibility of assimilation of the environment area where the building materials are applied. This will allow conducting an effective assessment of the created and applied technologies of waste disposal, taking into account the operating conditions of the materials produced.

DOI: 10.22227/1997-0935.2016.1.105-117

References
  1. Dijkstra J.J., Meeusse J.C.L., Van der Sloot H.A., Comans R.N.J. A Consistent Geochemical Modelling Approach for the Reactive Transport of Major and Trace Elements in MSWI Bottom Ash. Appl. Geochem. 2008, no. 23 (6), pp. 1544—1562. DOI: http://dx.doi.org/10.1016/j.apgeochem.2007.12.032.
  2. Eikelboom E., Ruwiel E., Goumans J.J.J.M. The Building Materials Decree: An Example of a Dutch Regulation Based On the Potential Impact of Materials on the Environment. Waste Manage. (Oxford). 2001, no. 21 (3), pp. 295—302.
  3. Fthenakis V., Wang W., Kim C.H. Life Cycle Inventory Analysis of the Production of Metals Used in Photovoltaics. Renew. Sustain. Energy Rev. 2009, no. 13 (3), pp. 493—517. DOI: http://dx.doi.org/10.1016/j.rser.2007.11.012.
  4. Quintelas C., Rocha Z., Silva B. et al. Removal of Cd(II), Cr(VI), Fe(III) and Ni(II) From Aqueous Solutions by an E. Coli Biofilm Supported on Kaolin. Chem. Engineering J. July 2009, 149, 1-3, pp. 319—324. DOI: http://dx.doi.org/10.1016/j.cej.2008.11.025.
  5. Jackobsen H., Kristoferrsen M. Case Studies on Waste Minimization Practices in Europe / Topic Report — European Topic Centre on Waste. European Environment Agency, February 2002, no. 2.
  6. Pugin K.G. Voprosy ekologii ispol’zovaniya tverdykh otkhodov chernoy metallurgii v stroitel’nykh materialakh [Ecological Problems of Iron Industry Solid Waste in Construction Materials]. Stroitel’nye materialy [Construction Materials]. 2012, no. 8, pp. 54—56. (In Russian)
  7. Pugin K.G., Vaisman Y.I. Methodological Approaches to Development of Ecologically Safe Usage Technologies of Ferrous Industry Solid Waste Resource Potential. World Applied Sciences Journal (Special Issue on Techniques and Technologies). Berlin, Springer, 2013, no. 22, pp. 28—33. DOI: http://dx.doi.org/10.5829/idosi.wasj.2013.22.tt.22135.
  8. Pugin K.G., Mal’tsev A.V. Issledovanie vozmozhnosti pererabotki metallurgicheskikh shlakov v Permskom krae putem proizvodstva trotuarnoy plitki [Investigation of the Possibilities of Smelter Slag Recycling in Perm Region by Producing Paving Flags]. Fundamental’nye issledovaniya [Fundamental Research]. 2013, no. 1—2, pp. 419—421. (In Russian)
  9. Kendall Alissa, Keoleian Gregory A., Lepech Michael D. Materials Design for Sustainability through Life Cycle Modeling of Engineered Cementitious Composites. Materials and Structures. 2008, vol. 41, no. 6, pp. 1117—1131. DOI: http://dx.doi.org/10.1617/s11527-007-9310-5.
  10. Bhander G.S., Christensen T.H., Hauschild M.Z. EASEWASTE — Life Cycle Modeling Capabilities for Waste Management Technologies. Int. J. Life Cycle Assess. 2010, 15,pp. 403—416.
  11. Gabler H.E., Gluh K., Bahr A., Utermann J. Quantification of Vanadium Adsorption by German Soils. J. Geochem. Explor. 2009, 103 (1), pp. 37—44. DOI: http://dx.doi.org/10.1016/j.gexplo.2009.05.002.
  12. Pugin K.G. Tyazhelye metally v otkhodakh chernoy metallurgii [Heavy Metals in Iron Industry Waste]. Molodoy uchenyy [Young Scientist]. 2010, no. 5—1, pp. 135—139. (In Russian)
  13. Batrakova G.M., Boyarshinov M.G., Goremykin V.D. Model’ dlya rascheta rasseivaniya emissii s territorii zakhoroneniya tverdykh bytovykh otkhodov [Calculation Model of Emission Dissipation from the Territory of Household Solid Waste Disposal]. Geoinformatika [Geoinformatics]. 2005, no. 2, pp. 43—49. (In Russian)
  14. Batrakova G.M., Boyarshinov M.G., Tashkinova I.N. Metodika matematicheskogo modelirovaniya biorazlozheniya nitrobenzola i anilina v pochve [Methods of Mathematical Simulation of Biodeterioration of Nitrobenzene and Aniline in the Ground]. Fundamental’nye issledovaniya [Fundamental Research]. 2014, no. 12—9, pp. 1855—1861. (In Russian)
  15. Balabanov D.S., Boyarshinov M.G. Rasseyanie otrabotannykh gazov avtotransporta nad gorodskoy territoriey [Dissipation of Exhaust Gas from Motor Transport over City Territory]. Saarbrucken, LAMBERT Academic Publishing, 2012, 120 p. (In Russian)
  16. Fedosov S.V., Rumyantseva V.E., Khrunov V.A., Aksakovskaya L.N. Modelirovanie massoperenosa v protsessakh korrozii betonov pervogo vida (malye znacheniya chisla Fur’e) [Simulating Mass Transfer in the Process of Concretes Corrosion of the First Type (Small Values of Fourier Number)]. Stroitel’nye materialy [Construction Materials]. 2007, no. 5,pp. 70—71. (In Russian)
  17. Fedosov S.V., Rumyantseva V.E., Kas’yanenko N.S., Krasil’nikov I.V. Teoreticheskie i eksperimental’nye issledovaniya protsessov korrozii pervogo vida tsementnykh betonov pri nalichii vnutrennego istochnika massy [Theoretical and Experimental Investigations of the Corrosion Processes of the First Type of Cement Concretes with the Availability of Internal Mass Source]. Stroitel’nye materialy [Construction Materials]. 2013, no. 6, pp. 44—47.(In Russian)
  18. Kayumov R.A., Fedosov S.V., Rumyantseva V.E., Khrunov V.A., Manokhina Yu.V., Krasil’nikov I.V. Matematicheskoe modelirovanie korrozionnogo massoperenosa geterogennoy sistemy «zhidkaya agressivnaya sreda — tsementnyy beton». Chastnye sluchai resheniya [Mathematical Simulation of Corrosion Mass Transfer of the Heterogeneous System “Liquid Aggressive Media — Cement Concrete”. Common Solution Cases]. Izvestiya Kazanskogo gosudarstvennogo arkhitekturno-stroitel’nogo universiteta [Kazan State University of Architecture and Engineering News]. 2013, no. 4 (26), pp. 343—348. (In Russian)
  19. Fedosov S.V., Rumyantseva V.E., Kas’yanenko N.S. Fiziko-khimicheskie osnovy zhidkostnoy korrozii vtorogo vida tsementnykh betonov [Physical and Chemical Foundations of Fluid Corrosion of the Second Type of Cement Concretes]. Stroitel’stvo i rekonstruktsiya [Construction and Reconstruction]. 2010, no. 4 (30), pp. 74—77. (In Russian)
  20. Korn G., Korn T. Spravochnik po matematike [Reference Book on Mathematics]. 4th edition. Moscow, Nauka Publ., 1977, 832 p. (In Russian)

Download

Substantiation of the simplified method of determining heat losses through underground parts of building enclosures

  • Samarin Oleg Dmitrievich - Moscow State University of Civil Engineering (National Research University) (MGSU) Candidate of Technical Sciences, Associate Professor, Department of Heating and Ventilation, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 118-125

Currently, the successful development of construction industry depends on the improved energy performance of buildings, structures and facilities, as well as on the quality assurance of the indoor climate. The approximate calculation of two-dimensional temperature field of the ground outside the underground part of the building is considered using the analytical solution of differential equation of thermal conduction by the method of sources and sinks according to the existing boundary conditions. This problem is a very high-priority task now because of actualization of building standards in Russian Federation and because of the increasing demands to safety and security of heat supply. That’s why it is very important to find a simple but accurate enough dependence for the heat losses through the floor situated on the ground. The results of the estimation of thermal resistance of floor areas on the ground are presented on the basis of the obtained temperature field. The comparison of these results with the regulatory requirements specified in SP 50.13330.2012, and with the data of numerical calculations of other authors using finite difference approximation of the thermal conduction equation with consideration of soil freezing is held. It is shown that the requirements of the SP 50.13330.2012 are physically reasonable, and numerical calculations can also be described by the analytical dependence obtained in this paper with appropriate selection of the numerical coefficients with the preservation of engineering form of the calculation procedure. The obtained model is easy to use in engineering practice especially during preliminary calculations. The presentation is illustrated with numerical and graphical examples.

