Home Vestnik MGSU Library Vestnik MGSU 2016/2

Vestnik MGSU 2016/2

DOI : 10.22227/1997-0935.2016.2

Articles count - 17

Pages - 193

Innovations and the quality in the construction sphere

  • Seleznev N.F. - Moscow State University of Civil Engineering (National Research University) (MGSU) Head of the Department of Cooperation with Russian Government Agencies and Development, NTDS ROASGiNK, Candidate of Economical Sciences, Professor, IAAM, International Academy of Architecture, Moscow Branch, Eurasia, UN N.F., Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.

Pages 5-8

DOI: 10.22227/1997-0935.2016.2.5-8

References
  1. Ledenev V.V. Razvitie sistemy upravleniya malymi innovatsionnymi predpriyatiyami v protsesse integratsii s krupnymi biznes-strukturami :diss. … kand. ekon. nauk [Development of the Management System of Enterprises in the Process of Integration with Big Business Structures : Dissertation of Candidate of Economical Sciences]. Moscow, 2011. 168 p. (In Russian)
  2. Prazdnichnykh A.N. Postroenie innovatsionnoy ekonomiki dlya budushchego [Creating Innovative Economy for the Future]. Rossiyskiy zhurnal menedzhmenta [Russian Journal of Management]. 2013, vol. 11, no. 2, pp. 107—150. (In Russian)
  3. Budzulyak B.V., Seleznev N.F., Moiseev L.P., Ganbarov A.B. Innovatsionnye podkhody k organizatsii sistemy kontrolya kachestva stroitel'stva: ot tekhnicheskogo zadaniya na proektirovanie do realizatsii proekta [Innovative Approaches to Organizing the Control System of the Quality of the Construction: from Technical Requirements for Design to Project Implementation]. Truboprovodnyy transport : teoriya i praktika [Pipeline Transport : Theory and Practice]. 2013, no. 6 (40), pp. 40—44. (In Russian)

Download

ARCHITECTURE AND URBAN DEVELOPMENT. RESTRUCTURING AND RESTORATION

Perspectives of the contemporary usage of circular locomotive depot buildings

  • Aksenova Irina Vasil’evna - Moscow State University of Civil Engineering (National Research University) (MGSU) Candidate of Technical Sciences, Associate Professor, Department of Building Design and Urban Development, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Naumova Yuliya Igorevna - Moscow State University of Civil Engineering (National Research University) (MGSU) Master student, Department of Building Design and Urban Development, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Gridyushko Vladimir Valentinovich - Moscow State University of Civil Engineering (National Research University) (MGSU) Associate Professor, Department of Building Design and Urban Development, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 9-19

Variants of reshaping the objects of the industrial heritage, including the buildings of transport infrastructure located in central districts of historical towns are analyzed in the article. The evolution of the development of depots for maintaining and repairing the locomotives is represented. The uniqueness of the complex of buildings of Nikolaevskaya Railway in Moscow, an integrated historical and architectural ensemble, is noted. At the present moment one of few preserved buildings is a circular depot in the center of Moscow. The loss of this unique specimen of industrial architecture of the middle of 19th century would be an irreplaceable loss for the cultural heritage of the nation. The only way of its rescue from full destruction is its restoration and inclusion in the contemporary life of the city. The method of possible variants of the contemporary usage of historical building-monuments of the industrial heritage is proposed, which secures their safety on the basis of self-repayment. The preferable variants for reshaping the building of circular depot in Moscow are considered on the basis of qualitative criteria. Keeping in mind the location of the depot near railway stations - the sources of the main contingent being in need of short-term rent - the variant of placing a hotel-touristic center in the depot was chosen. This corresponds to the basic direction of the State Program of the City of Moscow for the period of 2012-2016, which provides the development of the hotel chain at the expense of the reconstruction and the creation of the touristic infrastructure. The authors considered in the article the variant of usage of the depot as a multifunctional hotel complex gives the possibility to solve the problem of shortage of two-stars hotels in the center of Moscow and, what is very important, to preserve the monument in an undistorted appearance.

DOI: 10.22227/1997-0935.2016.2.9-19

References
  1. Parovoznye depo [Locomotive Depot]. Vse samoe interesnoe o zheleznoy doroge : innovatsionnyy daydzhest [Innovative Digest “The Most Interesting About Railway”]. Available at: http://www.rzd-expo.ru/history/infrastructure/parovoznye-depo/. Date of access: 15.05.2015. (In Russian)
  2. RGIA [Russian State Historical Archive]. F. 219. Op. 1. Ch. 3. D. 4062. (In Russian)
  3. Perunov A.S., Kunin Yu.S., Kotov V.I. Restavratsiya pamyatnika arkhitektury — zdaniya krugovogo parovoznogo depo [Restoration of the Round Locomotive Depot, a Moscow Landmark]. Vestnik MGSU [Proceeding of Moscow State University of Civil Engineering]. 2013, no. 5, pp. 21—28. (In Russian)
  4. About the Roundhouse. Derby College. Available at: http://www.derby-college.ac.uk/our-sites/about-the-roundhouse. Date of access: 20.05.2015.
  5. Roundhouse. JOHN McASLAN+PARTNERS. Available at: http://www.mcaslan.co.uk/projects/roundhouse. Date of access: 20.05.2015.
  6. Two Brothers Roundhouse. Wikipedia, the Free Encyclopedia. Available at: https://en.wikipedia.org/wiki/Two_Brothers_Roundhouse. Date of access: 20.05.2015.
  7. History of the Museum. Baltimore & Ohio Railroad Museum. Available at: http://www.borail.org/History-of-the-Museum.aspx. Date of access: 20.05.2015.
  8. Umekoji Steam Locomotive Museum. Modern Transportation Museum. Available at: http://www.mtm.or.jp/eng/umekoji/. Date of access: 20.05.2015.
  9. Múzeum. Magyar Vasúttörténeti Park. Available at: http://www.vasuttortenetipark.hu/muzeum. Date of access: 22.05.2015.
  10. Rundhaus Europa. Bahnpark Augsburg. Available at: http://www.bahnpark-augsburg.de/museum-im-aufbau/rundhaus-europa.html. Date of access: 22.05.2015.
  11. Sharova E.A. Restavratsionnyy aspekt odnoy rekonstruktsii [Restoration Aspect of one Reconstruction]. Arkhitektura, restavratsiya, dizayn, investitsii, stroitel’stvo [Architecture, Restoration, Design, Investment, Construction]. 2008, no. 3 (39). Available at: http://d-c.spb.ru/archiv/39/21.html. Date of access: 25.05.2015. (In Russian)
  12. Martovitskaya A. Muzey na strelke [Museum on the spit]. Arkhi.ru : informatsionnyy portal ob arkhitekture [Archi.ru : Informational Portal on architecture]. Available at: http://archi.ru/russia/53241/muzei-na-strelke. Date of access: 25.05.2015. (In Russian)
  13. Fotogalereya Dnepropetrovskoy DZhD [Photo Gallery of Dnepropetrovsk Child’s Railway]. Detskie zheleznye dorogi SSSR — Istoriya i sovremennost’ [Child’s Railways of the USSR — History and Modern Times]. Available at: http://www.dzd-ussr.ru/towns/dnepr/foto3.html. Date of access: 25.05.2015. (In Russian)
  14. Rekonstruktsiya parovoznogo depo v Kaliningradskoy oblasti [Reconstruction of a Locomotive Depot in the Kaliningrad Region]. InsterGOD. Available at: http://instergod.ru/diplom/re-depot.html. Date of access: 25.05.2015. (In Russian)
  15. Mozhaev A. Novye rel’sy [New Rails]. Arkhnadzor [Architectural Control]. 22.04.2011. Available at: http://www.archnadzor.ru/2011/04/22/novy-e-rel-sy/. Date of access: 25.05.2015. (In Russian)
  16. Zakon goroda Moskvy ot 05.05.2010 goda № 17 : O general’nom plane goroda Moskvy (s izm. i dop. 26 oktyabrya 2011 g.) [Law No. 17 of the City of Moscow dated 5.05.2010 “On the General Plan of the City of Moscow” (as amended October 26, 2011)]. (In Russian)
  17. Postanovlenie pravitel’stva Moskvy ot 24.12.2012 g. № 793-PP (v red. postanovleniya Pravitel’stva Moskvy ot 04.04.2013 № 208-PP) : Ob otraslevoy skheme razmeshcheniya gostinits v gorode Moskve [Decree No.793-PP of the Moscow Government dated 24.12.2012 (Version of Decree No. 208-PP of the Moscow Government dated 04.04.2013): On the Sectoral Scheme of Hotel Locations in the City of Moscow]. (In Russian)
  18. Tri varianta restavratsii Krugovogo depo v Moskve ot «Arkhnadzora» [Three Restoration Variants of the Circular Depot in Moscow from “Arhnadzor”]. RiaNedvizhimost’ [Ria Real Estate]. 20.03.2013. Available at: http://riarealty.ru/multimedia_photo/20130320/399952928_7.html. Date of access: 25.05.2015. (In Russian)
  19. Yakunin V. Restavratsiya zdaniya Krugovogo depo na Leningradskom vokzale [Restoration of the Building of the Circular Depot at the Leningradsky Railway Station]. LiveJournal. Publication from 18.03.2013. Available at: http://v-yakunin.livejournal.com/69403.html. Date of access: 25.05.2015. (In Russian)
  20. Egorov Yu., Tvardovskaya E. Razrushenie krugovogo depo kak primer «tsivilizovannoy evropeyskoy praktiki» [Demolition of the Circular Depot as an Example of “Civilized European Practice”]. Arkhnadzor [Architectural Control]. 03.06.2013. Available at: http://www.archnadzor.ru/2013/06/03/razrushenie-krugovogo-depo-kak-primer-tsivilizovannoy-evropeyskoy-praktiki/. Date of access: 25.05.2015. (In Russian)

Download

DESIGNING AND DETAILING OF BUILDING SYSTEMS. MECHANICS IN CIVIL ENGINEERING

Solving geometrically nonlinear tasks of the statics of hinged-rod systems basing on finite element method in the form of classical mixed method

  • Ignat’ev Aleksandr Vladimirovich - Volgograd State University of Architecture and Civil Engineering (VSUACE) Candidate of Technical Sciences, Associate Professor, Department of Structural Mechanics, Volgograd State University of Architecture and Civil Engineering (VSUACE), 1 Akademicheskaya str., Volgograd, 400074, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Ignat’ev Vladimir Aleksandrovich - Volgograd State University of Architecture and Civil Engineering (VSUACE) Doctor of Technical Sciences, head, Department of Structural Mechanics, Volgograd State University of Architecture and Civil Engineering (VSUACE), 1 Akademicheskaya str., Volgograd, 400074, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Onishchenko Ekaterina Valer’evna - Volgograd State University of Architecture and Civil Engineering (VSUACE) external student, Department of Structural Mechanics, Volgograd State University of Architecture and Civil Engineering (VSUACE), 1 Akademicheskaya str., Volgograd, 400074, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 20-33

The most widely used numerical method used in linear calculation of building structures is finite element method in traditional form of displacements. Different software is developed on its basis. Though it is only possible to check the certainty of these numerical solutions, especially of non-linear tasks of engineering structures’ deformation by the coincidence of the results obtained by two different methods. The authors solved geometrically nonlinear task of the static deformation of a flat hinged-rod system consisting of five linear elastic rods undergoing great tension-compression strains. The solution was obtained basing on the finite element method in the form of classical mixed method developed by the authors. The set of all equilibrium states of the system, both stable and unstable, and all the limit points were found. The certainty of the solution was approved by the coincidence of the results obtained by other authors basing on traditional finite element method in displacements.