DOI: 10.22227/1997-0935.2016.1.118-125

References
  1. Samarin O.D. Energeticheskiy balans grazhdanskikh zdaniy i vozmozhnye napravleniya energosberezheniya [Energy Balance of Public Buildings and Possible Ways of Energy Saving]. Zhilishchnoe stroitel’stvo [Residential Construction]. 2012, no. 8, pp. 2—4. (in Russian)
  2. Malyavina E.G. Teplopoteri zdaniya : spravochnoe posobie [Heat Losses of Buildings. Reference Guideline]. Moscow, AVOK-PRESS, 2007, 144 p. (in Russian)
  3. Gindoyan A.G., Grushko V.Ya., Sundukov I.Yu. Issledovanie teplopoter’ cherez poly po gruntu [Research of Heat Losses through Floors on the Ground]. Stroitel’naya fizika v XXI veke : materialy nauchno-tekhnicheskoy konferentsii [Building Physics in the 21st Century : Papers of the Scientific and Technical Conference]. Moscow, NIISF RAASN Publ., 2006,pp. 207—211. (in Russian)
  4. Malyavina E.G., Ivanov D.S. Opredelenie teplopoter’ podzemnoy chasti zdaniya raschetom trekhmernogo temperaturnogo polya grunta [Estimation of Heat Losses of the Underground Part of a Building by Calculating Three-Dimensional Temperature Field of the Soli]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2011,no. 11, pp. 209—215. (In Russian)
  5. Malyavina E.G., Ivanov D.S. Raschet trekhmernogo temperaturnogo polya grunta s uchetom promerzaniya pri opredelenii teplopoter’ [Calculation of Three-Dimensional Temperature Field of the Soil in View of Freezing While Estimating Heat Losses]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2011, vol. 1, no. 3, pp. 371—376. (In Russian)
  6. Parfent’ev N.A., Parfent’eva N.A. Matematicheskoe modelirovanie teplovogo rezhima konstruktsiy pri fazovykh perekhodakh [Mathematical Simulation of the Thermal Regime of Constructions under Phase Transitions]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2011, no. 4, pp. 320—322. (In Russian)
  7. Lapina N.N., Pushkin V.N. Chislennoe reshenie odnomernoy ploskoy zadachi Stefana [The Numerical Solution of One-Dimensional Planar Stephan’s Problem]. Vestnik DGTU [Vestnik of DSTU. Theoretical and Scientific-Practical Journal of Don State Technical University]. 2010, vol. 10, no. 1 (44), pp. 16—21. (In Russian)
  8. Akimov M.P., Mordovskoy S.D., Starostin N.P. Vozdeystvie podzemnogo truboprovoda teplosnabzheniya na vechnomerzlye grunty Kraynego Severa [The Influence of Buried Heat Supply Pipe on Constantly Frozen Soils of the Extreme North]. Vestnik Severo-Vostochnogo federal’nogo universiteta im. M.K. Ammosova [Vestnik of Yakutsk State University named after M.K. Ammosov]. 2012, vol. 9, no. 2, pp. 19—23. (In Russian)
  9. Akimov M.P., Mordovskoy S.D., Starostin N.P. Chislennyy algoritm dlya issledovaniya vliyaniya beskanal’nogo podzemnogo truboprovoda teplosnabzheniya na vechnomerzlye grunty [The Numerical Algorithm for the Research of the Influence of Non-Channel Underground Heat Supply Pipe on Constantly Frozen Soils]. Matematicheskie zametki YaGU [Mathematical Notes of North-Eastern Federal University in Yakutsk]. 2010, vol. 17, no. 2, pp. 125—131. (In Russian)
  10. Gerson Henrique Dos Santos, Nathan Mendes. Combined Heat, Air and Moisture (HAM) Transfer Model for Porous Building Materials. Journal of Building Physics. 2009, vol. 32, no. 3, pp. 203—220. DOI: http://www.doi.org/10.1177/1744259108098340.
  11. Halawa E., van Hoof J. The Adaptive Approach to Thermal Comfort: A Critical Overview. Energy and Buildings. 2012, vol. 51, pp. 101—110. DOI: http://dx.doi.org/10.1016/j.enbuild.2012.04.011.
  12. Brunner G. Heat Transfer. Supercritical Fluid Science and Technology. 2014, vol. 5, pp. 228—263.
  13. Horikiri K., Yao Y., Yao J. Modelling Conjugate Flow and Heat Transfer in a Ventilated Room for Indoor Thermal Comfort Assessment. Building and Environment. 2014, vol. 77, pp. 135—147. DOI: http://dx.doi.org/10.1016/j.buildenv.2014.03.027.
  14. Yun Tae Sup, Jeong Yeon Jong, Han Tong-Seok, Youm Kwang-Soo. Evaluation of Thermal Conductivity for Thermally Insulated Concretes. Energy and Buildings. 2013, vol. 61, pp. 125—132. DOI: http://dx.doi.org/10.1016/j.enbuild.2013.01.043.
  15. Dylewski R., Adamczyk J. Economic and Ecological Indicators for Thermal Insulating Building Investments. Energy and Buildings. 2012, no. 54, pp. 88—95. DOI: http://dx.doi.org/10.1016/j.enbuild.2012.07.021.
  16. Lapinskiene Vilune, Paulauskaite Sabina, Motuziene Violeta. The Analysis of the Efficiency of Passive Energy Saving Measures in Office Buildings. Environmental Engineering : Papers of the 8th International Conference. Vilnius, 2011, pp. 769—775.
  17. Duan X., Naterer G.F. Heat Transfer in a Tower Foundation with Ground Surface Insulation and Periodic Freezing and Thawing. International Journal of Heat and Mass Transfer. 2010, vol. 53, no. 11—12, pp. 2369—2376. DOI: http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.02.003.
  18. Zukowski M., Sadowska B., Sarosiek W. Assessment of the Cooling Potential of an Earth-Tube Heat Exchanger in Residential Buildings. Environmental Engineering : Pap. of the 8th International Conference. May 19—20. 2011, Vilnius. Lithuania, vol. 2, pp. 830—834.
  19. Miseviciute V., Martinaitis V. Analysis of Ventilation System’s Heat Exchangers Integration Possibilities for Heating Season. Environmental engineering : Pap. of 8th Conf. of VGTU. 2011, vol. 2, pp. 781—787.
  20. Samarin O.D. Raschet temperatury na vnutrenney poverkhnosti naruzhnogo ugla zdaniya s sovremennym urovnem teplozashchity [Calculation of Temperature in the Internal Surface of the External Corner of a Building with Modern Level of Thermal Protection]. Izvestiya vysshikh uchebnykh zavedeniy. Stroitel’stvo [News of Higher Educational Institutions. Construction]. 2005, no. 8, pp. 52—56. (in Russian)

Download

Mathematical model of heat-mass exchange processes in a flat solar collector SUN 1

  • Tunik Aleksandr Aleksandrovich - National Research Irkutsk State Technical University (NR ISTU) degree-seeking student, Department of Engineering Communications and Life Support Systems, Heat-and-power engineer, Department of Energy Account, National Research Irkutsk State Technical University (NR ISTU), 83 Lermontova str., Irkutsk, 664074, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 126-142

In a flat solar collector SUN 1 The active development of environmental friendly energy sources alternative to HPPs is currently of great importance in the world. Such alternative energy sources are: water, ground, sun, wind, biofuel, etc. If we have a look at the atlas of solar energy resources on the territory of Russia, we can make a conclusion, that in many regions of our country solar activity level allows using solar collector. Though the analysis of different models of solar collector showed, that most of them are ineffective in the regions with cold climate, though the solar activity of these regions is of a great level. In this regard, a mathematical model of heat-mass exchange processes in flat solar collectors is introduced in this article. The model was a basis for the development of a new solar collector, named SUN 1, which has an original heating tubes form. This form allows heat transfer medium to be under the influence of solar energy for a longer time and consequently to warm to a higher temperature, increasing the warming rapidity.

DOI: 10.22227/1997-0935.2016.1.126-142

References
  1. Solovyova E.G., Kondratenkov A.N. Sistema avtonomnogo energosnabzheniya zdaniya v usloviyakh ІІ klimaticheskoy zony [Independent Power Supply System of a Building in the Second Climate Zone]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2013, no. 10, pp. 208—215. (In Russian)
  2. Alferov Zh.I., Andreev V.M., Zimigorova N.S., Tret’yakov D.N. Fotoelektricheskie svoystva geteroperekhodov AlGaAs-GaAs [Photovoltaic Properties of the Heteroface Junction AlGaAs-GaAs]. FTP. 1969, vol. 3, no. 11, pp. 1633—1637. (In Russian)
  3. Frid S.E., Kolomiets Yu.G., Mordynskiy A.V., Suleymanov M.Zh., Arsatov A.V., Oshchepkov M.Yu. Effektivnost’ solnechnykh vodonagrevateley v klimaticheskikh usloviyakh Rossii [Effectiveness of Solar Water Heaters in the Climatic Conditions of Russia]. Izvestiya vysshikh uchebnykh zavedeniy. Severo-Kavkazskiy region. Seriya: Tekhnicheskie nauki [News of the Institutions of Higher Education. North Caucasian Region. Series: Technical Sciences]. 2012, no. 6, pp. 21—26. (In Russian)
  4. Takaev B.V., Kazandzhan B.I., Solodov A.P. Vozdushnyy solnechnyy kollektor s prozrachnoy teplovoy izolyatsiey kapillyarnogo tipa [Air-type Solar Collector with Transparent Heat Insulation of Capillary Type]. 1-ya Vserossiyskaya shkola-seminar molodykh uchenykh i spetsialistov : sbornik nauchnykh trudov [1st All-Russian School-Seminar of Young Scientists and Specialists: Collection of Scientific Articles]. Moscow, MEI Publ., 2002, pp. 256—261. (In Russian)
  5. Bayzhabaginov A.M., Bulatbaev F.N., Bulatbaeva Yu.F. Sravnitel’nyy analiz effektivnosti raboty solnechnykh elementov dlya vybora ob”ekta issledovaniya i vnedreniya [Comparative Analysis of Solar Elements Effectiveness for Choosing the Subject of Research and Implementation]. Strategiczne putania swiatowej nauki — 2014 : materialy X Mezhdunarodnoy nauchno-prakticheskoy konferentsii [Proceedings of the 10th International Science and Practice Conference “Strategiczne putania swiatowej nauki — 2014”]. 2014, vol. 35, Przemyśl: Nauka i studia Publ., pp. 25—29. (In Russian)
  6. Rakhnov O.E., Saklakov I.Yu., Potapov A.D. Osobennosti postroeniya skhem teplosnabzheniya ot avtonomnykh istochnikov dlya krupnykh proizvodstvennykh kompleksov i logisticheskikh tsentrov v urbosistemakh na ekologicheskikh printsipakh [Features of Construction Schemes of Self-heating Sources for Large Industrial Complex and Logistics Centers in Urbosystems on Ecological Principles]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2013, no. 11, pp. 177—187. (In Russian)
  7. Popel’ O.S., Frid S.E., Kolomiets Yu.G., Kiselev S.V., Terekhova E.N. Atlas resursov solnechnoy energii na territorii Rossii [Atlas of Solar Energy Sources on Russian Territory]. Moscow, Ob”edinennyy institut vysokikh temperatur RAN Publ., 2010, 54 p. (In Russian)
  8. Gagarin V.G., Guvernyuk S.V. Matematicheskaya model’ emissii volokon pri obduve vozdushnym potokom mineralovatnykh izdeliy i ee ispol’zovanie pri prognozirovanii dolgovechnosti uteplitelya ventiliruemogo fasada [Mathematical Model of Filament Emission during the Blow-off of Mineral-Cotton Products with Air Flow and its Use while Forecasting the Durability of Ventilated Faсade Insulation]. Vestnik Otdeleniya stroitel’nykh nauk Rossiyskoy akademii arkhitektury i stroitel’nykh nauk [Proceedings of Construction Sciences Department of the Russian Academy of Architecture and Construction Sciences]. 2009, no. 13, p. 135. (In Russian)
  9. Troshkina G.N., Chertishchev V.V. Raschet parametrov sistemy solnechnogo teplosnabzheniya [Calculating the Parameters of Solar Heat Supply System]. Materialy dokladov Rossiyskogo natsional’nogo simpoziuma po energetike [Materials of the Reports of Russian National Symposium on Energy Industry]. Ekaterinburg, 2001, pp. 297—299. (In Russian)
  10. Khavanov P.A., Markevich Yu.G., Chulenev A.S. Fiziko-matematicheskaya model’ teploobmena v kondensatsionnykh poverkhnostyakh teplogeneratorov [Physical and Mathematical Model of Heat Transfer in Condensation Surfaces of Heat Generators]. Internet-Vestnik VolgGASU. Seriya: Politematicheskaya [Internet Proceedings of Volgograd State University of Architecture and Civil Engineering. Polythematic Series]. 2014, no. 4 (35), article 22. Available at: http://vestnik.vgasu.ru/attachments/22KhavanovMarkevichChulenev-2014_4_35_.pdf. (In Russian)
  11. Kuznetsov G.V., Sheremet M.A. Matematicheskoe modelirovanie teplomassoperenosa v usloviyakh smeshannoy konvektsii v pryamougol’noy oblasti s istochnikom tepla i teploprovodnymi stenkami [Mathematical Modeling of Heat-Mass Exchange in the Conditions of Mixed Convection in a Rectangular Region with Heating Source and Heat Conductive Walls]. Teplofizika i aeromekhanika [Thermal Physics and Air Mechanics]. 2008, vol. 15, no. 1, pp. 107—120. (In Russian)
  12. Tabunshchikov Yu.A., Brodach M.M. Matematicheskoe modelirovanie i optimizatsiya teplovoy effektivnosti zdaniy [Mathematical Modelling and Optimization of Thermal Effectiveness of Buildings]. Moscow, AVOK-PRESS Publ., 2002, 194 p. (In Russian)
  13. Klyayn S.A., Daffi Dzh., Bekman U.A. Analiz perekhodnykh rezhimov v solnechnykh kollektorakh tipa «goryachiy yashchik» [Analysis of the Transient Modes in Solar Collectors of the Type “Hot Box”]. Trudy Amerikanskoy obshchestva inzhenerov-mekhanikov. Seriya A: Energeticheskie mashiny i ustanovki [Works of the American Society of Mechanic Engineers. Series A: Energy-Converting Machinery and Systems]. 1974, no. 2, 30 p. (In Russian)
  14. Klein S.A. The Effects of Thermal Capacitance upon the Performance. Transactions of the Conference on the Use of Solar Energy. University of Arizona Press, vol. 2, part 1, 74. 1958.
  15. Hottel H.C., Woertz B.B. Performance of Flat-Plate Collectors. Trans. ASME. 64, 91, 1942.
  16. Rettikh G. Kollektory i geliotermicheskie sistemy [Collectors and Solar Energy Systems]. Russian Translation. Minsk, Mezhdunarodnyy gosudarstvennyy ekologicheskiy universitet im. A.D. Sakharova Publ., 2007, 43 p. (In Russian)
  17. Burdonov A.E., Barakhtenko V.V., Zelinskaya E.V., Tolmacheva N.A. Teploizolyatsionnyy material na osnove termoreaktivnykh smol i otkhodov teploenergetiki [Thermal Insulation Materials Based on Thermosetting Resins and Thermal Energy Waste]. Stroitel’nye materialy [Construction Materials]. 2015, no. 1, pp. 48—52. (In Russian)
  18. Tolstoy M.Yu., Akinina N.V., Tunik A.A. Patent 112364 RU, MPK F24J2/24. Solnechnyy kollektor [Russian Patent 112364 RU, MPK F24J2/24. Solar Collector]. No. 2011130485/06 ; appl. 21.07.2011 ; publ. 10.01.2012, bulletin no. 1. Patent Holder GOU IrGTU. (In Russian)
  19. Sadilov P.V., Petrenko V.N. Vnedrenie avtomatizirovannoy gelioustanovki goryachego vodosnabzheniya v g. Sochi [Implementation of the Automated Solar Units of Hot Water Supply in Sochi]. Velikie reki — 2004 : materialy Mezhdunarodnogo nauchno-promyshlennogo foruma (18—21 maya 2004 g.) [Great Rivers — 2004 : Materials of the International Scientific Industrial Forum (May 18—21, 2004)]. Nizhniy Novgorod, 2004, p. 40. (In Russian)
  20. Erofeev V.Ya., Kabanov M.V., Tarasova A.I., Gupalo D.F. Patent 2313046 RU, MPK F24J2/38. Avtonomnaya sistema slezheniya za peremeshcheniem solntsa po nebosvodu [Russian Patent 2313046 RU, MPK F24J2/38. Automated Tracking System of Solar Motion in the Sky]. No. 2006103187/06 ; appl. 03.02.2006 ; publ. 20.12.2007. Patent holder: Institut monitoringa klimaticheskikh i ekologicheskikh sistem. (In Russian)
  21. Shinyakov Yu.A., Shurygin Yu.A., Arzhanov V.V., Osipov A.V., Teushchakov O.A., Arzhanov K.V. Avtomatizirovannaya fotoelektricheskaya ustanovka s povyshennoy energeticheskoy effektivnost’yu [Automated Photoelectric Unit with Increased Energy Efficiency]. Doklady tomskogo gosudarstvennogo universiteta sistem upravleniya i radioelektroniki [Reports of Tomsk State University of Control Systems and Radio Electronics]. 2011, no. 2-1 (24), pp. 282—287. (In Russian)