DOI: 10.22227/1997-0935.2016.2.20-33

References
  1. Belytschko T., Liu W., Moran B. Nonlinear Finite Elements for Continua and Structures. J Wiley & Sons, 2000, 300 p.
  2. Bonet J., Wood R. Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge University Press, 1997, 248 p.
  3. Crisfield M.A. Non-Linear Finite Element Analysis of Solids and Structures. J. Wiley & Sons, 1996, vol. 1, 362 p.
  4. Kyther P., Wie D. An Introduction to Linear and Nonlinear Finite Element Analysis. Birkhauer Verlag, 2004, 445 p. DOI: http://dx.doi.org/10.1007/978-0-8176-8160-9.
  5. Reddy J.N. An Introduction to Nonlinear Finite Element Analysis. Oxford University Press, 2004, 488 p.
  6. Danilin A.N., Zuev N.N., Snegovskiy D.V., Shalashilin V.I. Ob ispol'zovanii metoda konechnykh elementov pri reshenii geometricheski nelineynykh zadach [On the Use of Finite Element Method when Solving Geometry Nonlinear Tasks]. SAPR i grafika [CAD and Graphics]. 2000, no. 4, pp. 26—31. (In Russian)
  7. Perel’muter A.V., Slivker V.I. Ustoychivost’ ravnovesiya konstruktsiy i rodstvennye problemy [Equilibrium Stability of Structures and Related Problems]. Moscow, SKAD SOFT Publ., 2007, vol. 1, 653 p. (In Russian).
  8. Galishnikova V.V. Stability Analysis of Space Trusses. International Journal for Computational Civil and Structural Engineering. 2009, vol. 5, no. 1—2, pp. 35—44.
  9. Galishnikova V.V. Chislennyy analiz ustoychivosti ravnovesiya prostranstvennykh ferm v geometricheski nelineynoy postanovke [Numerical Analysis of the Stability of Space Trusses in Geometrical Nonlinear Statement]. Stroitel’naya mekhanika inzhenernykh konstruktsiy i sooruzheniy [Structural Mechanics of Engineering Structures and Constructions]. 2010, no. 1, pp. 42a—50. (In Russian)
  10. Gorodetskiy A.S., Evzerov I.D. Komp’yuternye modeli konstruktsiy [Computer Models and Structures]. Kiev, «Fakt» Publ., 2007, 394 p. (In Russian)
  11. Kurguzov V.D. O chislennom reshenii geometricheski nelineynykh zadach stroitel'noy mekhaniki [On Numerical Solution of Geometric Nonlinear Tasks of Structural Mechanics]. Izvestiya vuzov. Stroitel’stvo [News of Higher Educational Institutions. Construction]. 2009, no. 3—4, pp. 14—22. (In Russian)
  12. Evzerov I.D., Geraymovich Yu.D., Laznyuk M.V., Marchenko D.V. Chislennoe reshenie zadach sil’nogo izgiba [Numerical Solution of Strong Bend Tasks]. Sayt podderzhki pol’zovateley SAPR [Site of CAD User Support]. Available at: http://www.cad.dp.ua/obzors/lira.php/. Date of access: 30.10.2015. (In Russian)
  13. Poceski A. Mixed Finite Element Method. Springer-Verlag Berlin Heidelberg, 1992, 356 p. DOI: http://dx.doi.org/10.1007/978-3-642-84676-2.
  14. Pokrovskiy A.A., Khechumov R.A. Smeshannaya forma MKE v raschetakh sterzhnevykh sistem s uchetom fizicheskoy i geometricheskoy nelineynostey [Mixed Form of FEM in Calculation of Truss Systems with Account for Physical and Geometric Nonlinearity]. Stroitel’naya mekhanika i raschet sooruzheniy [Structural Mechanic and Calculation of Structures]. 1991, no. 2, pp. 5—11. (In Russian)
  15. Pokrovskiy A.A., Khechumov R.A. Predel’noe i zapredel’noe sostoyanie sterzhnevykh sistem [Limit and Beyond Limit State of Truss Systems]. Stroitel’naya mekhanika i raschet sooruzheniy [Structural Mechanics and Calculation of Structures]. 1991, no. 4, pp. 18—21. (In Russian)
  16. Ignat’ev V.A., Ignat’ev A.V., Zhidelev A.V. Smeshannaya forma metoda konechnykh elementov v zadachakh stroitel’noy mekhaniki [Mixed Form of Finite Element Method in Problems of Structural Mechanics]. Volgograd, VolgGASU Publ., 2006, 172 p. (In Russian)
  17. Ignat’ev V.A., Ignat’ev A.V., Galishnikova V.V., Onishchenko E.V. Nelineynaya stroitel’naya mekhanika sterzhnevykh sistem. Osnovy teorii. Primery rascheta [Nonlinear Structural Mechanics of Truss Systems. Foundation of the Theory. Calculation Examples]. Volgograd, VolgGASU Publ., 2014, 84 p. (In Russian)
  18. Nazarov D.I. Geometricheski nelineynyy analiz v metode konechnykh elementov, real’nosti i mify [Geometric Nonlinear Analysis in Finite Element Method, Reality and Myths]. Problemy dinamiki, prochnosti i iznosostoykosti mashin [Problems of Dynamics, Stability and Durability of Machines]. 2000, no. 6. (In Russian)
  19. Nazarov D.I. Obzor sovremennykh programm konechno-elementnogo analiza [Review of the Modern Programs of Finite Element Analysis]. SAPR i grafika [CAD and Graphics]. 2000, no. 2, pp. 52—55. (In Russian)
  20. Levyakov S.V. O chislennom reshenii geometricheski nelineynykh zadach statiki uprugikh konstruktsiy [On Numerical Solution of Geometric Nonlinear Tasks of Elastic Structures]. Statics Sayt podderzhki pol’zovateley SAPR [Site of CAD User Support]. Available at: http://www.cad.dp.ua/obzors/fem3.php/. Date of access: 30.10.2015. (In Russian)
  21. Toroptsev A.V. Reshenie chetyrekh testovykh zadach dlya Nazarova D.I. [Solution of Four Test Tasks for Nazarov D.I.]. Sayt podderzhki pol’zovateley SAPR [Site of CAD User Support]. Available at: http:// www.cad.dp.ua/obzors/paper1.php/. Date of access: 30.10.2015. (In Russian)
  22. Ignat’ev A.V., Ignat’ev V.A., Onishchenko E.V. Vozmozhnost’ ispol’zovaniya metoda konechnykh elementov v forme klassicheskogo smeshannogo metoda dlya geometricheski nelineynogo analiza sharnirno-sterzhnevykh sistem [Possibility of Using Finite Element Method in the Form of Classical Mixed Method for Geometrical Nonlinear Analysis of Hinged-Rod Systems]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2015, no. 12, pp. 47—58. (In Russian)
  23. Petrov V.V. Nelineynaya inkremental’naya stroitel’naya mekhanika [Nonlinear Incremental Structural Mechanics]. Moscow, Infra — Inzheneriya Publ., 2014, 480 p. (In Russian)
  24. Petrov V.V. Metod posledovatel’nykh nagruzheniy v nelineynoy teorii plastinok i obolochek [Method of Continuous Loadings in Nonlinear Theory of Plates and Shells]. Saratov, SGU im. N.G. Chernyshevskogo Publ., 1975, 119 p. (In Russian)

Download

Plastic deformation and fracture of masonry under biaxial stresses

  • Kabantsev Oleg Vasil’evich - Moscow State University of Civil Engineering (National Research University) (MGSU) Candidate of Technical Sciences, Professor, Department of Reinforced Concrete and Masonry Structures, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 34-48

Masonry is a complex multicomponent composite composed of dissimilar materials (brick / stone and mortar). The process of masonry deformation under load depends on the mechanical characteristics of the basic composite materials, as well as of the parameters belonging to the elements, which define the link between brick and mortar being the structural elements. The paper provides an analysis of the experimental study results of masonry behaviour in two-dimensional stress state at primary stresses of opposite signs; identifies the mechanisms of masonry failure that are in compliance with the conditions of stress state. The work shows the key role that structural elements play in the formation of masonry failure processes. On the basis of failure mechanisms educed from the experiments, there was developed a discrete model of masonry. The processes and the corresponding strength criteria, which play a key role in the implementation of plastic deformation phase, have been detected. It has been shown that the plastic deformation of masonry under biaxial stresses occurs in case of the physical linear behavior of the basic materials (brick and mortar). It has been also substantiated that the plastic properties of masonry under biaxial stresses are determined by the processes occurring at the contact interaction nodes between brick and mortar in bed and cross joints. The values of the plasticity coefficients for masonry depending on the mechanical properties of a brick, a mortar and adhesive strength in their interaction have been obtained basing on the results of the performed numerical investigations.

DOI: 10.22227/1997-0935.2016.2.34-48

References
  1. Geniev G.A. O kriterii prochnosti kamennoy kladki pri ploskom napryazhennom sostoyanii [On the Strength Criteria of Masonry with Plane Stress State]. Stroitel’naya mekhanika i raschet sooruzheniy [Structural Mechanics and Analysis of Constructions]. 1979, no. 2, pp. 7—11. (In Russian)
  2. Tyupin G.A. Deformatsionnaya teoriya plastichnosti kamennoy kladki [Deformational Theory of Masonry Plasticity]. Stroitel’naya mekhanika i raschet sooruzheniy [Structural Mechanics and Analysis of Constructions]. 1980, no. 6, pp. 28—30. (In Russian)
  3. Polyakov S.V., Safargaliev S.M. Monolitnost’ kamennoy kladki [Monolithic Masonry]. Alma-Ata, Gylym, 1991, 160 p. (In Russian)
  4. Kashevarova G.G., Ivanov M.L. Naturnye i chislennye eksperimenty, napravlennye na postroenie zavisimosti napryazheniy ot deformatsiy kirpichnoy kladki [Full-scale and Numerical Experiments to Create the Dependencies of Stresses from Masonry Deformations]. Privolzhskiy nauchnyy vestnik [Volga Region Scientific Proceedings]. 2012, no. 8, pp. 10—15. (In Russian)
  5. Kashevarova G.G., Zobacheva A.Yu. Modelirovanie protsessa razrusheniya kirpichnoy kladki [Modeling the Fracture Process of Masonry]. Vestnik Permskogo natsional’nogo issledovatel’skogo politekhnicheskogo universiteta. Stroitel’stvo i arkhitektura [Perm National Research Polytechnic University Bulletin. Construction and Architecture]. 2010, no. 1, pp. 106—116. (In Russian)
  6. Grishchenko A.I., Semenov A.S., Semenov S.G., Melnikov B.E. Influence of Structural Parameters of the Masonry on Effective Elastic Properties and Strength. Inzhenerno-stroitel’nyy zhurnal [Magazine of Civil Engineering]. 2014, no. 5, pp. 95—106. (In Russian)
  7. Derkach V.N. Anizotropiya prochnosti na rastyazhenie kamennoy kladki pri raskalyvanii [Anisotropy of Tensile Strength of Masonry in Case of Cleaving]. Nauchno- tekhnicheskie vedomosti SPbGPU [St. Petersburg State Polytechnical University Journal]. 2012, no. 147-2, pp. 259—265. (In Russian)
  8. Schubert P., Bohene D. Schubfestigkeit von Mauerwerk aus Leichtbetonsteinen. Das Mauerwerk. Ernst & John, 2002, vol. 6, no. 3, pp. 98—102.
  9. Capozucca R. Shear Behaviour of Historic Masonry Made of Clay Dricks. The Open Construction and Building Technology Journal. 2011, no. 5. (Suppl 1-M6), pp. 89—96. DOI: http://dx.doi.org/10.2174/1874836801105010089.
  10. Sousa R., Sousa H., Guedes J. Diagonal Compressive Strength of Masonry Samples — Experimental and Numerical Approach. Materials and Structures. 2013, vol. 46, pp. 765—786. DOI: http://dx.doi.org/10.1617/s11527-012-9933-z.
  11. Calio I., Marletta M., Panto B. A New Discrete Element Model for the Evaluation of the Seismic Behaviour of Unreinforced Masonry Buildings. Engineering Structures. 2012, no. 40, pp. 327—338. DOI: http://dx.doi.org/10.1016/j.engstruct.2012.02.039.
  12. Mohebkhah A., Tasnimi A.A. Distinct Element Modeling of Masonry-Infilled Steel Frames with Openings. The Open Construction and Building Technology Journal. 2012, no. 6 (Suppl 1-M2), pp. 42—49. DOI: http://dx.doi.org/10.2174/1874836801206010042.
  13. Kabantsev O.V. Diskretnaya model’ kamennoy kladki v usloviyakh dvukhosnogo napryazhennogo sostoyaniya [Discrete Model of Masonry under Biaxial Stresses]. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel’nogo universiteta [Vestnik Tomsk State University of Architecture and Building]. 2015, no. 4 (51), pp. 113—134. (In Russian)
  14. Kabantsev O.V., Tamrazyan A.G. Modelirovanie uprugo-plasticheskogo deformirovaniya kamennoy kladki v usloviyakh dvukhosnogo napryazhennogo sostoyaniya [Modeling Elastoplastic Deformation of Masonry under Biaxial Stresses]. International Journal for Computational Civil and Structural Engineering. 2015, no. 3, vol. 11, pp. 87—100. (In Russian)
  15. Vil’deman V.E., Sokolkin Yu.V., Tashkinov A.A. Mekhanika neuprugogo deformirovaniya i razrusheniya kompozitsionnykh materialov [Mechanics of Inelastic Deformation and Destruction of Composite Materials]. Moscow, Nauka. Fizmatlit Publ., 1997, 288 p. (In Russian)
  16. Burago N.G. Modelirovanie razrusheniya uprugoplasticheskikh tel [Modelling of Elastoplastic Bodies Destruction]. Vychislitel’naya mekhanika sploshnykh sred [Computational Continuum Mechanics]. 2008, vol. 1, no. 4, pp. 5—20. (In Russian)
  17. Trusov P.V. Nekotorye voprosy nelineynoy mekhaniki deformiruemogo tverdogo tela (v poryadke obsuzhdeniya) [Some Problems of Nonlinear Mechanics of Solids (In the Form of Discussion)]. Vestnik Permskogo natsional’nogo issledovatel’skogo politekhnicheskogo universiteta. Mekhanika [Perm National Research Polytechnic University Bulletin. Mechanics]. 2009, Vol. 17, pp. 85—95. (In Russian)
  18. Kabantsev O.V., Karpilovskiy V.S., Kriksunov E.Z., Perel’muter A.V. Tekhnologiya raschetnogo prognoza napryazhenno-deformirovannogo sostoyaniya konstruktsiy s uchetom istorii vozvedeniya, nagruzheniya i deformirovaniya [Technology of Computational Prediction of Stress-Strain State of Constructions Taking into Account the History of Erecting, Loading and Deformation]. International Journal for Computational Civil and Structural Engineering. 2011, no. 3, vol. 7, pp. 110—117. (In Russian)
  19. Kopanitsa D.G., Kabantsev O.V., Useinov E.S. Eksperimental’nye issledovaniya fragmentov kirpichnoy kladki na deystvie staticheskoy i dinamicheskoy nagruzki [Experimental Researches of Masonry Fragments on the Effect of Static and Dynamic Loads]. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel’nogo universiteta [Vestnik Tomsk State University of Architecture and Building]. 2012, no. 4, pp. 157—178. (In Russian)
  20. Il’yushin A.A. Mekhanika sploshnoy sredy [Continuum Mechanics]. Moscow, Izdatel’stvo Moskovskogo universiteta Publ., 1978, 287 p. (In Russian)
  21. Parton V.Z., Morozov E.M. Mekhanika uprugoplasticheskogo razrusheniya. Osnovy mekhaniki razrusheniya [Mechanics of Elastic-Plastic Destruction. Fundamentals of Destruction Mechanics]. 3rd edition, revised. Moscow, LKI Publ., 2008, 352 p. (In Russian)
  22. Sokolov B.S., Antakov A.B. Rezul’taty issledovaniy kamennykh i armokamennykh kladok [The Results of Masonry and Reinforced Masonry Research]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2014, no. 3, pp. 99—106. (In Russian)
  23. Tonkikh G.P., Kabantsev O.V., Simakov O.A., Simakov A.B., Baev S.M., Panfilov P.S. Eksperimental’nye issledovaniya seysmousileniya kamennoy kladki naruzhnymi betonnymi applikatsiyami [Experimental Researches of Seismic Reinforcement of Masonry by Exterior Concrete Applications]. Seysmostoykoe stroitel’stvo. Bezopasnost’ sooruzheniy [Earthquake Engineering. Constructions Safety]. 2011, no. 2, pp. 35—41. (In Russian)
  24. Pangaev V.V., Albaut G.I., Fedorov A.V., Tabanyukhova M.V. Model’nye issledovaniya napryazhenno-deformirovannogo sostoyaniya kamennoy kladki pri szhatii [Model Research of the Stress-Strain State of Masonry in Case of Compression]. Izvestiya vysshikh uchebnykh zavedeniy. Stroitel’stvo [News of Higher Educational Institutions. Construction]. 2003, no. 2, pp. 24—29. (In Russian)
  25. Kabantsev O.V. Deformatsionnye svoystva kamennoy kladki kak raznomodul’noy kusochno-odnorodnoy sredy [Deformation Properties of Masonry as the Multimodulus Piecewise Homogeneous Continua]. Seysmostoykoe stroitel’stvo. Bezopasnost’ sooruzheniy [Earthquake Engineering. Constructions Safety]. 2013, no. 4, pp. 36—40. (In Russian)
  26. Popov N.N., Rastorguev B.S. Dinamicheskiy raschet zhelezobetonnykh konstruktsiy [Dynamic Calculation of Reinforced Concrete Constructions]. Moscow, SI Publ., 1974, 207 p. (In Russian)
  27. Karpilovskiy V.S., Kriksunov E.Z., Malyarenko A.A., Mikitarenko M.A., Perel’muter A.V., Perel’muter M.A. SCAD Office. Versiya 21. Vychislitel’nyy kompleks SCAD++ [SCAD Office. Version 21. Computer Complex SCAD++]. Moscow, SKAD SOFT Publ., 2015, 808 p. (In Russian)

Download

BEDDINGS AND FOUNDATIONS, SUBTERRANEAN STRUCTURES. SOIL MECHANICS

Asymptotic solution of the filtration equation

  • Kuzmina Ludmila Ivanovna - Higher School of Economics Department of Applied Mathematics, Moscow Institute of Electronics and Mathematics, Higher School of Economics, 20 Myasnitskaya str., Moscow, 101000, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Osipov Yuri Viktorovich - Moscow State University of Civil Engineering (National Research University) (MGSU) Candidate of Physical and Mathematical Sciences, Associate Professor, Department of Computer Science and Applied Mathematics, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe Shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 49-61

The problem of filtering a suspension of tiny solid particles in a porous medium is considered. The suspension with constant concentration of suspended particles at the filter inlet moves through the empty filter at a constant speed. There are no particles ahead of the front; behind the front of the fluid flow solid particles interact with the porous medium. The geometric model of filtration without effects caused by viscosity and electrostatic forces is considered. Solid particles in the suspension pass freely through large pores together with the fluid flow and are stuck in the pores that are smaller than the size of the particles. It is considered that one particle can clog only one small pore and vice versa. The precipitated particles form a fixed deposit increasing over time. The filtration problem is formed by the system of two quasi-linear differential equations in partial derivatives with respect to the concentrations of suspended and retained particles. The boundary conditions are set at the filter inlet and at the initial moment. At the concentration front the solution of the problem is discontinuous. By the method of potential the system of equations of the filtration problem is reduced to one equation with respect to the concentration of deposit with a boundary condition in integral form. An asymptotic solution of the filtration equation is constructed near the concentration front. The terms of the asymptotic expansions satisfy linear ordinary differential equations of the first order and are determined successively in an explicit form. For verification of the asymptotics the comparison with the known exact solutions is performed.

DOI: 10.22227/1997-0935.2016.2.49-61

References
  1. Barenblatt G.I., Entov V.M., Ryzhik V.M. Theory of Fluid Flows through Natural Rocks. Dordrecht, Kluwer Academic Publishers, 1990, 396 p.
  2. Bedrikovetsky P. Mathematical Theory of Oil and Gas Recovery with Applications to Ex-USSR Oil and Gas Fields. Dordrecht, Kluwer Academic, 1993, 576 p. DOI: http://www.doi.org/10.1007/978-94-017-2205-6.
  3. Khilar K.C., Fogler H.S. Migrations of Fines in Porous Media. Dordrecht, Kluwer Academic Publishers, 1998, 173 p. DOI: http://www.doi.org/10.1007/978-94-015-9074-7.
  4. Tien C., Ramarao B.V. Granular Filtration of Aerosols and Hydrosols. 2nd ed. Amsterdam, Elsevier, 2007, 512 p.
  5. Baveye P., Vandevivere P., Hoyle B.L., DeLeo P.C., Sanchez De Lozada D. Environmental Impact and Mechanisms of the Biological Clogging of Saturated Soils and Aquifer Materials. Critical Reviews in Environmental Science and Technology. 1998, vol. 28, pp. 123—191. DOI: http://www.doi.org/10.1080/10643389891254197.
  6. Jeong S., Vigneswaran S. Assessment of Biological Activity in Contact Flocculation Filtration Used as a Pretreatment in Seawater Desalination. Chemical Engineering Journal. 2013, vol. 228, pp. 976—983. DOI: http://www.doi.org/10.1016/j.cej.2013.05.085.
  7. Khare P., Talreja N., Deva D., Sharma A., Verma N. Carbon Nanofibers Containing Metal-Doped Porous Carbon Beads for Environmental Remediation Applications. Chemical Engineering Journal. 2013, vol. 229, pp. 72—81. DOI: http://www.doi.org/10.1016/j.cej.2013.04.113.
  8. Inyang M., Gao B., Wu L., Yao Y., Zhang M., Liu L. Filtration of Engineered Nanoparticles in Carbon-Based Fixed Bed Columns. Chemical Engineering Journal. 2013, vol. 220, pp. 221—227. DOI: http://www.doi.org/10.1016/j.cej.2013.01.054.
  9. Müller K., Fedosov D.A., Gompper G. Understanding Particle Margination in Blood Flow — A Step Toward Optimized Drug Delivery Systems. Medical Engineering & Physics. 2015 (in print). DOI: http://www.doi.org/10.1016/j.medengphy.2015.08.009.
  10. You Z., Bedrikovetsky P., Kuzmina L. Exact Solution for Long-Term Size Exclusion Suspension-Colloidal Transport in Porous Media. Abstract and Applied Analysis, vol. 2013, iss. “Mathematical and Computational Analyses of Flow and Transport Phenomena”, 9 p., 2013. DOI: http://dx.doi.org/10.1155/2013/680693
  11. Chalk P., Gooding N., Hutten S., You Z., Bedrikovetsky P. Pore Size Distribution from Challenge Coreflood Testing by Colloidal Flow. Chemical Engineering Research and Design. 2012, vol. 90. Pp. 63—77.
  12. Santos A., Bedrikovetsky P. A Stochastic Model for Particulate Suspension Flow in Porous Media. Transport in Porous Media. 2006, vol. 62, pp. 23—53.
  13. Vollebregt H.M., Van der Sman R.G.M., Boom R.M. Model for Particle Migration in Bidisperse Suspensions by Use of Effective Temperature. Faraday Discussions. 2012, vol. 158, pp. 89—103. DOI: http://dx.doi.org/10.1039/C2FD20035J.
  14. Sund N., Bolster D., Mattis S., Dawson C. Pre-asymptotic Transport Upscaling in Inertial and Unsteady Flows Through Porous Media. Transport in Porous Media. 2015, vol. 109, issue 2, pp. 411—432.
  15. Mathieu-Potvin F., Gosselin L. Impact of Non-uniform Properties on Governing Equations for Fluid Flows in Porous Media. Transport in Porous Media. 2014, vol. 105, issue 2, pp. 277—314. DOI: http://dx.doi.org/10.1007/s11242-014-0370-z.
  16. Hönig O., Doster F., Hilfer R. Traveling Wave Solutions in a Generalized Theory for Macroscopic Capillarity. Transport in Porous Media. 2013, vol. 99, no. 3, pp. 467—491. DOI: http://dx.doi.org/10.1007/s11242-013-0196-0.
  17. Yuan H., You Z., Shapiro A., Bedrikovetsky P. Improved Population Balance Model for Straining-Dominant Deep Bed Filtration Using Network Calculations. Chemical Engineering Journal. 2013, vol. 226, pp. 227—237. DOI: http://dx.doi.org/10.1016/j.cej.2013.04.031.
  18. Gitis V., Rubinstein I., Livshits M., Ziskind G. Deep-bed Filtration Model with Multistage Deposition Kinetics. Chemical Engineering Journal. 2010, vol. 163, no. 1—2, pp. 78—85. DOI: http://dx.doi.org/10.1016/j.cej.2010.07.044.
  19. You Z., Osipov Y., Bedrikovetsky P., Kuzmina L. Asymptotic Model for Deep Bed Filtration. Chemical Engineering Journal. 2014, vol. 258, pp. 374—385. DOI: http://dx.doi.org/10.1016/j.cej.2014.07.051.
  20. Yuan H., Shapiro A., You Z., Badalyan A. Estimating Filtration Coefficients for Straining from Percolation and Random Walk Theories. Chemical Engineering Journal. 2012, vol. 210, pp. 63—73. DOI: http://dx.doi.org/10.1016/j.cej.2012.08.029.
  21. Kuzmina L.I., Osipov Yu.V. Inverse Problem of Filtering the Suspension in Porous Media. International Journal for Computational Civil and Structural Engineering. 2015, vol. 11, no. 1, pp. 34—41.
  22. Bedrikovetsky P. Upscaling of Stochastic Micro Model for Suspension Transport in Porous Media. Transport in Porous Media. 2008, vol. 75, no. 3, pp. 335—369. DOI: http://dx.doi.org/10.1007/s11242-008-9228-6.
  23. Kuzmina L.I., Osipov Yu.V. Particle Transportation at the Filter Inlet. International Journal for Computational Civil and Structural Engineering. 2014, vol. 10, no. 3, pp. 17—22.
  24. Herzig J.P., Leclerc D.M., Legoff P. Flow of Suspensions Through Porous Media — Application to Deep Filtration. Industrial and Engineering Chemistry. 1970, vol. 62 (5), pp. 8—35. DOI: http://dx.doi.org/10.1021/ie50725a003.
  25. Vyazmina E.A., Bedrikovetskii P.G., Polyanin A.D. New Classes of Exact Solutions to Nonlinear Sets of Equations in the Theory of Filtration and Convective Mass Transfer. Theoretical Foundations of Chemical Engineering. 2007, vol. 41, no. 5, pp. 556—564. DOI: http://dx.doi.org/10.1134/S0040579507050168.
  26. Bedrikovetsky P.G., Marchesin D., Checaira F., Serra A.L., Resende E. Characterization of Deep Bed Filtration System from Laboratory Pressure Drop Measurements. Journal of Petroleum Science and Engineering. 2001, vol. 32, no. 3, pp. 167—177. DOI: http://dx.doi.org/10.1016/S0920-4105(01)00159-0.
  27. Yuan H., Shapiro A., You Z., Badalyan A. Estimating Filtration Coefficients for Straining from Percolation and Random Walk Theories. Chemical Engineering Journal. 2012, vol. 210, pp. 63—73. DOI: http://dx.doi.org/10.1016/j.cej.2012.08.029.
  28. Fallah H., Fathi H.B., Mohammadi H. The Mathematical Model for Particle Suspension Flow through Porous Medium. Geomaterials. 2012, vol. 2, no. 3, pp. 57—62. DOI: http://dx.doi.org/10.4236/gm.2012.23009.

Download

ENGINEERING RESEARCH AND EXAMINATION OF BUILDINGS. SPECIAL-PURPOSE CONSTRUCTION

Application of laser scanning technology in different branches and on different stages of the lifecycle of objects

  • Alekseenko Nikolay Nikolaevich - LLC GeoProjectSurway Candidate of Juridical Sciences, honorary builder of the RF, Director General, LLC GeoProjectSurway, 26-17 Andronovskoe Shosse, Moscow, 111024, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 62-73

At the present time settlement, land use and resources-use systems existing on most of the territory of Russia are still poorly estimated, they are poorly adapted to contemporary economic situation and the possibilities of their efficient use are not analyzed. The majority of archive and statistical information about the territories is out of date, because in had been collected and analyzed in the end of 1980s. Such information can’t be the basis for constructing a plan of prospective development. The article is dedicated to the currency and advantages of the use of innovative methods of laser scanning for solving the problems of spatial planning, design, reconstruction and construction. Some information on the world experience of using laser scanning is offered as an exemplification of flexibility and efficiency of their use in different branches of business activity. It is suggested to implement the methods of laser scanning for the tasks of the further creation of geographic information system on the territory of the Russian Federation containing current data information. The author also gives examples of the use and the advantages of laser scanning of Baikal-Amur Mainline and Trans-Siberian areas, laser scanning of the highway “High-speed network Moscow-Kazan”, highway M-4 Don.