Download

HYDRAULICS. ENGINEERING HYDROLOGY. HYDRAULIC ENGINEERING

Stability of earth dam with a vertical core

  • Orekhov Vyacheslav Valentinovich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Sciences, chief research worker, Scientific and Technical Center “Examination, Design, Inspection”, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 143-149

Earth dam with impervious element in the form of asphaltic concrete core is currently the most promising type of earth dams (due to simple construction technology and universal service properties of asphaltic concrete) and is widely used in the world. However, experience in the construction and operation of high dams (above 160 m) is not available, and their work is scarcely explored. In this regard, the paper discusses the results of computational prediction of the stress-strain state and stability of a high earth dam (256 m high) with the core. The authors considered asphaltic concrete containing 7 % of bitumen as the material of the core. Gravel was considered as the material of resistant prisms. Design characteristics of the rolled asphaltic concrete and gravel were obtained from the processing of the results of triaxial tests. The calculations were performed using finite element method in elastoplastic formulation and basing on the phased construction of the dam and reservoir filling. The research shows, that the work of embankment dam with vertical core during filling of the reservoir is characterized by horizontal displacement of the lower resistant prism in the tailrace and the formation of a hard wedge prism descending along the core in the upper resistant prism. The key issue of the safety assessment is to determine the safety factor of the overall stability of the dam, for calculation of which the destruction of the earth dam is necessary, which can be done by reducing the strength properties of the dam materials. As a results of the calculations, the destruction of the dam occurs with a decrease in the strength characteristics of the materials of the dam by 2.5 times. The dam stability depends on the stability of the lower resistant prism. The destruction of its slope occurs on the classical circular-cylindrical surface. The presence of a potential collapse surface in the upper resistant prism (on the edges of the descending wedge) does not affect the overall stability of the dam.

DOI: 10.22227/1997-0935.2016.1.143-149

References
  1. Lyapichev Yu.P. Proektirovanie i stroitel’stvo sovremennykh vysokikh plotin [Design and Construction of Modern High Dams]. Moscow, RUDN Publ., 2004, 274 p. (In Russian)
  2. Bituminous Cores for Fill Dams. International Commission on Large Dams. Bulletin 84. Paris, ICOLD Publ., 1992, 140 p.
  3. Strobl T. and Schmid R. The Behavior of Dams with Asphaltic Concrete Cores during Impounding. Wilmington Business Publishing. Dartford, UK, 1993, pp. 29—34.
  4. Pircher W., Schwab H. Design, Construction and Behavior of the Asphaltic Concrete Core Wall of the Finstetal Dam. Transaction : 16th Int. Congress on Large Dams. Paris, ICOLD Press, 1988, pp. 901—924.
  5. Saxegaard H. Asphalt Core Dams: Increased Productivity to Improve Speed of Construction. Int. J. on Hydropower and Dams. 2002, vol. 9, no. 6, pp. 72—74.
  6. Ghanooni S. and Mahin Roosta R. Seismic Analysis and Design of Asphaltic Concrete Core Dams. Journal of Hydropower and Dams. 2002, vol. 9 (6), pp. 75—78.
  7. Hao Y.L., He B. Design of the Yele Asphalt Core Rokfill Dam. Dam Construction in China-State of the Art. 2008, pp. 226—233.
  8. Alicescu V., Tournier J.P., Yannobel P. Design and Construction of Nemiscau-1 Dam, the First Asphalt Core Rockfill Dam in North America. Proc. of CDA 2008 Annual Conference, Canadian Dam Association. 2008, pp. 1—11.
  9. Volynchikov A.N. Boguchanskaya GES — puskovoy ob
  10. Wang Weibiao, Hoeg K. Developments in the Dosing and Construction of Asphalt Dams. Hydropower and Dams. 2010, no. 3, pp. 83—90.
  11. Nackler K., Tschernutter P. Austria’s Second Highest Central Asphaltic Membrane at Feistritzbach Dam. Water Power & Dam Constr. 1992, no. 7, pp. 36—42.
  12. Hoeg K., Vatstad T., Kjaernsli B., Ruud A.M. Asphalt Core Embankment Dams: Recent Case and Research. Int. J. Hydropower Dams. 2007, vol. 13 (5), pp. 112—119.
  13. Zhu-sheng, Guang-jing Cao. Three Gorges Project: Safety Checking of Maopingxi Asphalt-Concrete Core Rockfill Dam. Proc. of the 4th Int. Conf. on Dam Engineering. Nanjing, China, A.A. Balkema, 2004, pp. 1181—1188.
  14. Orekhov V.V. Napryazhenno-deformirovannoe sostoyanie sverkhvysokoy gruntovoy plotiny s asfal’tobetonnoy diafragmoy [The stress-strain state of extra-high earth dam with asphaltic concrete core]. Gidrotekhnicheskoe stroitel’stvo [Hydrotechnical Construction]. 2015, no. 5, pp. 57—59. (In Russian)
  15. Rasskazov L.N., Smirnova M.V. K vyboru tipa gruntovoy plotiny [On the Choice of Earth Dam Type]. Gidrotekhnicheskoe stroitel’stvo [Hydrotechnical Construction]. 2014, no. 2, pp. 20—23. (In Russian)
  16. Vaynberg A.I., Landau Yu.A. Novaya konstruktsiya vysokoy kamennonabrosnoy plotiny s asfal’tobetonnoy diafragmoy v surovykh klimaticheskikh usloviyakh [New Design of High Rockfill Dam with Asphaltic-Concrete Core in Harsh Climatic Conditions]. Gidrotekhnicheskoe stroitel’stvo [Hydrotechnical Construction]. 2015, no. 1, pp. 13—23. (In Russian)
  17. Rasskazov L.N., Sherimbetov Kh.S. Svoystva asfal’tobetona diafragm i ekranov kamennykh plotin [Properties of Asphaltic Concrete of Cores and Screens of Rockfill Dams]. Gidrotekhnicheskoe stroitel’stvo [Hydrotechnical Construction]. 1989, no. 5, pp. 26—30. (In Russian)
  18. Chukin B.A. Napryazhenno-deformirovannoe sostoyanie i ustoychivost’ kamenno-nabrosnykh plotin s protivofil’tratsionnym elementom iz asfal’tobetona : avtoreferat dissertatsii kandidata tekhnnicheskikh nauk [Stress-strain state and stability of rockfill dams with asphaltic concrete impervious element : Thesis of Candidate of Technical Sciences]. Moscow, 1983, 20 p. (In Russian)
  19. Zaretskiy Yu.K., Lombardo V.N. Statika i dinamika gruntovykh plotin [Statics and Dynamics of Earth Dams]. Moscow, Energoatomizdat Publ., 1983, 255 p. (In Russian)
  20. Orekhov V.V. Kompleks vychislitel’nykh programm «Zemlya-89» [Computing Programs Complex “Earth-89”]. Issledovaniya i razrabotki po komp’yuternomu proektirovaniyu fundamentov i osnovaniy : mezhvuzovskiy sbornik [Interuniversity Collection “Research and Development in Computer-aided Design of Foundations and Bases”]. Novocherkassk, 1990, pp. 14—20. (In Russian)
  21. Orekhov V.V. Ob”emnaya matematicheskaya model’ i rezul’taty raschetnykh issledovaniy napryazhenno-deformirovannogo sostoyaniya osnovnykh sooruzheniy Rogunskoy GES [Volume Mathematical Model and the Results of Numerical Studies of the Stress-strain State of the Main Structures of the Rogun HPP]. Gidrotekhnicheskoe stroitel’stvo [Hydrotechnical Construction]. 2011, no. 4, pp. 12—19. (In Russian)

Download

Statistical analysis of determining the filtration heterogeneity of foundation rock mass of hydraulic structures on the example of the boguchanskaya hpp

  • Chernyshev Sergey Nikolaevich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Geologo-Mineralogical Sciences, Professor, Department of Engineering Geology and Geoecology, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Zommer Tat’yana Valentinovna - Moscow State University of Civil Engineering (National Research University) (MGSU) Lecturer, Department of Engineering Geology and Geoecology, head, Laboratory of Hydraulics, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Lavrusevich Andrey Aleksandrovich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Geologo-Mineralogical Sciences, Professor, Department of Engineering Geology and Geoecology, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 150-160