DOI: 10.22227/1997-0935.2016.2.62-73

References
  1. Gradostroitel’nyy kodeks Rossiyskoy Federatsii ot 29.12.2004 № 190-FZ [Town-Planning Code of the Russian Federation from 29.12.2004 no. 190-FZ]. (In Russian)
  2. Lur’e I.K., Samsonov T.E. Struktura i soderzhanie bazy prostranstvennykh dannykh dlya mul’timasshtabnogo kartografirovaniya [Structure and Content of Spatial Database for Multiscale Mapping]. Geodeziya i kartografiya [Geodesy and Cartography]. 2010, no. 11, pp. 17—23. (In Russian)
  3. Dubinin M.Yu., Rykov D.A. Otkrytye nastol’nye GIS: obzor tekushchey situatsii [Open Desk-Type Geographic Information System]. Informatsionnyy byulleten’ GIS-Assotsiatsii [Informational Bulletin of GIS-Association]. 2009, no. 5 (72), pp. 20—27. (In Russian)
  4. Pin’de Fu, Tszyulin’ Sun’. Veb-GIS. Printsipy i primenenie [Web-GIS. Principles and Application]. Moscow, Data+ Publ., 2013, 356 p. (In Russian)
  5. Shurshin K.Yu. Provedenie inzhenerno-geodezicheskikh izyskaniy ob”ektov toplivno-energeticheskogo kompleksa s ispol’zovaniem tekhnologiy mobil’nogo lazernogo skanirovaniya i teplovizionnoy s”emki [Engineering Geodesic Investigations of the Objects of Fuel and Energy Complex Using the Technologies of Mobile Laser Scanning and Thermal-imaging Shooting]. Ekspozitsiya Neft’ Gaz [Exposition Oil & Gas]. 2013, no. 3 (28), pp. 10—13. (In Russian)
  6. Kovach N.S. Mobil’nye lazernye sistemy v dorozhnoy otrasli [Mobile Laser Systems in Road Branch]. Dorogi: Innovatsii v stroitel’stve [Roads: Innovations in the Construction]. 2013, no. 26, pp. 34—36. (In Russian)
  7. Knizhnikov Yu.F. Aerokosmicheskoe zondirovanie: metodologiya, printsipy, problemy [Aerospace Sensing: Methods, Principles, Problems]. Moscow, MGU Publ., 1997, 128 p. (In Russian)
  8. Knizhnikov Yu.F., Vakhnina O.V. Infrastruktura prostranstvennykh dannykh na primere universitetskogo uchebno-nauchnogo poligona «Satino» [Infrastructure of Space Data on the Example of University Academic Training Area “Satino”]. Vestnik Moskovskogo Universiteta. Seriya 5: Geografiya [Proceedings of MSU. Series 5: Geography]. 2008, no. 3, pp. 3—7. (In Russian)
  9. Medvedev E.M., Danilin I.M., Mel’nikov S.R. Lazernaya lokatsiya zemli i lesa [Laser Location of the Ground and Forest]. 2nd edition, revised. Moscow, Geolidar, Geoskosmos Publ. ; Krasnoyarsk, Institut lesa im. V.N. Sukacheva SO RAN Publ., 2007, 230 p. (In Russian)
  10. Medvedev E.M., Mel’nikov S.R. Kartografirovanie v rezhime real’nogo vremeni? S lazernym skanirovaniem eto vozmozhno uzhe segodnya! [Mapping in Real-Time Mode? In is Already Possible Today with Laser Scanning]. Informatsionnyy byulleten’ GIS-Assotsiatsii [Informational Bulletin of GIS-Association]. 2002, no. 4 (36), pp. 49—51. (In Russian)
  11. Vislotskiy A.I., Goloborod’ko N.N., Medvedev E.M. Patent 2216711 RU, MPK G01C 11/00, G03B 37/00. Sposob formirovaniya tsifrovoy modeli rel’efa i/ili ortofotoplana i sistema dlya ego osushchestvleniya [Russian Patent 2216711 RU, MPK G01C 11/00, G03B 37/00. Method of Forming a Digital Terrain Model or Orthophotomap and a System for its Implementation]. No. 2002107884/28 ; appl. 28.03.2002; publ. 20.11.2003, bulletin no. 32. Patent Holder Popov K.N., Stepanov V.I. (In Russian)
  12. Snyder G.I., Sugarbaker L.J., Jason A.L. and Maune D.F. National Requirements for Enhanced Elevation Data. U.S. Geological Survey Open-File Report 2013—1237. 2012. 371 p. Available at: http://pubs.usgs.gov/of/2013/1237/.
  13. Dewberry U.S. National Enhance Elevation Assessment. U.S. Geological Survey. December 2012. Available at: http://nationalmap.gov/3DEP/3dep_neea.html.
  14. Snyder Gregory I. The 3D Elevation Program — Summary of Program Directions. U.S. Geological Survey Fact Sheet 2012—3089, 2012. 2 p. Available at: http://pubs.usgs.gov/fs/2012/3089/.
  15. Lukas Vicki, Eldridge D.F., Jason A.L., Saghy D.L., Steigerwald P.R., Stoker J.M., Sugarbaker L.J. and Thunen D.R. Status Report for the 3D Elevation Program, 2013—2014. U.S. Geological Survey Open-File Report 2015—1161. 2015. 17 p. Available at: http://pubs.usgs.gov/of/2015/1161/ofr20151161.pdf.
  16. Sugarbaker L.J., Constance E.W., Heidemann H.K., Jason A.L., Lukas Vicki, Saghy D.L. and Stoker J.M. The 3D Elevation Program Initiative — A Call for Action. U.S. Geological Survey Circular 1399. 2014, 35 p. Available at: http://pubs.usgs.gov/circ/1399/pdf/circ1399.pdf.
  17. State Fact Sheets. U.S. Geological Survey. 3D Elevation Program (3DEP). Available at: http://nationalmap.gov/3DEP/3dep_statefactsheets.html.
  18. Kovach N.S., Makarov A.A., Moshev A.A., Khlebutin S.B. Metody lazernogo skanirovaniya: preimushchestva dlya krupnykh infrastrukturnykh proektov (na primere rabot po modernizatsii Baykalo-Amurskoy i Transsibirskoy magistraley) [Methods of Laser Scanning: Advantages for Big Infrastructural Projects (on the Example of the Works about Modernization of Baikal-Amur and Transsiberian Mainline)]. Inzhenernye izyskaniya [Engineering Surways]. 2015, no. 9, pp. 22—25. (In Russian)
  19. Kovach N.S., Shurshin K.Yu. Opyt ispol’zovaniya MLS dlya sozdaniya trekhmernoy modeli infrastruktury zheleznykh dorog [Experience of Using Laser Scanning Method for Creation of 3D Model of Railways Infrastructure]. Geoprofi. 2012, no. 2, pp. 23—26. (In Russian)
  20. Seredovich V.A., Komissarov D.V. Sostoyanie, problemy i perspektivy primeneniya tekhnologii nazemnogo lazernogo skanirovaniya [State, Problems and Prospects of Applying the Technology of Surface Laser Scanning]. GEO-SIBIR' — 2005 : sbornik materialov nauchnogo kongressa [GEO-SIBIR' — 2005 : Collection of the Materials of Scientific Congress]. Novosibirsk, STGA, 2005, vol. 1, pp. 193—197. (In Russian)
  21. Kovach N.S., Klimenok I.V. Praktika lazernogo skanirovaniya [Practice of Laser Scanning]. Avtomobil’nye dorogi [Automobile Roads]. 2015, no. 11 (1008), pp. 86—87. (In Russian)

Download

Inspection problems of rural stone churches

  • Cherkasova Lyudmila Igorevna - Moscow State University of Civil Engineering (National Research University) (MGSU) Candidate of Technical Sciences, Professor, Department of Soil Mechanics and Geomechanics, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
  • Paushkin Aleksandr Glebovich - Moscow State University of Civil Engineering (National Research University) (MGSU) Candidate of Technical Sciences, Associate Professor, Department of Strength of Materials, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
  • Alekseev German Valer’evich - Moscow State University of Civil Engineering (National Research University) (MGSU) Candidate of Technical Sciences, Associate Professor of the Department of Soil Mechanics and Geotechnics, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.

Pages 74-85

The authors describe the reasons for the destruction and the difficult process of restoring old stone churches built before 1917. The article notes the difference between these processes in the village and in the city. In the villages a large number of churches are in emergency condition, but continue to be operated as intended, i.e. for divine service. The article gives the classification of the causes for the destruction process of old rural churches. At the present time old temples usually destruct due to the lack of timely rehabilitation works. Recovery is hindered by the high cost of a comprehensive inspection and restoration. The work can be greatly reduced if the goal is not restoration, but conservation and prevention of an emergency condition. The authors come to the conclusion that the survey of rural churches as opposed to urban ones has the main goals: to determine the state category, to provide space in which the religious services may be held, for example, in the summer, and to provide materials for preservation of the part of the building, the operation of which is impossible. The problems of preservation of the architectural decor and restoration of items are not considered in such an inspection. Such a survey can be called “Express survey”. Express survey is conducted for a short time with a small group of specialists. The examination includes visual examination, thorough photographic images, study of the geological history of the area, interviews with the residents, description of the defects, which reduce the reliability of the building, recommendations for the strengthening of structures, conservation and monitoring frequencies. The works on measurement and determination of the strength of materials must be minimized. For more efficient operation, it is proposed to amend the regulations or create a separate document in addition to the known norms regulating the work using a rapid survey.

DOI: 10.22227/1997-0935.2016.2.74-85

References
  1. Chernyshev S.N. Kompleksnye inzhenernye izyskaniya na pamyatnike arkhitektury — tserkvi Spasa Nerukotvornogo v muzee Abramtsevo [Complex Engineering Researches on an Architecture Monument — Church of the Vernicle in the Museum Abramtzevo]. Inzhenernaya geologiya [Engineering Geology]. 2008, no. 2, pp. 66—68. (In Russian)
  2. Chernyshev S.N. Inzhenerno-geologicheskie usloviya, fundamenty i gruntovye sooruzheniya Svyato-Troitskogo Serafimo-Diveevskogo zhenskogo Monastyrya [Engineering-Geological Conditions, Bases and Soil Constructions of Sacred and Troitsk Serafimo-Diveevsky Convent]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2009, no. 1, pp. 77—85. (In Russian)
  3. Chernyshev S.N., Timofeev V.Yu. Merzlotnye i gibridnye geologicheskie protsessy v glinistykh gruntakh sooruzheniya svyatoy Bogorodichnoy kanavki [Creosotic and Hybrid Geological Processes in Clay Soils of the Structure of a Sacred Mother’s of God Ditch]. Inzhenernaya geologiya [Engineering Geology]. 2012, no. 6, pp. 68—72. (In Russian)
  4. Kolmogorova S.S. Otsenka kharakteristik butovoy kladki fundamenta [Assessment of the Characteristics of a Rubble Laying of the Base]. Izvestiya Peterburgskogo universiteta putey soobshcheniya [Proceedings of Petersburg Transport University]. 2006, no. 3, pp. 72—78.
  5. Paushkin G.A., Cherkasova L.I., Kryzhanovskiy A.L., Alekseev G.V. Problemy nadezhnosti osnovaniy i fundamentov khramovykh zdaniy na ostrove Anzer [Problems of Foundations and Bases Stability of Church Buildings on Anzer Island]. Problemy obespecheniya ekologicheskoy bezopasnosti stroitel’stva : IV Denisovskie chteniya. Sbornik [Problems of Ensuring Ecological Safety of the Construction : 4th Denisovsky Readings. Collection]. Moscow, MGSU Publ., 2008, pp. 126—133. (In Russian)
  6. Cherkasova L.I., Chernyshev S.N. Destructive Processes in Rubble Foundations of the Kazanskaya Church of the Diveevskii Monastery. Soil Mechanics and Foundation Engineering. 2004, vol. 41, no. 5, pp. 172—176. DOI: http://dx.doi.org/10.1007/s11204-005-0004-0.
  7. Valluzzi M.R., Binda L., Modena C. Mechanical Behaviour of Historic Masonry Structures Strengthened by Bed Joints Structural Repointing. Construction and Building Materials. 2005, no. 19 (1), pp. 63—73. DOI: http://dx.doi.org/10.1016/j.conbuildmat.2004.04.036.
  8. Tereshin A.A., Alekseev G.V. Rekomenduemaya metodika rabot po organizatsii geodezicheskogo monitoringa za deformatsiyami zdaniy Golgofo-raspyatskogo Anzerskogo skita na o. Anzer Solovetskogo arkhipelaga [The Recommended Methodology for Organization of Geodetic Monitoring of Deformations of Buildings of Golgofo-Raspadskiy Skete on Anzer Island of Solovetsky Archipelago]. Gornyy informatsionno-analiticheskiy byulleten’ [Mining Informational and Analytical Bulletin]. 2015, no. 2, pp. 119—124. (In Russian)
  9. Pokrovskaya E.N., Koval’chuk Yu.L. Biokorroziya, sokhranenie pamyatnikov istorii i arkhitektury [Biological Corrosion, Preservation of Monuments of History and Architecture]. Moscow, MGSU Publ., 2013, 212 p. (In Russian)
  10. Alekseev S.I., Kolmogorova S.S. Geotekhnicheskoe obosnovanie usileniya butovykh fundamentov istoricheskikh zdaniy [Geotechnical Justification of Strengthening of Rubble Foundations of Historic Buildings]. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel’nogo universiteta [Vestnik Tomsk State University of Architecture and Building]. 2007, no. 3, pp. 158—165. (In Russian)
  11. Pashkin E.M., Bessonov G.B. Diagnostika deformatsiy pamyatnikov arkhitektury [Diagnostics of Deformations of Architectural Monuments]. Moscow, Stroyizdat Publ., 1984, 255 p. (In Russian)
  12. Pashkin E.M. Inzhenerno-geologicheskaya diagnostika deformatsiy pamyatnikov arkhitektury [Engineering-Geological Diagnostics of Deformations of Monuments of Architecture]. Moscow, Vysshaya shkola Publ., 1998, 255 p. (In Russian)
  13. Nikiforova N.S., Zekhniev F.F., Astaf’ev S.V., Burtovaya O.V. Vliyanie stroitel’stva unikal’nykh ob”ektov s podzemnoy chast’yu na primykayushchie istoricheskie zdaniya [Effect of the Construction of Unique Objects with the Underground Part on the Adjacent Historic Buildings]. Vestnik grazhdanskikh inzhenerov [Bulletin of Civil Engineers]. Saint Petersburg, 2009, no. 2 (19), pp. 126—130. (In Russian)
  14. Romera L.E., Hernández S., Reinosa J.M. Numerical Characterization of the Structural Behaviour of the Basilica of Pilar in Zaragoza (Spain). Part 1: Global and Local Models. Advances in Engineering Software. 2008, no. 39 (4), pp. 301—314. DOI: http://dx.doi.org/10.1016/j.advengsoft.2007.01.009.
  15. Ivorra S., Pallarés F.J., Adam J.M., Tomás R. An Evaluation of the Incidence of Soil Subsidence on the Dynamic Behaviour of a Gothic Bell Tower. Engineering Structures. 2010, no. 32 (8), pp. 2318—2325. DOI: http://dx.doi.org/10.1016/j.engstruct.2010.04.007.
  16. Cherkasova L.I., Alekseev G.V., Medvedev E.A. Opyt provedeniya ekspress-obsledovaniya zdaniya v period razrusheniya osnovaniya (na primere odnogo ob”ekta) [The Experience of Conducting a Rapid Survey of the Building in the Period of the Destruction of the Base (on the Example of One Object]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2006, no. 1, pp. 170—173. (In Russian)
  17. Slukin V.M. Nerazrushayushchie metody issledovaniya pamyatnikov arkhitektury [Nondestructive Research Methods of Architectural Monuments]. Sverdlovsk, Izdatel’stvo Ural’skogo universiteta Publ., 1988, 218 p. (In Russian)
  18. Mikhaylov V.V., Chernyshev C.H. Provaly na territorii Svyato-Troitskogo Serafimo-Diveevskogo monastyrya i sela Diveeva Nizhegorodskoy oblasti [Dips in the Territory of the Svyato-Troitskij Serafimo-Diveevskij Monastery and the Diveevo Village, Nizhny Novgorod Region]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2011, no. 1-1, pp. 417—423. (In Russian)
  19. Paushkin A.G., Cherkasova L.I., Ivanov M.N. K voprosu o kachestve sovremennykh stroitel’nykh norm [To a Question of the Quality of Modern Construction Norms]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. 2013, no. 11, pp. 55—58. (In Russian)
  20. Paushkin A.G., Cherkasova L.I., Ivanov M.N. O sistemnykh kriteriyakh opredeleniya kategoriy tekhnicheskogo sostoyaniya ob”ektov kul’turnogo naslediya po stepeni iznosa i povrezhdeniya [On System Criteria for Determining the Categories of the Technical Condition of Objects of Cultural Heritage According to the Degree of Wear and Damage]. Internet-Vestnik VolgGASU. Seriya: Politematicheskaya [Internet Proceedings of Volgograd State University of Architecture and Civil Engineering. Polythematic Series]. 2014, no. 4 (35), article 19. Available at: http://vestnik.vgasu.ru/?source=4&articleno=1813. (In Russian)

Download

RESEARCH OF BUILDING MATERIALS

Concrete with organic mineral admixture based on fine grinding cooper slag

  • Kravtsov Aleksey Vladimirovich - Kostroma State Agricultural Academy (KSAA) postgraduate student, Department of Technology, Management and Economy in Construction, Kostroma State Agricultural Academy (KSAA), 34 Uchebnyy gorodok str., Karavaevo settlement, Kostroma district, Kostroma region, 156530, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Tsybakin Sergey Valer’evich - Kostroma State Agricultural Academy (KSAA) Candidate of Technical Sciences, Associate Professor, dean, Department of Architecture and Construction, Kostroma State Agricultural Academy (KSAA), 34 Uchebnyy gorodok str., Karavaevo settlement, Kostroma district, Kostroma region, 156530, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Vinogradova Ekaterina Alekseevna - Kostroma State Agricultural Academy (KSAA) student, Department of Technology, Management and Economy in the Construction, Kostroma State Agricultural Academy (KSAA), 34 Uchebnyy gorodok str., Karavaevo settlement, Kostroma district, Kostroma region, 156530, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Borodina Lidiya Mikhaylovna - Kostroma State Agricultural Academy (KSAA) student, Department of Technology, Management and Economy in the Construction, Kostroma State Agricultural Academy (KSAA), 34 Uchebnyy gorodok str., Karavaevo settlement, Kostroma district, Kostroma region, 156530, Russian Federation.

Pages 86-97

The problem of applying copper manufacturing wastes locating in Chelyabinsk region as a component of organic mineral admixture for concrete with industrial wastes production is considered in this article. Also, organic mineral admixture consisting of superplasticizers, based on esters with carboxyl groups, has not yet been sufficiently studied due to the diversity of species and the complexity of chemical structure. This trend is current for today’s science because of the growing rates and scales of building production, in particular, concrete works. Using new complex admixtures processed of industrial by-products showed their effectiveness. Copper slag dumps located in Urals federal district haven’t been widely used in building production or in other industrial production up to the present time. Efficient utilization of copper production waste materials will help to solve the ecological problems in most regions of Russia. The structure formation period of cement stone with organic mineral admixture, based on fine grinding cooper slag and superplasticizer, is also studied in the article. The thermal variation diagram of concrete mixture with organic mineral admixture during 22 hours of hardening under normal condition are shown and the results of ultrasound of concrete forming structure period during 6 hours of hardening are presented in this article. The strength development process diagram of concrete with organic mineral admixture during 28 days of hardening under normal condition and the research results of the compressive strength of concrete samples are also presented. The obtained characteristics confirm the prospects of applying this kind of non-ferrous metallurgy wastes in the concrete. Also, the obtained results allow us to conclude the significant advantages of using this kind of complex admixture for concrete production with different purpose and in different fields of application.

DOI: 10.22227/1997-0935.2016.2.86-97

References
  1. Kotel’nikova A.L., Ryabinin I.F., Korinevskaya G.G., Khalezov B.D., Reutov D.S., Muftakhov V.A. K voprosu ratsional’nogo ispol’zovaniya otkhodov pererabotki medeplavil’nykh shlakov [To the Problem of the Rational Use of Copper Slag Processing Tails]. Nedropol’zovanie XXI vek [Subsoil Use in the 21st Century]. 2014, no. 6 (50), pp. 14—19. (In Russian)
  2. Vodyanitskiy Yu.N. Zagryaznenie pochv tyazhelymi metallami i metalloidami i ikh ekologicheskaya opasnost’ (analiticheskiy obzor) [Contamination of Soils with Heavy Metals and Metalloids and Its Ecological Hazard (Analytic Review)]. Pochvovedenie [Eurasian Soil Science]. 2013, no. 7, pp. 872—881. (In Russian)
  3. Leont’ev L.I., Dyubanov V.G. Tekhnogennye otkhody chernoy i tsvetnoy metallurgii i problemy okruzhayushchey sredy [Technogenic Waste Products of Ferrous and Nonferrous Metallurgy and Environmental Issues]. Ekologiya i promyshlennost’ Rossii [Ecology and Industry of Russia]. 2011, no. 4, pp. 32—35. (In Russian)
  4. Korinevskaya G.G., Muftakhov V.A., Kotel’nikova A.L., Khalezov B.D., Reutov D.S. Medeplavil’nye shlaki i voprosy utilizatsii mineral’nykh otkhodov [Copper-Smelting Slag and the Disposal of Mineral Waste]. Mineralogiya tekhnogeneza : sbornik [Mineralogy of Technogenesis : Collection]. 2014, no. 15, pp. 244—250. (In Russian)
  5. Kotel’nikova A.L. O podvizhnykh formakh tyazhelykh metallov medeplavil’nykh shlakov [On Mobile Forms of the Heavy Metals of Smelting Slag]. Trudy instituta geologii i geokhimii im. Akademika A.N. Zavaritskogo Uro RAN [Proceedings of A.N. Zavaritsky Institute of Geology and Geochemistry]. Ekaterinburg, 2012, no. 159, pp. 96—98. (In Russian)
  6. Vodyanitskiy Yu.N., Plekhanova I.O., Prokopovich E.V., Savichev A.T. Zagryaznenie pochv vybrosami predpriyatiy tsvetnoy metallurgii [Soil Contamination With Emissions of Non-Ferrous Metallurgical Plants]. Pochvovedenie [Eurasian Soil Science]. 2011, no. 2, pp. 240—249. (In Russian)
  7. Chumanov V.I., Chumanov I.V., Kirsanova A.A., Amosova Yu.E. K voprosu o kompleksnoy pererabotke staleplavil’nykh shlakov i ikh ispol’zovanii v stroitel’stve [On the Complex Processing of Steel Slags and Their Use in the Construction]. Vestnik Yuzhno-Ural’skogo gosudarstvennogo universiteta. Seriya: Metallurgiya [Bulletin of the South Ural State University. Series “Metallurgy”]. 2013, no. 1, pp. 56—60. (In Russian)
  8. Shapovalov N.A., Zagorodnyuk L.Kh., Tikunova I.V., Shchekina A.Yu., Shkarin A.V. Shlaki metallurgicheskogo proizvodstva — effektivnoe syr’e dlya polucheniya sukhikh stroitel’nykh smesey [Slag of Metallurgical Production — Effective Feedstock for Dry Mixes]. Fundamental’nye issledovaniya [Fundamental Research]. 2013, no. 1-1, pp. 167—172. (In Russian)
  9. Yushkov B.S., Semenov S.S. Primenenie otkhodov metallurgicheskikh predpriyatiy dlya proizvodstva betona [The Use of Metallurgical Waste for Concrete Production]. Modernizatsiya i nauchnye issledovaniya v transportnom komplekse [Modernization and Scientific Researches in the Transport Complex]. 2014, vol. 1, pp. 556—558. (In Russian)
  10. Svetlov A.V., Potapov S.S., Potapov D.S., Kravchenko E.A., Erokhin Yu.V., Potokin A.S., Selivanova E.A., Suvorova O.V., Kumarova V.A., Nesterov D.P., Makarov D.V., Masloboev V.A. Issledovanie vozmozhnosti izvlecheniya tsvetnykh metallov i proizvodstva stroitel’nykh materialov iz shlakov medno-nikelevogo proizvodstva [Investigation of the Possibility of Nonferrous Metals Recovery and Producing Building Materials of Copper-Nickel Smelter Slag]. Vestnik Murmanskogo gosudarstvennogo tekhnicheskogo universiteta [Proceedings of Murmansk State Technical University]. 2015, no. 2, vol. 18, pp. 335—344. (In Russian)
  11. D’yachenko A.N., Kraydenko R.I., Chegrintsev S.N., Poryvay E.B. Vskrytie medeplavil’nykh shlakov khloridom ammoniya [Opening of Copper Slag by Ammonium Chloride]. Izvestiya vysshikh uchebnykh zavedeniy. Tsvetnaya metallurgiya [News of Higher Educational Institutions. Non-Ferrous Metallurgy]. 2013, no. 5, pp. 9—12. (In Russian)
  12. Kotel’nikova A.L. Otsenka shlakov medeplavil’nykh proizvodstv kak potentsial’nykh istochnikov tyazhelykh metallov (na primere medeplavil’nogo shlaka sredneural’skogo medeplavil’nogo zavoda) [Copper Slag of Copper Smelting Industries as Potential Sources of Heavy Metals (on the Example of Middle-Ural Copper Melt Plant)]. Lesa Rossii i khozyaystvo v nikh [Russian Forest and Forestry]. 2011, no. 1, pp. 36—38. (In Russian)
  13. Kravtsov A.V., Vinogradova E.A., Borodina L.M., Tsybakin S.V. Issledovanie dinamiki nabora prochnosti betona s ispol’zovaniem otkhodov medeplavil’nogo proizvodstva [Investigation of Strength Gain Dynamics of Concrete with Copper Smelting Production Waste]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. 2015, no. 9, pp. 47—50. (In Russian)
  14. Troshkina E.A., Mukhina K.S. Razrabotka sostavov i issledovanie svoystv samouplotnyayushchikhsya betonov [Development of compositions and study of properties of self compacting concrete]. Aktual’nye problemy sovremennoy nauki, tekhniki i obrazovaniya [Current Problems of Modern Science, Technology and Education]. 2014, vol. 2, no. 1, pp. 42—44. (In Russian)
  15. Ivashchenko Yu.G., Timokhin D.K., Borisov O.A. Issledovanie vliyaniya dobavok polikarboksilatov na svoystva tsementnykh kompozitsiy [Study of the Effect of Polycarboxylates Additives on the Properties of Cement Compositions]. Resursoenergoeffektivnye tekhnologii v stroitel’nom komplekse regiona [Resource and Energy Efficient Technologies in the Construction Complex of a Region]. 2012, no. 2, pp. 101—104. (In Russian)
  16. Izotov V.S., Ibragimov R.A. Resursosberezhenie pri proizvodstve zhelezobetonnykh izdeliy s dobavkami giperplastifikatorov [Resource Saving in the Manufacture of Concrete Products with the Use of Hyper Plasticizer Additives]. Tekhnologii betonov [Concrete Technologies]. 2013, no. 5 (82), pp. 40—41. (In Russian)
  17. Kalashnikov V.I., Gulyaeva E.V., Valiev D.M. Vliyanie vida super- i giperplastifikatorov na reotekhnicheskie svoystva tsementno-mineral’nykh suspenziy, poroshkovykh betonnykh smesey i prochnostnye svoystva betonov [The Impact of Super- and Hyper-Plasticizers on Rheotechnical Properties of Cement-Mineral Slurries, Powder Concrete Mixes and Tensile Properties of the Concrete]. Izvestiya vysshikh uchebnykh zavedeniy. Stroitel’stvo [News of Higher Educational Institutions. Construction]. 2011, no. 12, pp. 40—45. (In Russian)
  18. Bulanov P.E., Mavliev L.F., Vdovin E.A. Optimizatsiya sostava shchebenochno-peschanoy smesi obrabotannoy portlandtsementom v komplekse s plastifitsiruyushchey i gidrofobiziruyushchey dobavkoy [Optimization of Stone-Sand Mixture Treated by Portland Cement in Combination with Plasticizer and Water-Repellent Additive]. Izvestiya Kazanskogo gosudarstvennogo arkhitekturno-stroitel’nogo universiteta [Kazan State University of Architecture and Engineering News]. 2015, no. 2, pp. 300—305. (In Russian)
  19. Vasilik P.G., Bur’yanov A.F., Gontar’ Yu.V., Chalova A.I. Vliyanie super- i giperplastifikatorov na vodopotrebnost’ i prochnostnye kharakteristiki zatverdevshego kamnya na osnove kompleksnogo vyazhushchego [Influence of Super and Hyperplasticizers on Water Requirement and Strengthening Characteristics of a Hardened Stone on the Basis of Complex Concrete]. Sukhie stroitel’nye smesi [Build mixes]. 2011, no. 4, pp. 20—21. (In Russian)
  20. Izotov V.S., Ibragimov R.A. Novye kompleksnye dobavki na osnove efirov polikarboksilata [New Complex Additives on the Basis of Polycarboxylate Esters]. Tekhnologii betonov [Concrete Technologies]. 2012, no. 3—4 (68—69), pp. 34—35. (In Russian)
  21. Kravtsov A.V., Borodina L.M., Tsybakin S.V., Sokolov G.M. Issledovanie vliyaniya superplastifikatorov na osnove polikarboksilatnykh efirov na svoystva betona [Study of the Influence of Superplasticizers Based on Polycarboxylate Ethers on the Properties of Concrete]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. 2015, no. 10, pp. 39—43. (In Russian)
  22. Mikhaylov G.G., Trofimov B.Ya., Gamaliy E.A. Morozostoykost’ proparennogo betona na shlakoportlandtsementakh [Freeze-Thaw Resistance of Steam Cured Concrete on Blastfurnace Cement]. Vestnik Yuzhno-Ural’skogo gosudarstvennogo universiteta. Seriya: Stroitel’stvo i arkhitektura [Bulletin of the South Ural State University. Series: Construction and Architecture]. 2012, no. 17 (276), pp. 42—47. (In Russian)
  23. Chazov A.V., Shishmakova M.S. Shlakoshchelochnye materialy v dorozhnom stroitel’stve [Slag Alkali Materials in Highway Engineering]. Vestnik Permskogo natsional’nogo issledovatel’skogo politekhnicheskogo universiteta. Stroitel’stvo i arkhitektura [Bulletin of the PNRPU. Series: Construction and Architecture]. 2012, no. 1, pp. 114—117. (In Russian)
  24. Madzhistri M., Padovani D., Forni P. Optimizatsiya svoystv tsementov s dobavkami pri ispol’zovanii intensifikatorov pomola [Optimization of Blended Cements Performance by the Use of Grinding Aids]. Tsement i ego primenenie [Cement and its Application]. 2013, no. 5, pp. 115—118. (In Russian)
  25. Gusev B.V., In Ien-Lyan S., Krivoborodov Yu.R. Aktivatsiya tverdeniya shlakoportlandtsementa [Activation of Portland Cement Hardening]. Tekhnologii betonov [Concrete Technologies]. 2012, no. 7—8 (72—73), pp. 21—24. (In Russian)
  26. Kravtsov A.V., Vinogradova E.A., Tsybakin S.V. Vliyanie tonkomolotogo medeplavil’nogo shlaka na protsess strukturoobrazovaniya tsementnogo kamnya [The Influence of Fine Ground Copper Smelting Slag on the Process of Cement Stone Structure Formation]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. 2015, no. 8, pp. 34—37. (In Russian)

Download

SAFETY OF BUILDING SYSTEMS. ECOLOGICAL PROBLEMS OF CONSTRUCTION PROJECTS. GEOECOLOGY

On the probable and statistical choice of the arrays of representative climatic data

  • Samarin Oleg Dmitrievich - Moscow State University of Civil Engineering (National Research University) (MGSU) Candidate of Technical Sciences, Associate Professor, Department of Heating and Ventilation, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 98-105

Currently, the successful development of the construction industry depends on the improved energy performance of buildings, structures and facilities, as well as on the quality assurance of the indoor climate. The problem of feasibly more accurate estimation of energy consumption by heating systems in buildings is a very high-priority task now because of the decrease of energy and fuel sources and because of actualization of building standards in the Russian Federation. That’s why it is very important to find simple but enough accurate dependences between the climatic parameters in the heating season of the year. The modern principles accepted in Russia and European countries for the selection of the design climate information for the design of building envelopes and systems to ensure building microclimate are considered. Shortcomings of the methods, including the concept of “typical year”, are shown and the advantages of generating climate data arrays programmatically with the use of a pseudorandom number generator are described. The comparison of the results of the calculation of non-stationary thermal regime of a ventilated room is presented using numerical modeling with daily average temperature of the external air during the month, according to climate data and the results of software generation. The principal coincidence of the statistical distribution of outdoor temperatures and the behavior of indoor air temperature on both options and the possibility of implementation of probabilistic-statistical principle of climatic data for some calculations relating to outdoor enclosures and thermal regime of the building are shown. The obtained model is easy to use in the engineering practice especially during preliminary calculations. The presentation is illustrated with numerical and graphical examples.