In the article the authors carried out a statistical analysis of mass determination of the filtration coefficient, which allows us to construct the most accurate calculation model of seepage field of inhomogeneous bedrock foundation of the dam needed for seepage calculations and to predict seepage regime of hydraulic structures and their grounds. The algorithm can be applied to analyze heterogeneity based on the large set of definitions of the properties of soil, subject to the condition that within the engineering geological element of random fluctuations of the index properties or some of its functions, e.g., logarithm of index properties, obey normal distribution law. In the latter case, all digital values of the index should be recalculated and presented in the form, in which they submit to the law of normal distribution. The authors received effective evaluation of the filtration coefficient on the basis of the law of statistical distribution. Correspondence of each component to a particular genetic element of the array is derived from the premise, adopted prior to the mathematical analysis: we divided the total distribution into separate normal distributions, and normal distribution is only true for a genetically separate engineering-geological element. After finding boundary values of the distributions it is required to determine the cut regions, in which relevant engineering-geological elements are localized, with the help of specially designed algorithm. In order to clarify geological distinction between the various lithological zones, zones of weathered and fractured zones, we use numerical data of filtration sampling. Then we put the numerical values of the index properties of lgq on which segmentation of the array occurs, on a geological cross section, respectively, for each well. After assigning numerical codes to the individual values of the indicator properties you can begin to image the geological section, where we combine the intervals with identical key values in the second position of the code. The boundaries between the drilled wells are held on a Pro forma basis for geological reasons. For example, if the set of values with the largest number lgq, which corresponds to the species with a visually perceptible change when exposed to weathering, has a number 4, the boundaries between the drilled wells will naturally stretch along the roof of the bedrock. If according to the proposed methodology, within the limited element number 4, the interval is flagged with number 3, it can be interpreted as the appearance of the outcrop of other rocks. In this case we need to show the boundary of engineering-geological element with a smaller value of lgq around the 3, than it is inside the engineering-geological element number 4. For each of the obtained groups of values, calculated using known statistical formulas, we calculated the mean value and other statistical estimates that are useful in practice. For example, the geometric mean is an effective in a hydraulic sense evaluation of the specific absorption coefficient of the filter. So the authors proposed a formalized approach to defining the structural elements of the filtration field inhomogeneity of a rock mass of hydraulic structures foundation on the basis of statistical analysis. The article shows how to highlight the engineering-geological elements with the filtration inhomogeneity of rocky soils on the example of the Boguchanskaya HPP on the Angara River.

DOI: 10.22227/1997-0935.2016.1.150-160

References
  1. Chernyshev S.N., Paushkin G.A. Determination du module de deformabilite des roches en place. Symposium International — Reconnaissance des Sols et des Roches par Essais en Place. Paris, Fr., 1983.
  2. Raymer J., Maerz N.H. Effect of Variability on Average Rock-Mass Permeability. 48th US Rock Mechanics. Geomechanics Symposium, University of Minnesota, Twin Cities CampusMinneapolis, United States, 1—4 June 2014, no. 3, pp. 1822—1829.
  3. Orekhov V.G., Zertsalov M.G., Shimel’mits G.I., Fishman Yu.A., Tolstikov V.V. Issledovanie skhemy razrusheniya sistemy «betonnaya plotina — skal’noe osnovanie» [Inveatigation of the Destruction Scheme of the System “Concrete Dam — Rock Foundation”]. Izvestiya Vserossiyskogo nauchno-issledovatel’skogo instituta gidrotekhniki im. B.E. Vedeneeva [News of the All-Russian Scientific Research Institute of Hydraulic Engineering Named after B.E. Vedeneev]. 1988, vol. 204, pp. 71—76. (In Russian)
  4. Zertsalov M.G., Tolstikov V.V. Uchet uprugoplasticheskoy raboty betonnykh plotin i skal’nykh osnovaniy v raschetakh s ispol’zovaniem MKE [Account for Elastic Plastic Operation of Concrete Dams and Rock Foundations in Calculations Using FEM]. Gidrotekhnicheskoe stroitel’stvo [Hydrotechnical Construction]. 1988, no. 8, pp. 33—36. (In Russian)
  5. Chernyshev S.N., Dearman W. Rock Fractures. London, Butterwort-Heinemann, 1991, 272 p.
  6. Orekhov B.G., Zertsalov M. Fracture Mechanics of Engineering Structures and Rocks. Rotterdam, 2001.
  7. Mohajerani S., Baghbanan A., Bagherpour R., Hashemolhosseini H. Grout Penetration in Fractured Rock Mass Using a New Developed Explicit Algorithm. International Journal of Rock Mechanics and Mining Sciences. 2015, vol. 80, pp. 412—417. DOI: http://www.doi.org/10.1016/j.ijrmms.2015.06.013.
  8. Chernyshev S.N. Estimation of the Permeability of the Jointy Rocks in Massif. Symp on Percolation through Fissured Rock, Proc., Sep 18—19 1972. Stuttgart, W Ger.
  9. Chernyshev S.N. Dvizhenie vody po setyam treshchin [Water Motion through the Network of Cracks]. Moscow, Nedra Publ., 1979, 142 p. (In Russian)
  10. Gaziev E.G., Rechitskiy V.I., Borovykh T.N. Issledovanie fil’tratsionnogo potoka v blochnoy srede primenitel’no k proektirovaniyu sooruzheniy v skal’nykh massivakh [Investigation of Filtration Flow in Block Environment in Design of Structures in Rock Masses]. Trudy Gidroproekta [Works of Hydroproject]. 1980, no. 68, pp. 137—147. (In Russian)
  11. P 54—90. Metodika sostavleniya modeley vodopronitsaemosti skal’nykh massivov v osnovaniyakh gidrotekhnicheskikh sooruzheniy [Article 54—90. Methods of Creating Waterproof Models of Rock Masses in Foundations of Hydraulic Structures]. Posobie k SNiP 2.02.02—85 [Manual to Construction Rules SNiP 2.02.02—85]. Saint Petersburg, VNIIG Publ., 1992, 97 p. (In Russian)
  12. Chernyshev S.N. Ekzogennye deformatsii trappov v doline r. Angary [Exogenous Deformations of Traps in the Valley of Angara River]. Izvestiya vysshikh uchebnykh zavedeniy. Geologiya i razvedka [News of Institutions of Higher Education. Geology and Esploration]. 1965, no. 12, pp. 78—85. (In Russian)
  13. Rats M.V., Chernyshev S.N., Sleptsov B.G. Razrabotka kriteriev optimal’noy glubiny vrezki betonnykh plotin v skal’nye osnovaniya. Statisticheskiy analiz vodopronitsaemosti osnovaniya Boguchanskoy GES [Developing the Criteria of Optimal Incision Depth of Concrete Dams into Rock Foundations. Statistical Analysis of Water Permeability of the Boguchanskaya HPP Foundation]. Moscow, PNIIIS Publ., 1975. (In Russian)
  14. Rasskazov L.N., Aniskin N.A. Fil’tratsionnye raschety gidrotekhnicheskikh sooruzheniy i osnovaniy [Filtration Calculations of Hydraulic Structures and Foundations]. Gidrotekhnicheskoe stroitel’stvo [Hydrotechnical Construction]. 2000, no. 11, pp. 2—7. (In Russian)
  15. Malakhanov V.V. Classification of States and Criteria for the Operational Reliability of Water-Development Works. Hydrotechnical Construction. 2000, vol. 34, no. 11, pp. 531—537. DOI: http://www.doi.org/10.1023/A:1017564423762.
  16. Zommer V.L. Spetsifika gidravlicheskikh i gidrotekhnicheskikh nauchnykh issle-dovaniy v laboratorii gidromekhaniki i gidravliki [Features of Hydraulic and Hydro-Technological Re-Search Conducted at the Laboratory of Hydromechanics and Hydraulics]. Stroitel’stvo: nauka i obrazovanie [Construction: Science and Education]. 2015, no. 2. Available at: http://www.nso-journal.ru. (In Russian)
  17. Khodzinskaya A.G., Zommer T.V. Gidravlika i gidrologiya transportnykh sooruzheniy. Uchebnoe posobie [Hydraulics and Hydrology of Transport Constructions. Study Guide]. Moscow, 2014, 92 p. (In Russian)
  18. Rasskazov L.N., Aniskin N.A., Zhelankin V.G. Fil’tratsiya v gruntovykh plotinakh v ploskoy i prostranstvennoy postanovke [Filtration in Soil Dams in Flat and 3D Statement]. Gidrotekhnicheskoe stroitel’stvo [Hydrotechnical Construction]. 1989, no. 11, pp. 26—32. (In Russian)
  19. Il’in N.I., Chernyshev S.N., Dzektser E.S., Zil’berg V.S. Otsenka tochnosti opredeleniya vodopronitsaemosti gornykh porod [Estimating Determination Accuracy of Water Permeability of Rock Formations]. Moscow, Nauka Publ., 1971, 150 p. (In Russian)
  20. Chapovskiy A.E., Pertsovskiy V.V. Eksperimental’noe issledovanie neodnorodnosti gornykh porod v plane [Experimantal Investigation of Rock Inhomogeneity in Plan]. Razvedka i okhrana nedr [Exploration and Preservation of Mineral Resources]. 1972, no. 1, pp. 45—49. (In Russian)
  21. Samsonov B.G., Zil’bershteyn B.M., Burdakova O.L. Opredelenie gidrogeologicheskikh parametrov pri effektivnoy neodnorodnosti vodonosnykh gorizontov [Determination of Hydrogeological Parameters in Cose of Effective Inhomogeneity of Aquifers]. Gidrologiya i inzhenernaya geologiya. Ekspress-informatsiya VIEMS, MG SSSR [Hydrology and Engineering Geology. Express Information of VIEMS, MG USSR]. 1972, no. 4. (In Russian)
  22. Savich A.I., Rechitskiy V.I., Zamakhaev A.M., Pudov K.O. Kompleksnye issledovaniya deformatsionnykh svoystv massiva doleritov v osnovanii betonnoy plotiny Boguchanskoy GES [Complex Investigations of Deformation Properties of Dolerite Masses in the Foundation of the Concrete Dam of Boguchanskaya HPP]. Gidrotekhnicheskoe stroitel’stvo [Hydrotechnical Construction]. 2011, no. 3, pp. 12—22. (In Russian)
  23. Aniskin N.A., Tkhan’ To V. Prognoz fil’tratsionnogo rezhima gruntovoy plotiny Yumaguzinskogo gidrouzla i ee osnovaniya [Prediction of Seepage Conditions of the Soil Dam of Yumaguzinskiy Hydroengineering Complex and its Foundation]. Gidrotekhnicheskoe stroitel’stvo [Hydrotechnical Construction]. 2005, no. 6, pp. 19—25. (In Russian)
  24. Rasskazov L.N., Aniskin N.A., Bestuzheva A.S., Sainov M.P., Tolstikov V.V. Sangtudinskiy gidrouzel: napryazhenno-deformirovannoe sostoyanie i fil’tratsiya v osnovanii plotiny i v obkhod gidrouzla [Sangtudinsk Hydroengineering Complex: Stress-Strain State and Filtration in the Dam Foundation and Bypassing the Hydroengineering Complex]. Gidrotekhnicheskoe stroitel’stvo [Hydrotechnical Construction]. 2008, no. 5, pp. 45—58. (In Russian)
  25. Rasskazov L.N., Aniskin N.A. Filtration Calculations for Hydraulic Structures and Foundation Beds. Hydrotechnical Construction. 2000, vol. 34, no. 11, pp. 525—530. DOI: http://www.doi.org/10.1023/A:1017582706924.
  26. Wu J.L., He J. Determination of Volumetric Joint Count Based on 3D Fracture Network and Its Application in Engineering. Applied Mechanics and Materials. 2014, vols. 580—583, pp. 907—911. DOI: http://www.doi.org/10.4028/www.scientific.net/AMM.580-583.907.
  27. Gudmundsson A., Lo Tveit I.F. Sills as Fractured Hydrocarbon Reservoirs: Examples and Models. Geological Society Special Publication. 2014, vol. 374 (1), pp. 251—271. DOI: http://www.doi.org/10.1144/SP374.5.