DOI: 10.22227/1997-0935.2016.2.98-105

References
  1. Samarin O.D. O podtverzhdenii veroyatnostno-statisticheskikh sootnosheniy mezhdu raschetnymi parametrami naruzhnogo klimata [On Verifying the Probable and Statistical Correlations between Design Parameters of External Climate]. Izvestiya vysshikh uchebnykh zavedeniy. Stroitel’stvo [News of Higher Educational Institutions. Construction]. 2014, no. 3 (663), pp. 66—69. (In Russian)
  2. Malyavina E.G., Ivanov D.S. Razrabotka raschetnogo «tipovogo» goda dlya opredeleniya teplopoter' zaglublennykh v grunt chastey zdaniya [The Development of the Design “Typical” Year for Estimation of Heat Losses of Soiled Parts of Buildings]. Trudy Glavnoy geofizicheskoy observatorii im. A.I. Voeykova [Papers of the Main geophysical Observatory named after A.I. Voeykov]. 2014, no. 571, pp. 182—191. (In Russian)
  3. Gagarin V.G., Ivanov D.S., Malyavina E.G. Razrabotka klimatologicheskoy informatsii v forme spetsializirovannogo «tipovogo goda» [The Development of the Climatic Information in the Form of Specialized “Typical Year”]. Vestnik Volgogradskogo gosudarstvennogo arkhitekturno-stroitel’nogo universiteta. Seriya: Stroitel’stvo i arkhitektura [News of Volgograd State Architecture and Civil Engineering University. Series: Civil Engineering and Architecture]. 2013, no. 31 (50), part 1. Goroda Rossii. Problemy proektirovaniya i realizatsii [Cities of Russia. The Problems of Design and Implementation]. Pp. 343—349. (In Russian)
  4. Kryuchkova O.Yu. Inzhenernaya metodika rascheta godovykh zatrat energii i vody tsentral’nymi ustanovkami konditsionirovaniya vozdukha [Engineering Calculation Procedure of Annual Water and Energy Consumption by the Central Air Conditioning Units]. Internet-vestnik VolgGASU. Seriya: Politematicheskaya [Internet Proceedings of Volgograd State University of Architecture and Civil Engineering]. 2013, no. 4 (29). Available at: http://vestnik.vgasu.ru/attachments/Kryuchkova-2013_4(29).pdf. (In Russian)
  5. Zukowski M., Sadowska B., Sarosiek W. Assessment of the Cooling Potential of an Earth-Tube Heat Exchanger in Residential Buildings. Environmental Engineering : Pap. of the 8th International Conference. May 19—20. 2011, Vilnius. Lithuania. Vol. 2, pp. 830—834.
  6. Ecevit A., Akinoglu B.G., Aksoy B. Generation of a Typical Meteorological Year Using Sunshine Duration Data. Energy. 2002, vol. 27, no. 10, pp. 947—954. DOI: http://dx.doi.org/10.1016/S0360-5442(02)00029-4.
  7. Masson V. A Physically-Based Scheme for the Urban Energy Budget in Atmospheric Models. Boundary-Layer Meteorology. 2000, vol. 94, no. 3, pp. 357—397. DOI: http://dx.doi.org/10.1023/A:1002463829265.
  8. Šliogerienė J., Kaklauskas A., Zavadskas E.K., Bivainis J., Seniut M. Environment Factors of Energy Companies and Their Effect on Value: Analysis Model and Applied Method. Technological and economic development of economy. 2009, no. 15 (3), pp. 490—521. DOI: http://dx.doi.org/10.3846/1392-8619.2009.15.490-521.
  9. Uzsilaityte L., Martinaitis V. Impact of the Implementation of Energy Saving Measures on the Life Cycle Energy Consumption of the Building. Pap. of Conf. of VGTU. 2008, vol. II, pp. 875—881.
  10. Jiangjiang Wang, Zhiqiang (John) Zhai, Youyin Jing, Chunfa Zhang. Influence Analysis of Building Types and Climate Zones on Energetic, Economic and Environmental Performances of BCHP Systems. Applied Energy. 2011, no. 88 (9), pp. 3097—3112. DOI: http://dx.doi.org/10.1016/j.apenergy.2011.03.016.
  11. Samarin O.D., Fedorchenko Yu.D. Vliyanie regulirovaniya sistem obespecheniya mikroklimata na kachestvo podderzhaniya vnutrennikh meteoparametrov [The Influence of Microclimate Control Systems on the Grade of Maintenance of Internal Air Parameters]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2011, no. 7, pp. 124—128. (In Russian)
  12. Severnoe polusharie 2011 g. [The Northern Hemisphere 2011]. Gidromettsentr Rossii. O pogode — iz pervykh ruk [Hydrometeorological Centre of Russia on the Weather from the First Hands]. Available at: http://meteoinfo.ru/climate/climat-tabl3/-2011-. Date of access: 20.12.2015. (In Russian)
  13. Gagarin V.G., Kozlov V.V. O normirovanii teplozashchity i trebovaniyakh raskhoda energii na otoplenie i ventilyatsiyu v proekte aktualizirovannoy redaktsii SNiP «Teplovaya zashchita zdaniy» [On Rationing Thermal Protection Requirements and Energy Consumption for Heating and Ventilation in the Project Version of the Updated SNIP «Thermal Protection of Buildings»]. Vestnik Volgogradskogo gosudarstvennogo arkhitekturno-stroitel’nogo universiteta. Seriya: Stroitel’stvo i arkhitektura [News of Volgograd State Architecture and Civil Engineering University. Series: Civil Engineering and Architecture]. 2013, no. 31 (50), part 2: Stroitel’nye nauki [Construction Sciences]. Pp. 468—474. (In Russian)
  14. Gagarin V.G., Kozlov V.V. Trebovaniya k teplozashchite i energeticheskoy effektivnosti v proekte aktualizirovannogo SNiP «Teplovaya zashchita zdaniy» [The Requirements to Thermal Performance and Energy Efficiency in the Project of the Updated Snip “Thermal Performance of the Buildings”]. Zhilishchnoe stroitel’stvo [Housing Construction]. 2011, no. 8, pp. 2—6. (In Russian)
  15. Gagarin V.G., Kozlov V.V. O trebovaniyakh k teplozashchite i energeticheskoy effektivnosti v proekte aktualizirovannoy redaktsii SNiP «Teplovaya zashchita zdaniy» [On the Requirements to the Thermal Performance and Energy Efficiency in the Project of the Updated Snip “Thermal Performance of the Buildings”]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2011, no. 7, pp. 59—66. (In Russian)
  16. Samarin O.D., Vinskiy P.V. Vliyanie izmeneniya teplozashchity okonnykh blokov na klass energosberezheniya zdaniy [Influence of Change of Thermal Performance of Window Units on the Class of Building Energy Saving]. Zhilishchnoe stroitel’stvo [Housing Construction]. 2015, no. 8, pp. 9—13. (In Russian)
  17. Allan Hani, Teet-Andrus Koiv. Energy Consumption Monitoring Analysis for Residential, Educational and Public Buildings. Smart Grid and Renewable Energy. 2012, vol. 3, no. 3, pp. 231—238. DOI: http://dx.doi.org/10.4236/sgre.2012.33032.
  18. Jedinák Richard. Energy Efficiency of Building Envelopes. Advanced Materials Research. 2013, vol. 855, pp. 39—42. DOI: http://dx.doi.org/10.4028/www.scientific.net/AMR.855.39.
  19. Wang Hou Hua, Zhang Tao, Xiao Qiu Lian. Experimental Study of Energy Saving Effect of Building Envelope in Winter. Applied Mechanics and Materials. 2011, vols. 121—126, pp. 2741—2747. DOI: http://dx.doi.org/10.4028/www.scientific.net/AMM.121-126.2741.
  20. Friess W.J.A., Rakhshan K., Hendawi T.A., Tajerzadeh S. Wall Insulation Measures for Residential Villas in Dubai: A Case Study in Energy Efficiency. Energy and Buildings. 2012, vol. 44, pp. 26—32. DOI: http://dx.doi.org/10.1016/j.enbuild.2011.10.005.
  21. Kobysheva N.V., Klyueva M.V., Kulagin D.A. Klimaticheskie riski teplosnabzheniya gorodov [Climatic Risks of City Heat Supply]. Trudy Glavnoy geofizicheskoy observatorii im. A.I. Voeykova [Papers of the Main Voeykov’s Geophysical Observatory]. 2015, no. 578, pp. 75—85. (In Russian)
  22. Kornienko S.V. Metod resheniya trekhmernoy zadachi sovmestnogo nestatsionarnogo teplo- i vlagoperenosa dlya ograzhdayushchikh konstruktsiy zdaniy [The Procedure of Solving the Three-Dimensional Problem of Joint Heat and Moisture Transfer for the Building Enclosures]. Izvestiya vysshikh uchebnykh zavedeniy. Stroitel’stvo [News of Higher Educational Institutions. Construction]. 2006, no. 2, pp. 108—110. (In Russian)

Download

HYDRAULICS. ENGINEERING HYDROLOGY. HYDRAULIC ENGINEERING

Method of determining the optimal coordinate domain in the measurement of water flows turbulence using lad-56 in rectangular channels

  • Volgin Georgiy Valentinovich - Moscow State University of Civil Engineering (National Research University) (MGSU) 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation, Moscow State University of Civil Engineering (National Research University) (MGSU), ; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Kulikov Dmitriy Viktorovich - Institute of Thermophysics named after S.S. Kutateladze SB RAS junior research worker, Institute of Thermophysics named after S.S. Kutateladze SB RAS, 1 prospekt Akademika Lavrent’eva, Novosibirsk, 630090, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 106-115

One of the modern methods of the experimental investigation of water flows turbulence is the method of Laser Doppler Anemometry. At the present time a measuring system “LAD-056” (Russia) is operating in the laboratory of the Department of Hydraulics of MGSU. The authors conducted an analysis of the requirements to experimental data when calculating turbulent characteristics of water flows. The article shows the necessity of checking the database of ripple continuity over time and the required representation of the number of points in the implementation. The results of experiments are presented showing the importance of fixing the length of the implementation and testing time. The authors offered a method of determining the optimal spatial coordinates for the measurement to minimize the time of filling the base of experimental data. According to the methods of defining optimal coordinate domain when measuring turbulent water flows with the use of “LAD-056” in a rectangular channel with glass walls in was established that it is required to conduct measurements within the range from 0 to 120 mm from the closest side wall. In case of greater deepening it is required to use illuminators reducing deflections of laser beams.