Download

TRANSPORTATION SYSTEMS

Rationale for the necessity of technical inspection lines for motor vehicles in residential areas

  • Kanen Mahmoud Hador Fadlallah - Ivanovo State Polytechnic University (IVGPU) postgraduate student, Department of Vehicles and Vehicle Fleet, Ivanovo State Polytechnic University (IVGPU), 20, 8 Marta str., Ivanovo, 153037, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Maslennikov Valeriy Aleksandrovich - Ivanovo State Polytechnic University (IVGPU) Candidate of Technical Sciences, Associate Professor, Department of Vehicles and Vehicle Fleet, Ivanovo State Polytechnic University (IVGPU), 20, 8 Marta str., Ivanovo, 153037, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 161-169

Due to the influence of many different factors, the arrival of vehicles to technical inspection lines is stochastic. The existing methods of designing the network of technical inspection do not take full account of this fact, the consequence of which is the lack of inspection lines load at some periods of the year and its excess in the other. In the first case, we evidence the deteriorating of economic performance of these facilities, in the second - the quality of evaluating the technical condition of vehicles suffers. The authors proposed a method of justifying the minimum requirements of residential areas in the lines of technical examination, taking into account the probabilistic nature of vehicles inspection revenue. The use of the proposed method was shown on the example of a large village. Using the mathematical apparatus for calculation of queuing theory allows not only identifying the areas in need of inspection lines, but also, if necessary, providing technical and economic evaluation of the results obtained by calculations.