DOI: 10.22227/1997-0935.2016.2.106-115

References
  1. Al’tshul’ A.D., Kiselev P.G. Gidravlika i aerodinamika : osnovy mekhaniki zhidkosti [Hydraulics and Aerodynamics : Bases of Fluid Mechanics]. Moscow, Stroyizdat Publ., 1965, 274 p. (In Russian)
  2. Smol’yakov A.V., Tkachenko V.M. Izmerenie turbulentnykh pul’satsiy [Measurement of Turbulent Fluctuations]. Leningrad, Energiya Publ., 1980, 264 p. (In Russian)
  3. Loytsyanskiy L.G. Mekhanika zhidkosti i gaza [Fluid and Gas Mechanics]. 7th edition, revised. Moscow, Drofa Publ., 2003, 840 p. (Klassiki otechestvennoy nauki) [Classics of Russian Science] (In Russian)
  4. Skibin V.A., Saren V.E., Savin N.M., Frolov S.M. Turbomachines: Aeroelasticity, Aeroacoustics and Unsteady Aerodynamics. Moscow, TORUS PRESS Ltd., 2006, pp. 446—457.
  5. Ibragimov M.Kh., Subbotin V.I., Bobkov V.P., Sabelev G.I., Taranov G.S. Struktura turbulentnogo potoka i mekhanizm teploobmena v kanalakh [Structure and Mechanism of Turbulent Flow in Heat Exchange Channel]. Moscow, Atomizdat Publ., 1978, 296 p. (In Russian)
  6. Tepaks Leo. Ravnomernoe turbulentnoe dvizhenie v trubakh i kanalakh [A uniform turbulent flow in pipes and channels]. Tallin, Valgus Publ., 1975, 255 p. (In Russian)
  7. Chorin A.J., Marsden J.E. A Mathematical Introduction to Fluid Mechanics. 2000, Springer; 3rd edition, 172 p.
  8. Lyakhter V.M. Turbulentnost’ v gidrosooruzheniyakh [Turbulence inside Hydraulic Structures]. Moscow, Energiya Publ., 1968, 408 p. (In Russian)
  9. Breugem W.P., Boersma B.J. and Uittenbogaard R.E. The Influence of Wall Permeability on Turbulent Channel Flow. J. Fluid Mech. 2006, vol. 562, pp. 35—72. DOI: http://dx.doi.org/10.1017/S0022112006000887.
  10. Loytsyanskiy L.G. O nekotorykh prilozheniyakh metoda podobiya v teorii turbulentnosti [On some applications of similarity Method in turbulence Theory]. Prikladnaya matematika i mekhanika [Applied Mathematics and Mechanics]. 1935, vol. 2, no. 2, pp. 180—206. (In Russian)
  11. Borovkov V.S. Ruslovye protsessy i dinamika rechnykh potokov na urbanizirovannykh territoriyakh [Channel Processes and Dynamics of River Flows in Urbanized Territories]. Leningrad, Gidrometeoizdat Publ., 1989, 286 p. (In Russian)
  12. Velikanov M.A. Ruslovoy protsess: (osnovy teorii) [Channel Process (Theoretical Framework)]. Moscow, Fizmatlit Publ., 1958, 395 p. (In Russian)
  13. Volgin G.V. Vliyanie dliny realizatsii pul’satsiy skorosti na tochnost’ rascheta turbulentnykh kasatel’nykh napryazheniy [effect of velocity fluctuations length on the calculation accuracy of turbulent shearing stresses]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2014, no. 9, pp. 93—99. (In Russian)
  14. Bryanskaya Yu.V., Markova I.M., Ostyakova A.V. Gidravlika vodnykh i vzvesenesushchikh potokov v zhestkikh i deformiruemykh granitsakh [Hydraulics of Water Flows and Suspended Matter Bearing Flows in Rigid and Deformable Borders]. Moscow, ASV Publ., 2009, 263 p. (In Russian)
  15. Tarasov V.K., Volgina L.V., Gusak L.N. Prostranstvennye sostavlyayushchie turbulentnoy vyazkosti [Spatial Components of Turbulent Viscosity]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2008, no. 1, pp. 221—224. (In Russian)
  16. Volgina L.V., Tarasov V.K., Volgin G.V. Opredelenie koeffitsienta poleznogo deystviya vzvesenesushchego potoka [Defining Performance Coefficient of a Suspensions-Carrying Flow]. Ledovye i termicheskie protsessy na vodnykh ob”ektakh Rossii : sbornik nauchnykh trudov VI Vserossiyskoy konferentsii (g. Rybinsk, 24—29 iyunya 2013 g.) [Ice and Termal Processes on Water Objects of Russia : Collection of Scientific Works of the 6th All-Russian Conference (Rybinsk, June 24—29, 2013)]. Moscow, KYuG Publ., 2013, pp. 251—256. (In Russian)
  17. Volgina L.V. Vliyanie vida korrelyatsionnoy funktsii na metody opredeleniya makrostruktur turbulentnogo potoka [Influence of Correlation Function Type on the Methods of Identifying Macrostructures of Turbulent Flow]. 2 Mezhdunarodnaya (7 traditsionnaya) NTK molodykh uchenykh, aspirantov i doktorantov [2nd International (7th Traditional) Scientific and Technical Conference of Young Researchers, Postgraduates and Doctoral Students]. Moscow, MGSU Publ., 2004, pp. 204—211. (In Russian)
  18. Klaven A.B., Kopaliani Z.D. Eksperimental’nye issledovaniya i gidravlicheskoe modelirovanie rechnykh potokov i ruslovogo protsessa [Experimental Investigations and Hydraulic Modeling of River Flows and Channel Process]. Saint Petersburg, Nestor-istoriya Publ., 2011, 543 p. (In Russian)
  19. Rakhmanov V.V. Analiz primenimosti opticheskoy immersii dlya diagnostiki techeniy metodom LDA v modelyakh topok slozhnoy geometrii [Analysis of the Applicability of Optical Immersion Technique for Flows Diagnosis Using LDA Method in the Models of Fireboxes of Complex Geometry]. Teplofizicheskie osnovy energeticheskikh tekhnologiy : sbornik nauchnykh trudov IV Vserossiyskoy nauchno-prakticheskoy konferentsii s mezhdunarodnym uchastiem (g. Tomsk, 10—12 oktyabrya 2013 g.) [Proceedings of the 4th All-Russian Science and Practice Conference “Thermophysical Bases of Energy Technologies”]. Tomsk, TPU Publ., 2013, pp. 155—160. (In Russian)
  20. Rakhmanov V.V., Anikin Yu.A., Dvoynishnikov S.V., Kabardin I.K., Naumov I.V., Sadbakov O.Yu. Osobennosti LDA-izmereniy v naturnykh gidrodinamicheskikh eksperimentakh [Features of LDA-measurements in the Field of Hydraulic Engineering Experiments]. Issledovanie, razrabotka i primenenie vysokikh tekhnologiy v promyshlennosti : sbornik trudov Desyatoy Mezhdunarodnoy nauchno-prakticheskoy konferentsii (27—29.04.2011, g. Sankt-Peterburg, Rossiya) [Research, Development and Application of High Technologies in Production : Collection of Works of the 10th International Science and Practice Conference (27—29.04.2011, Saint-Petersburg, Russia)]. Saint-Petersburg, Izdatel’stvo Politekhnicheskogo universiteta Publ., 2011, vol. 3: Vysokie tekhnologii, i fundamental’nye issledovaniya [High Technologies and Fundamental Research]. Pp. 196—198. (In Russian)

Download

Method of determining the filtration heterogeneity of a rock mass of hydraulic structure foundation

  • Chernyshev Sergey Nikolaevich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Geologo-Mineralogical Sciences, Professor, Department of Engineering Geology and Geoecology, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Zommer Tat’yana Valentinovna - Moscow State University of Civil Engineering (National Research University) (MGSU) Lecturer, Department of Engineering Geology and Geoecology, head, Laboratory of Hydraulics, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Lavrusevich Andrey Aleksandrovich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Geologo-Mineralogical Sciences, Professor, Department of Engineering Geology and Geoecology, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 116-125

N THE ARTICLE THE AUTHOR’S TECHNIQUE OF ESTIMATING THE FLOW HETEROGENEITY OF A ROCK MASS OF WATERWORKS FOUNDATION IS CONSIDERED. THE METHOD FOR ALLOCATING THE ENGINEERING-GEOLOGICAL ELEMENTS ON THE BASIS OF THE FILTRATION HETEROGENEITY OF ROCKY SOILS IS UPDATED ON THE EXAMPLE OF BOGUCHANSKAYA HPP ON THE ANGARA RIVER. THE AUTHORS INVESTIGATED THE APPLICABILITY OF THE PROPOSED METHODS FOR DETERMINING THE FILTRATION INHOMOGENEITY OF A ROCK FOUNDATION OF HYDRAULIC STRUCTURES IN ORDER TO BETTER HIGHLIGHT THE ENGINEERING-GEOLOGICAL ELEMENTS ON THE EXAMPLE OF THE BOGUCHANY HYDROELECTRIC COMPLEX. WHEN ANALYZING THE FACTUAL MATERIAL BY THE RESULTS OF ABOUT 1000 FILTRATION EXPERIMENTS FROM GEOLOGICAL CONSIDERATIONS AND IN ORDER TO SEPARATE THE DATA, WE HAVE IDENTIFIED THREE ROCKY SOIL MASSES. THE FIRST MASSIF IS THE RIGHT BANK OF THE FOLDED THICKNESS OF SEDIMENTARY ROCKS THAT SLOPE TOWARDS THE RIVER AND IS SUBJECT TO SIGNIFICANT SUPERGENE CHANGES. THE SECOND MASSIF INCLUDES UNDERFLOW AND LEFT-COAST SEDIMENTARY ROCKS, WHICH ARE LESS ALTERED BY SUPERGENE PROCESSES THAN THE RIGHT COAST FOR A NUMBER OF REASONS. THE THIRD ARRAY CONSISTS OF DOLERITE UNDER THE RIVERBED AND ON THE RIGHT BANK. FOR THESE THREE ARRAYS ACCORDING TO THE RESULTS OF THE FILTRATION EXPERIMENTS, WE HAVE BUILT HISTOGRAMS OF THE DISTRIBUTION OF LGQ AND DIFFERENTIAL CURVES OF DISTRIBUTION OF THE SPECIFIC ABSORPTION FOR DOLERITES IN THE AREA KODINSKY OF THE BOGUCHANSKAYA HPP. THEN IN THE HISTOGRAM WE IDENTIFIED THE CORRESPONDING VALUES OF THE MODAL COMPONENTS OF THE DISTRIBUTION AND FOUND THE STATISTICAL CHARACTERISTICS FOR EACH OF THE SELECTED DISTRIBUTIONS, AS WELL AS THE MEAN VALUE AND THE VARIANCE. FOR FURTHER OPERATIONS, WE COMPUTED THE STANDARD DEVIATION S FOR EACH OF THE DISTRIBUTIONS. THE DEGREE OF FRACTURE IS EVALUATED BY TAKING INTO ACCOUNT THE INDICATOR OF PERMEABILITY, THEREFORE, THE MAIN GEOLOGICAL CHARACTERISTICS OF THE CRACKS ARE THEIR WIDTH AND LENGTH, AND ONLY AFTER ALL THIS WILL TAKE INTO ACCOUNT THEIR FREQUENCY. THEN WE BEGIN SEARCHING THE LOCATIONS ON A SECTION OF FRACTURE ZONES, WHICH CORRESPOND TO THE COMPONENTS IN THE DISTRIBUTION FORMULA. SO WE DISTINGUISH THE SUMMANDS OF THE SUM ON THE FORMULA DISTRIBUTION: FOR SEDIMENTARY ROCKS OF THE RIVERBED - 3; FOR DOLERITE - 3; FOR A MASSIF OF SEDIMENTARY ROCKS ON THE RIGHT BANK WITH THE MOST COMPLEX STRUCTURE - 6 ZONES WITH DIFFERENT FRACTURE. THE DETERMINATION OF ZONES WITH DIFFERENT FRACTURING IN ACCORDANCE WITH THE DESCRIBED PROCEDURE ALLOWED US TO CONSTRUCT A RESULTING FILTRATION SECTION FOR THE THREE MASSIFS. AS A RESULT, ACCORDING TO THE ABOVE METHOD, BASED ON THE ANALYSIS OF FACTUAL MATERIAL, INCLUDING THE RESULTS OF NUMEROUS FILTRATION EXPERIMENTS, THE AUTHORS CONSTRUCTED THE RESULTING FILTRATION HYDROGEOLOGICAL SECTION. THIS TECHNIQUE IS STATISTICAL AND GENETIC IN NATURE, THEREFORE IT SEEMS MORE EFFECTIVE COMPARED WITH THE METHOD OF REGRESSION ANALYSIS RECOMMENDED IN THE APPENDIX TO SNIP. THUS, THE PROPOSED FORMALIZED METHODOLOGY FOR THE SEPARATION OF ROCK SOILS LOCATED AT THE BASE OF HPP TO INDIVIDUAL ENGINEERING-GEOLOGICAL ELEMENTS ACCORDING TO THE RESULTS OF EXPERIMENTAL MASS FILTRATION TESTING OF DRILLING WELLS HAS ALLOWED US TO ISOLATE THE HETEROGENEOUS FRACTURE PERMEABILITY AND GEOTECHNICAL ELEMENTS IN THE BASIS OF HPP (IN THE CASE OF THE BOGUCHANSKAYA HPP, WE HAVE IDENTIFIED 11 ENGINEERING-GEOLOGICAL ELEMENTS), AND ALLOWED US TO FIND THE BOUNDARIES OF ENGINEERING-GEOLOGICAL ELEMENTS IN GEOLOGICAL CROSS-SECTIONS. IN ADDITION, WE DETERMINED THE EFFECTIVE VALUES OF FILTRATION COEFFICIENT FOR EACH ENGINEERING-GEOLOGICAL ELEMENT INDICATING THE CONFIDENCE INTERVALS FOR THE MEAN VALUE AT THE 95 % CONFIDENCE LEVEL.