DOI: 10.22227/1997-0935.2016.1.161-169

References
  1. Kir’yanov V.N. Strategiya obespecheniya bezopasnosti dorozhnogo dvizheniya v Rossiyskoy Federatsii [The Strategy for Ensuring Road Safety in the Russian Federation]. Moscow, DOBDD Publ., 2005, no. 28, pp. 5—15. (In Russian)
  2. Verzilin V.A., Bychkov V.P., Zalozhnykh V.M. Primenenie programmno-tselevogo metoda kak osnovy gosudarstvennogo upravleniya v oblasti obespecheniya bezopasnosti dorozhnogo dvizheniya [Application of Special-Purpose Method as a Basis for Government Control in the Field of Road Safety]. Avtotransportnoe predpriyatie [Motor Transport Enterprise]. 2013, no. 8, pp. 6—8. (In Russian)
  3. Kulikov Yu.I., Pugachev I.N. Gosudarstvennyy tekhnicheskiy osmotr — zalog bezotkaznoy raboty avtomobil’nogo transporta [State Technical Inspection — a Guarantee of Flawless Operation of Road Transport]. Avtotransportnoe predpriyatie [Motor Transport Enterprise]. 2014, no. 8, pp. 8—13. (In Russian)
  4. Encyclopedia of Automotive Engineering. Wiley Online Library. Available at: http://onlinelibrary.wiley.com/book/10.1002/9781118354179. Date of access: 01.09.2015.
  5. Service Station. GNU Free Documentation License. Available at: http://knowledgerush.com/encyclopedia/Service_station. Date of access: 07.08.2015.
  6. MathWorks. Available at: www.mathworks.com. Date of access: 01.10.2013.
  7. Robert Bosch GmbH. EU CO2 Fleet Target for Passenger Cars. 2009.
  8. Postanovlenie Pravitel’stva Rossiyskoy Federatsii ot 22 dekabrya 2011 g. № 1108 Moskva: «Ob utverzhdenii metodiki rascheta normativov minimal’noy obespechennosti naseleniya punktami tekhnicheskogo osmotra dlya sub”ektov Rossiyskoy Federatsii i vkhodyashchikh v ikh sostav munitsipal’nykh obrazovaniy» [Decree of the Government of Russian Federation from December 22, 2011 no. 1108, Moscow: On approval of the methodology for calculating minimum standards of availability of technical inspection for the subjects of the Russian Federation and their member municipalities]. «Rossiyskaya gazeta» [Russian Newspaper]. Federal issue no. 5673, December 31, 2011. (In Russian)
  9. Federal’nyy zakon Rossiyskoy Federatsii ot 1 iyulya 2011 goda № 170-FZ g. Moskvy «O tekhnicheskom osmotre transportnykh sredstv i o vnesenii izmeneniy v otdel’nye zakonodatel’nye akty Rossiyskoy Federatsii [Federal Law of the Russian Federation from July, 1, 2011 no. 170-FZ, Moscow “On Technical Inspection of Vehicles and on Amendments to Certain Legislative Acts of the Russian Federation]. «Rossiyskaya gazeta» [Russian Newspaper]. Federal issue no. 5518 from July, 4, 2011. (In Russian)
  10. Pavlishin S.G. Raschet normativov obespechennosti naseleniya punktami tekhnicheskogo osmotra AMTS [Calculating the Availability Standards of Technical Inspection Stations AMTS]. Avtotransportnoe predpriyatie [Motor Transport Enterprise]. 2012, no. 6, pp. 27—32. (In Russian)
  11. Pavlishin S.G. Opredelenie propusknoy sposobnosti punktov tekhnicheskogo osmotra AMTS [Capacity Determination of Technical Inspection Stations AMTS]. Avtomobil’naya promyshlennost’ [Automobile Industry]. 2009, no. 7, pp. 26—28. (In Russian)
  12. Masuev M.A. Proektirovanie predpriyatiy avtomobil’nogo transporta: uchebnoe posobie dlya studentov vysshikh uchebnykh zavedeniy [Designing of the Enterprises of Motor Transport]. Moscow, Akademiya Publ., 2007, 224 p. (In Russian)
  13. Venttsel’ E.S. Issledovanie operatsiy: zadachi, printsipy, metodologiya: uchebnoe Posobie [Operations Research: Objectives, Principles, Methodology. Textbook]. 3rd edition, stereotype. Moscow, Drofa Publ., 2004, 208 p. (In Russian)
  14. Kanen M.G.F., Maslennikov V.A., Usipbaev U.A. Obosnovanie potrebnosti v liniyakh tekhnicheskogo osmotra [Rationale for Technical Inspection Lines]. Informatsionnaya sreda VUZA : materialy XXI Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii [University Infomedia. 21st International Scientific and Technical Conference]. Ivanovo, IVGPU Publ., 2014, pp. 338—340. (In Russian)
  15. Kanen M.G.F., Maslennikov V.A. Povyshenie effektivnosti protsessa diagnostirovaniya avtomobiley [Improving the Efficiency of Diagnosing Process of Automobiles]. Informatsionnaya sreda VUZA : materialy XIX Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii [University Infomedia. 18st International Scientific and Technical Conference]. Ivanovo, IVGPU Publ., 2012. S. 352—354. (In Russian)
  16. Gnedenko B.V., Kovalenko I.N. Vvedenie v teoriyu massovogo obsluzhivaniya [Introduction to Queuing Theory]. Moscow, Kom kniga Publ., 2005, 397 p. (In Russian)
  17. Kanen M.G.F., Maslennikov V.A., Usipbaev U.A., Tulenov A.T., Dzhunisbekov A.S. Opredelenie normativov potrebnosti v punktakh tekhnicheskogo osmotra transportnykh sredstv [Defining the Standards for the Necessity in Technical Inspection Stations of Vehicles]. Auezovskie chteniya-12 : trudy Mezhdunarodnoy nauchno-prakticheskoy konferentsii [Proceedings of the International Scientific and Practical Conference “Auezov Readings-12”]. Shymkent, YuKGU im. Auezova, 2014, vol. 1. Rol’ regional’nogo universiteta v razvitii innovatsionnykh napravleniy nauki, obrazovaniya i kul’tury [The Role of Regional University in the Development of Innovative Areas of Science, Education and Culture]. Pp. 213—215. (In Russian)
  18. Korchagin V.A., Khabibullin R.G., Makarova I.V. Perspektivnye napravleniya razvitiya sistemy firmennogo servisa avtomobil’noy tekhniki [Perspective Development Directions of Firm Service System of Automotive Equipment]. Fundamental’nye issledovaniya [Fundamental Studies]. 2013, no. 4, pp. 806—811. (In Russian)
  19. Kornakov A.M., Tsvetkov V.Ya. Podderzhka prinyatiya resheniy pri upravlenii promyshlennym predpriyatiem [Support of Decision-Making in the Management of Industrial Enterprise]. Sovremennye naukoemkie tekhnologii [Modern High Technologies]. 2010, no. 1, pp. 94—95. (In Russian)
  20. Koroleva E.B., Zhigiley O.N., Kryazhev A.M., Sergienko O.I., Sokornova T.V. Nailuchshie dostupnye tekhnologii: opyt i perspektivy [Best Available Techniques: Experience and Prospects]. Saint Petersburg, OOO «Ay-Pi» Publ., 2011, 123 p. (In Russian)
  21. Kochetkov A.V., Ermolaeva V.V., Ermolaev B.V., Myrzakhmetov B.A. Novye instrumental’nye sredstva izyskaniya i proektirovaniya ob”ektov transportnogo stroitel’stva [New Tools Methods of Research and Design of Transportation Construction]. Vestnik Saratovskogo gosudarstvennogo tekhnicheskogo universiteta [Bulletin of Saratov State Technical University]. 2010, no. 1 (44), pp. 189—194. (In Russian)
  22. Rezchikov A.F., Tverdokhlebov V.A. Prichinno-sledstvennye kompleksy vzaimodeystviy v proizvodstvennykh protsessakh [Causal Complexes of Interactions in Production Processes]. Problemy upravleniya [Management Problems]. 2010, no. 3, pp. 51—59. (In Russian)
  23. Leonov S.A. Matematicheskaya otsenka faktorov, okazyvayushchikh vliyanie na proizvodstvenno-sbytovuyu deyatel’nost’ shveynykh predpriyatiy [Mathematical Evaluation of the Factors Affecting the Production and Sales Activities of Clothing Companies]. Izvestiya vysshikh uchebnykh zavedeniy. Tekhnologiya tekstil’noy promyshlennosti [News of the Institutions of Higher Education. Technology of Textile Industry]. 2013, no. 5 (347), pp. 5—10. (In Russian)
  24. Usufov M.M.O. Perspektivy razvitiya avtoservisa [Development Prospects of Automobile Service]. Tekhniko-tekhnologicheskie problemy servisa [Technical and Technological Problems of Service]. 2012, vol. 19, no. 1, pp. 72—77. (In Russian)
  25. Curtin K.M., McCall K.H., Qiu F. Determining Optimal Police Patrol Areas with Maximal Covering and Backup Covering Location Models. Netw. Spatial Econ. 2010, vol. 10, no. 1, pp. 125—145. DOI: http://dx.doi.org/10.1007/s11067-007-9035-6.
  26. Rodgard Runflats. Rodgard Runflat & Polymer Solutions. Available at: http://www.rodgard.com/runflats.htm. Date of access: 07.07.2014.
  27. A European Strategy for Clean and Energy Efficient Vehicles State of Play 2011 — Commission Staff working paper. SEC (2011) 1617 Final. Brussels, 14.12.2011, pp. 1—17.

Download

ECONOMICS, MANAGEMENT AND ORGANIZATION OF CONSTRUCTION PROCESSES

Risk management of innovative leasing in a construction complex

  • Alekseeva Tat’yana Romanovna - Moscow State University of Civil Engineering (National Research University) (MGSU) Candidate of Economic Sciences, Associate Professor, Department of Economy and Management in the Construction, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 170-180

One of the tasks a construction complex is facing today is the transition to innovative technological form. New efficient mechanisms of management of its innovative development are needed. It is necessary to involve specialized engineering companies rendering the services in innovative engineering into innovative activity management of the organizations of a construction complex. Within these services we offer the use of new administrative instrument of “innovative leasing engineering”. In the article the functions of the engineering companies carried out within this instrument of innovative development of a construction complex are offered and proved. The management process of risks in this sphere is considered. Classification of risks of innovative leasing in a construction complex is specified. The risks of a managing director of an engineering company are revealed and proved; the risks of other participants of the leasing relations are specified. New approach to decrease the risks of innovative leasing with participation of the managing director of an engineering company is offered on the basis of the methods of risks distribution between the participants of the leasing relations, insurance and hedging of risks.

DOI: 10.22227/1997-0935.2016.1.170-180

References
  1. Asaul A.N. Problemy innovatsionnogo razvitiya otechestvennoy ekonomiki [Problems of Innovative Development of Domestic Economy]. Ekonomicheskoe vozrozhdenie Rossii [Economic Revival of Russia]. 2009, no. 4, pp. 3—6. (In Russian)
  2. Alekseeva T.R. Innovatsionnyy lizingovyy inzhiniring v stroitel’nom komplekse [Innovative Leasing Engineering in a Construction Complex]. Ekonomika i predprinimatel’stvo [Journal of Economy and Entrepreneurship]. 2015, no. 4—2 (57—2), pp. 583—590. (In Russian)
  3. Alekseeva T.R. Lizingovye tekhnologii v innovatsionnom razvitii stroitel’nogo kompleksa [Leasing Technologies in Innovative Development of Construction Complex]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2014, no. 5, pp. 152—161. (In Russian)
  4. Glaz’ev S.Yu. Mirovoy ekonomicheskiy krizis kak protsess zameshcheniya dominiruyushchikh tekhnologicheskikh ukladov [World Economic Crisis as a Process of Replacement of Dominating Technological Ways]. Sayt S.P. Kurdyumova [The Site of S.P. Kurdyumov] Available at: http://spkurdyumov.ru/economy/mirovoj-ekonomicheskij-krizis/. Date of access: 10.05.2013. (In Russian)
  5. Zagidullina G.M., Kleshcheva O.A. Razvitie innovatsionnoy infrastruktury investitsionno-stroitel’nogo kompleksa [Development of Innovative Infrastructure of an Investment and Construction Complex]. Izvestiya Kazanskogo gosudarstvennogo arkhitekturno-stroitel’nogo universiteta [News of Kazan State University of Architecture and Engineering]. 2011, no. 2 (16), pp. 271—277. (In Russian)
  6. Lukmanova I.G. Metodicheskie osnovy transfera tekhnologiy v stroitel’noy otrasli [Methodological Bases for Technology in the Construction Industry]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2012, no. 3, pp. 193—198. (In Russian)
  7. Filosofova T.G. Effektivnost’ ispol’zovaniya lizinga v skhemakh modernizatsii [Leasing as an Efficient Tool in Modernization Schemes]. Lizing. Tekhnologii biznesa [Leasing. Technologies of Business]. 2011, no. 9, pp. 6—21. (In Russian)
  8. Syrtsova O.N. Lizing kak instrument modernizatsii ekonomiki Rossii [Leasing as a tool for modernization of Russian economy]. Lizing. Tekhnologii biznesa [Leasing. Technologies of Business]. 2012, no. 8, pp. 14—29. (In Russian)
  9. Chekmachev I.Yu., Ioda E.V. Inzhiniringovyy tsentr kak element innovatsionnoy infrastruktury regiona [Engineering Center as an Element of Innovative Infrastructure of the Region]. Sotsial’no-ekonomicheskie yavleniya i protsessy [Social and Economic Phenomena and Processes]. 2014, vol. 9, no. 9, pp. 84—95. (In Russian)
  10. Sholkin V.G. Inzhiniring — put’ k modernizatsii ekonomiki [Engineering — a Way to Modernization of the Economy]. Standarty i kachestvo [Standards and Quality]. 2014, no. 12 (930), pp. 54—56. (In Russian)
  11. Kamenetskiy M.I., Yas’kova N.Yu. Krizis otechestvennoy modeli upravleniya stroitel’stvom i rynkom nedvizhimosti [Crisis of the Domestic Model of Management of Construction and Real Estate Market]. Ekonomika stroitel’stva [Economy of Construction]. 2009, no. 3, pp. 3—13. (In Russian)
  12. Yas’kova N.Yu. Tendentsii razvitiya stroitel’nykh korporatsiy v novykh usloviyakh [Development Tendencies of Construction Corporations in New Conditions]. Nauchnoe obozrenie [Scientific Review]. 2013, no. 6, pp. 174—178. (In Russian)
  13. Yas’kova N.Yu. Evolyutsiya protsessov razvitiya investitsionno-stroitel’noy deyatel’nosti [Evolution of Investment-in-Construction Development Processes]. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta [Bulletin of Irkutsk State Technical University]. 2012, vol. 60, no. 1, pp. 178—186. (In Russian)
  14. Kamenetskiy M.I., Yas’kova N.Yu. Administrativnyy resurs kak faktor povysheniya effektivnosti sistemy gosudarstvennogo upravleniya [Administrative Resources as a Factor in Improving the Efficiency of the State Administration System]. Problemy prognozirovaniya [Prediction Problems]. 2015, no. 2, pp. 33—42. (In Russian)
  15. Levy M.J. Modernization and the Structure of Societies. Princeton University Press, 1966, 735 p.
  16. Meier G.M. Leading Issues in Economic Development. 6th edition. New York, Oxford University Press, 1995, 86 p.
  17. Ayupov A.A. Primenenie innovatsionnogo lizingovogo optsiona kak instrumenta khedzhirovaniya operatsiy lizinga [Application of an Innovative Leasing Option as an Instrument of Hedging Leasing Operations]. Vektor nauki Tol’yattinskogo gosudarstvennogo universiteta [Vector of Science of Togliatti State University]. 2012, no. 3 (21), pp. 115—118. (In Russian)
  18. Batrutdinov A.S., Fedoseev I.V. Lizing kak sposob finansovo-kreditnogo obespecheniya innovatsionnoy deyatel’nosti stroitel’nogo predpriyatiya [Leasing as Way of Financial and Credit Ensuring of the Innovative Activity of a Construction Enterprise]. Problemy sovremennoy ekonomiki [Problems of Modern Economy]. 2006, no. 3—4, pp. 237—240. (In Russian)
  19. Ibraeva A.A. Sushchnost’ i funktsii lizinga v sisteme ekonomicheskikh otnosheniy khozyaystvuyushchikh sub”ektov [Leasing Essence and Functions in the System of Economic Relations of Managing Subjects]. Problemy sovremennoy ekonomiki [Problems of Modern Economy]. 2010, no. 4 (36), pp. 196—199. (In Russian)
  20. Shaldokhina S.Yu. Klassifikatsiya spetsificheskikh riskov lizingovoy kompanii [Classification of Specific Risks of a Leasing Company]. Terra economicus. 2009, vol. 7, no. 2—3, pp. 157—159. (In Russian)
  21. Miceli T.J., Sirmans C.F., Turnbull G.K. The Property-Contract Boundary: an Economic Analysis of Leases. American Law and Economics Review. Oxford University Press, 2001, no. 3, pp. 165—185. DOI: http://dx.doi.org/10.1093/aler/3.1.165.
  22. Lipsey R.G., Carlaw K I., Bekar C.T. Economic Transformations — General Purpose Technologies and Long-Term Economic Growth. Oxford University Press, 2005. 618 p.
  23. Sumit Agarwal, Brent W. Ambrose, Hongming Huang and Yildiray Yildirim. The Term Structure of Lease Rates with Endogenous Default Triggers and Tenant Capital Structure: Theory and Evidence. Journal of Financial and Quantitative Analysis. Cambridge University Press. April 2011, vol. 46 (02), pp. 553—584.

Download

Personalia. Information Messages

Experience of applying information modeling technologies when executing infrastructure projects of fuel and energy complex

  • Marinenkov Denis Vladimirovich - Group of companies NEOLANT Candidate of Technical Sciences, director, Department of Oil and Gas Sector, Group of companies NEOLANT, 47 A Pokrovka str., Moscow, 105062, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 181-191

At the present time all over the world the main concept of life cycle maintenance of complex objects is the use of data-centric information systems of engineering data management, which allow providing support of the correspondence of an object configuration to its present state. The central part of such a system is a 3D information model of the object. The information model has a fundamental advantage in comparison with typical user applications - presence of complete and up-to-date data on industrial object topology. The authors consider the practical use of information modeling technologies for solving the tasks of engineering data management on a large industrial facility on all the stages of the lifecycle: from design to utilization. Such Russian solutions are investigated as: 3D CAD POLYNOM - to create 3D model of an object, PLM/PDM-platform NEOSYNTEZ - to provide engineering data management on all the stages of the lifecycle and a software product InterBridge - to translate graphical and semantic 2D/3D data between CAD and PLM of different platforms.

DOI: 10.22227/1997-0935.2016.1.181-191

References
  1. Marinenkov D.V., Dorobin D.S., Snezhkova E.A. InterBridge — rossiyskaya tekhnologiya dlya sozdaniya edinoy informatsionnoy 3D modeli ob”ekta [InterBridge — a Russian Technology for Creation of a General Information 3D Model of an Onject]. CAD/CAM/CAE Observer. 2015, no. 8, pp. 70—75. (In Russian)
  2. NEOSINTEZ — pervaya rossiyskaya PLM-sistema dlya rossiyskikh predpriyatiy PGS [NEOSYNTEZ — the First Russian PLM-System for Russian Companies of Industrial and Civil Construction]. CAD/CAM/CAE Observer. 2015, no. 7 (99), pp. 62—65. (In Russian)
  3. Modelirovanie promyshlennykh ob”ektov v 3D SAPR POLINOM [Modeling of Industrial Objects in 3D CAD POLYNOM]. Avtomatizatsiya v promyshlennosti [Automation in the Construction]. 2015, no. 9, p. 29. (In Russian)
  4. Marinenkov D.V. Opyt primeneniya tekhnologiy informatsionnogo modelirovaniya pri realizatsii infrastrukturnykh proektov TEK [Experience of Applying Information Modeling Technoogies when Executing Infrastructure Projects of Fuel fnd Energy Complex]. Perspektivy razvitiya gradostroitel’stva v Rossii : doklad nauchno-prakticheskoy konferentsii 12—13.11.2015 [Development Prospects of Urban Planning in Russia: Report on a Science and Practice Conference 12—13.11.2015]. (In Russian)

Download