DOI: 10.22227/1997-0935.2016.2.116-125

References
  1. Chernyshev S.N., Zommer T.V., Lavrusevich A.A. Opredelenie fil’tratsionnoy neodnorodnosti skal’nykh massivov osnovaniya gidrosooruzheniya metodom staticheskogo analiza na primere Boguchanskoy GES [Statistical Analysis of Determining the Filtration Heterogeneity of Foundation Rock Mass of Hydraulic Structures on the Example of the Boguchanskaya HPP]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2016, no. 1, pp. 150—160. (In Russian)
  2. Rats M.V., Chernyshev S.N., Sleptsov B.G. Razrabotka kriteriev optimal’noy glubiny vrezki betonnykh plotin v skal’nye osnovaniya. Statisticheskiy analiz vodopronitsaemosti osnovaniya Boguchanskoy GES [Developing the Criteria of Optimal Incision Depth of Concrete Dams into Rock Foundations. Statistical Analysis of Water Permeability of the Boguchanskaya HPP Foundation]. Moscow, PNIIIS Publ., 1975. (In Russian)
  3. Chernyshev S.N. Printsipy klassifikatsii gruntovykh massivov dlya stroitel’stva [Principles of Classification of Soil Masses for Construction Purposes]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2013, no. 9, pp. 41—46. (In Russian)
  4. Chernyshev S.N., Paushkin G.A. Determination du module de deformabilite des roches en place. Symposium International. Reconnaissance des Sols et des Roches par Essais en Place. Paris, France, 1983.
  5. Chernyshev S.N. Estimation of the Permeability of the Jointy Rocks in Massif. Symp on Percolation through Fissured Rock, Proc., Sep 18—19 1972. Stuttgart, W Ger.
  6. P 54—90. Metodika sostavleniya modeley vodopronitsaemosti skal’nykh massivov v osnovaniyakh gidrotekhnicheskikh sooruzheniy [Article 54—90. Methods of Creating Waterproof Models of Rock Masses in Foundations of Hydraulic Structures]. Posobie k SNiP 2.02.02—85 [Manual to Construction Rules SNiP 2.02.02—85]. Saint Petersburg, VNIIG Publ., 1992, 107 p. (In Russian)
  7. Gaziev E.G., Rechitskiy V.I., Borovykh T.N. Issledovanie fil’tratsionnogo potoka v blochnoy srede primenitel’no k proektirovaniyu sooruzheniy v skal’nykh massivakh [Investigation of Filtration Flow in Block Environment in Design of Structures in Rock Masses]. Trudy Gidroproekta [Works of Hydroproject]. 1980, no. 68, pp. 137—147. (In Russian)
  8. Rasskazov L.N., Aniskin N.A., Zhelankin V.G. Fil’tratsiya v gruntovykh plotinakh v ploskoy i prostranstvennoy postanovke [Filtration in Soil Dams in Flat and 3D Statement]. Gidrotekhnicheskoe stroitel’stvo [Hydrotechnical Construction]. 1989, no. 11, pp. 26—32. (In Russian)
  9. Rasskazov L.N., Aniskin N.A. Fil’tratsionnye raschety gidrotekhnicheskikh sooruzheniy i osnovaniy [Filtration Calculations of Hydraulic Structures and Foundations]. Gidrotekhnicheskoe stroitel’stvo [Hydrotechnical Construction]. 2000, no. 11, pp. 2—7. (In Russian)
  10. Aniskin N.A., Tkhan’ To V. Prognoz fil’tratsionnogo rezhima gruntovoy plotiny Yumaguzinskogo gidrouzla i ee osnovaniya [Prediction of Seepage Conditions of the Soil Dam of Yumaguzinskiy Hydroengineering Complex and its Foundation]. Gidrotekhnicheskoe stroitel’stvo [Hydrotechnical Construction]. 2005, no. 6, pp. 19—25. (In Russian)
  11. Orekhov B.G., Zertsalov M.G. Fracture Mechanics of Engineering Structures and Rocks. Rotterdam, 2001.
  12. Aniskin N.A., Memarianfard M.E. Effect of Filtration Anisotropy of Soils within the Body of a Dam on Parameters of Filtration Flow and Slope Stability. Power Technology and Engineering. 2012, vol. 45, no. 6, pp. 422—426. DOI: http://dx.doi.org/10.1007/s10749-012-0288-y.
  13. Khodzinskaya A.G., Zommer T.V. Gidravlika i gidrologiya transportnykh sooruzheniy. Uchebnoe posobie [Hydraulics and Hydrology of Transport Constructions. Study Guide]. Moscow, 2014, 92 p. (In Russian)
  14. Rasskazov L.N., Aniskin N.A., Bestuzheva A.S., Sainov M.P., Tolstikov V.V. Sangtudinskiy gidrouzel: napryazhenno-deformirovannoe sostoyanie i fil’tratsiya v osnovanii plotiny i v obkhod gidrouzla [Sangtudinsk Hydroengineering Complex: Stress-Strain State and Filtration in the Dam Foundation and Bypassing the Hydroengineering Complex]. Gidrotekhnicheskoe stroitel’stvo [Hydrotechnical Construction]. 2008, no. 5, pp. 45—58. (In Russian)
  15. Raymer J., Maerz N.H. Effect of Variability on Average Rock-Mass Permeability. 48th US Rock Mechanics / Geomechanics Symposium, University of Minnesota, Twin Cities CampusMinneapolis, United States, 1—4 June 2014, no. 3, pp. 1822—1829.
  16. Volynchikov A.N., Gaziev E.G. Analiz vertikal’nykh smeshcheniy betonnoy plotiny Boguchanskoy GES v period pervogo zapolneniya vodokhranilishcha [Analysis of Vertical Shifts of a Concrete Dam of Boguchanskaya HPP in the Period of the First Filling of the Reservoir]. Gidrotekhnicheskoe stroitel’stvo [Hydrotechnical Construction]. 2014, no. 8, pp. 13—17. (In Russian)
  17. Gaziev E.G. Skal’nye osnovaniya betonnykh plotin [Rock Foundations of Concrete Dams]. Moscow, ASV Publ., 2005, 280 p. (In Russian)
  18. Savich A.I., Rechitskiy V.I., Zamakhaev A.M., Pudov K.O. Kompleksnye issledovaniya deformatsionnykh svoystv massiva doleritov v osnovanii betonnoy plotiny Boguchanskoy GES [Complex Investigations of Deformation Properties of Dolerite Masses in the Foundation of the Concrete Dam of Boguchanskaya HPP]. Gidrotekhnicheskoe stroitel’stvo [Hydrotechnical Construction]. 2011, no. 3, pp. 12—22. (In Russian)
  19. Chernyshev S.N. Ekzogennye deformatsii trappov v doline r. Angary [Exogenous Deformations of Traps in the Valley of Angara River]. Izvestiya vysshikh uchebnykh zavedeniy. Geologiya i razvedka [News of Institutions of Higher Education. Geology and Esploration]. 1965, no. 12, pp. 78—85. (In Russian)
  20. Il’in N.I., Chernyshev S.N., Dzektser E.S., Zil’berg V.S. Otsenka tochnosti opredeleniya vodopronitsaemosti gornykh porod [Estimating Determination Accuracy of Water Permeability of Rock Formations]. Moscow, Nauka Publ., 1971, 150 p. (In Russian)
  21. Chernyshev S.N. Dvizhenie vody po setyam treshchin [Water Motion through the Network of Cracks]. Moscow, Nedra Publ., 1979, 142 p. (In Russian)
  22. Chernyshev S.N. Treshchinovatost’ gornykh porod i ee vliyanie na ustoychivost’ otkosov [Jointing of Rock Masses and its Influence on the Stability of Slopes]. Moscow, Nedra Publ., 1984, 111 p. (In Russian)
  23. Chernyshev S.N., Dearman W. Rock Fractures. London, Butterwort-Heinemann, 1991, 272 p.
  24. Chapovskiy A.E., Pertsovskiy V.V. Eksperimental’noe issledovanie neodnorodnosti gornykh porod v plane [Experimental Investigation of Rock Inhomogeneity in Plan]. Razvedka i okhrana nedr [Exploration and Preservation of Mineral Resources]. 1972, no. 1, pp. 45—49. (In Russian)
  25. Samsonov B.G., Zil’bershteyn B.M., Burdakova O.L. Opredelenie gidrogeologicheskikh parametrov pri effektivnoy neodnorodnosti vodonosnykh gorizontov [Determination of Hydrogeological Parameters in Cae of Effective Inhomogeneity of Aquifers]. Gidrologiya i inzhenernaya geologiya. Ekspress-informatsiya VIEMS, MG SSSR [Hydrology and Engineering Geology. Express Information of VIEMS, MG USSR]. 1972, no. 4. (In Russian)
  26. Wu J.L., He J. Determination of Volumetric Joint Count Based on 3D Fracture Network and Its Application in Engineering. Applied Mechanics and Materials. 2014, vols. 580—583, pp. 907—911. DOI: http://www.doi.org/10.4028/www.scientific.net/AMM.580-583.907.
  27. Gudmundsson A., Lo Tveit I.F. Sills as Fractured Hydrocarbon Reservoirs: Examples and Models. Geological Society Special Publication. 2014, vol. 374 (1), pp. 251—271. DOI: http://www.doi.org/10.1144/SP374.5.
  28. Mohajerani S., Baghbanan A., Bagherpour R., Hashemolhosseini H. Grout Penetration in Fractured Rock Mass Using a New Developed Explicit Algorithm. International Journal of Rock Mechanics and Mining Sciences. 2015, vol. 80, pp. 412—417. DOI: http://www.doi.org/10.1016/j.ijrmms.2015.06.013.
  29. Zhou X.-P., Gu X.-B., Wang Y.-T. Numerical Simulations of Propagation, Bifurcation and Coalescence of Cracks in Rocks. International Journal of Rock Mechanics and Mining Sciences. 2015, vol. 80, pp. 241—254. DOI: http://www.doi.org/10.1016/j.ijrmms.2015.09.006.
  30. Wei J., Weifeng S., Guiting H. Insights Into the Tectonic Fractures in the Yanchang Formation Interbedded Sandstone-Mudstone of The Ordos Basin Based on Core Data and Geomechanical Models. Acta Geologica Sinica. 2015, no. 89 (6), pp. 1986—1997. DOI: http://www.doi.org/10.1111/1755-6724.12612.
  31. Nguyen T.K., Pouya A., Rohmer J. Integrating Damage Zone Heterogeneities Based on Stochastic Realizations of Fracture Networks for Fault Stability Analysis. International Journal of Rock Mechanics and Mining Sciences. 2015, vol. 80, pp. 325—336. DOI: http://www.doi.org/10.1016/j.ijrmms.2015.10.005.
  32. Akbardoost J., Ayatollahi M.R. Experimental Analysis of Mixed Mode Crack Propagation in Brittle Rocks: The Effect of Non-Singular Terms. Engineering Fracture Mechanics. 2014, vol. 129, pp. 77—89. DOI: http://www.doi.org/10.1016/j.engfracmech.2014.05.016.
  33. Meyer J.R., Parker B.L., Cherry J.A. Characteristics of High Resolution Hydraulic Head Pro-Files and Vertical Gradients in Fractured Sedimentary Rocks. Journal of Hydrology. 2014, vol. 517, pp. 493—507. DOI: http://www.doi.org/10.1016/j.jhydrol.2014.05.050.

Download

ECONOMICS, MANAGEMENT AND ORGANIZATION OF CONSTRUCTION PROCESSES

Investment component in bim implementation projects

  • Bachurina Svetlana Samuilovna - Plekhanov Russian University of Economics (PRUE) Doctor of Economic Sciences, Executive Secretary, Expert Council on town-planning activity at State Duma Committee on Construction and Land Relations, Professor, Department of Project and Program Management, Plekhanov Russian University of Economics (PRUE), 36 Stremyannyy pereulok, Moscow, 117997, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Golosova Tat’yana Sergeevna - Plekhanov Russian University of Economics (PRUE) postgraduate student, Department of Project and Program Management, Plekhanov Russian University of Economics (PRUE), 36 Stremyannyy pereulok, Moscow, 117997, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 126-134

This article considers building information modeling (BIM) maturity levels as an ability to operate BIM technology both at an individual project and across the enterprise. The main indicator of BIM implementation maturity is the level of technological and organizational changes in a company. 3 levels of BIM maturity according to BIM Task Group are shown. This article shows some basic criteria of effective BIM-technology implementation. The core transformation is process reengineering, which gives a vector to all subsequent changes including conversion of organizational structure and material and technical equipment. In this regard, the early stages of BIM implementation major cost falls on process reengineering, especially on the transition from CAD to BIM. The radical conversion of work processes entails a review of the staff of the company in terms of the structure and qualification. Other types of BIM implementation investments for the subsequent stages of the project consist of the costs on structural changes, staff education, technical provision and infrastructure development. In order to estimate the investment in the process of implementing BIM all of the costs must be presented in monetary equivalent. This process is complicated by the necessity of converting high-quality information and time parameters, so it is advisable to appeal to the expert evaluation of the data. In addition to monetary costs of the implementation process there are some immeasurable ones. It is vital to take into account the losses associated with the absence of employees in the workplace at the time of re-education, as well as the costs of the process of evaluating the effectiveness of BIM.

DOI: 10.22227/1997-0935.2016.2.126-134

References
  1. A Report for the Government Construction Client Group Building Information Modelling (BIM) Working Party Strategy Paper. March 2011.
  2. Talapov V.V. Tekhnologiya BIM: sut’ i osnovy vnedreniya informatsionnogo modelirovaniya zdaniy [BIM Technology: Essence and Implementation Bases of Building Modeling]. Moscow, DMK press Publ., 2015, 410 p. (In Russian)
  3. Talapov V.V. Osnovy BIM: vvedenie v informatsionnoe modelirovanie zdaniy [Bases of BIM: Introducation into Building Information Modeling]. Moscow, DMK Press Publ., 2011, 392 p. (In Russian)
  4. Grakhov V.P., Mokhnachev S.A., Ishtryakov A.Kh. Razvitie sistem BIM proektirovaniya kak element konkurentosposobnosti [Development of BIM Design Systems as an Element of Competitiveness]. Sovremennye problemy nauki i obrazovaniya [Contemporary Problems of Science and Education]. 2015, no. 1-1. Available at: http://www.science-education.ru/ru/article/view?id=17950. (In Russian)
  5. Jernigan F. BIG BIM little bim. Second edition. Salisbury, 4 Site Press, 2008, 328 p.
  6. Miller R., Strombom D., Iammarino M., Black B. The Commercial Real Estate Revolution: Nine Transforming Keys to Lowering Costs, Cutting Waste, and Driving Change in a Broken Industry. John Wiley & Sons, 2009, 352 p.
  7. Kozlov I.M. Informatsionnoe modelirovanie pri sozdanii blokov nes”emnoy opalubki [Information Modeling in the Creation of Permanent Form Blocks]. SAPR i grafika [CAD and Grafics]. 2010, no. 4 (162), pp. 4—10. (In Russian)
  8. Chetverik N.P. Poetapnoe vnedrenie tekhnologiy informatsionnogo modelirovaniya (BIM) v stroitel’noy sfere [Stepwise Implementation of BIM in the Construction Field]. Stroitel’nye materialy, oborudovanie, tekhnologii XXI veka [Construction Materials, Equipment, Technologies of the 21st Century]. 2014, no. 12 (191), pp. 44—47. (In Russian)
  9. Rumyantseva E.V., Manukhina L.A. BIM-tekhnologii: podkhod k proektirovaniyu stroitel’nogo ob”ekta kak edinogo tselogo [BIM Technologies: Approach to the Design of a Construction Objects as a Whole]. Sovremennaya nauka: aktual’nye problemy i puti ikh resheniya [Contemporary Science: Current Problems and Ways of their Solution]. 2015, no. 5 (18), pp. 33—36. (In Russian)
  10. Adizes I. Managing Corporate Lifecycles. Prentice Hall Press; Revised edition, 1999, 460 p.
  11. Hambling A.C. Evaluation and Control of Training. Maidenhead, McGraw-Hill, 1974, 176 p.
  12. Bachurina S.S., Golosova T.S. Skvoznoe BIM-proektirovanie — osnova vozvrata investitsiy [End-to-End BIM Design as a Basis for Return on Investment]. Sovremennye problemy upravleniya proektami v investitsionno-stroitel’noy sfere i prirodopol’zovanii : sbornik trudov 5-y Mezhdunarodnoy nauchno-prakticheskoy konferentsii (g. Moskva, 10 aprelya 2015 g.)[Contemporary Problems of Project Management in Investment and Construction Sphere and Nature Management : Collection of Works of the 5th International Science and Practice Conference (Moscow, April 10th, 2015)]. Moscow, IPO «Grif i K» Publ., 2015, pp. 13—18. (In Russian)
  13. Holland R., Messner J., Parfitt K., Poerschke U., Pihlak M., Solnosky R. Integrated Design Courses Using BIM as the Technology Platform, Academic Best Practices. Implementing BIM into Higher Education Curriculum, National Institute of Building Sciences, Annual Meeting : EcoBuild America Conference 2010, December, 7. Washington, DC.
  14. Spryzhkov A.M., Privorotskiy D.S., Privorotskaya E.V. Mezhdistsiplinarnaya integratsiya BIM I IPD v vysshem professional'nom obrazovanii [Cross-Disciplinary Integration of BIM and IPD in Higher Professional Education]. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk [News of Samara Scientific Center of the Russian Academy of Sciences]. 2015, vol. 17, no. 1-2, pp. 348—351. (In Russian)

Download

Elements of accounting in the context of the balanced scorecard construction enterprise

  • Patrina Tat’yana Konstantinovna - Moscow State University of Civil Engineering (National Research University) (MGSU) Senior Lecturer, Department of Economy and Management in the Construction, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Chekunova Aleksandra Sergeevna - Moscow State University of Civil Engineering (National Research University) (MGSU) Master student, Department of Economy and Management in the Construction, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 135-145

No doubt that the accounting information in financial and economic life of society is very significant. The actions of economic agents depend on the quality and completeness of the accounting information. An accounting policy of an enterprise is a certain system of ways of accounting, which is approved by the enterprise to help all concerned to get full and correct accounting information. Making solutions on the basis of key performance indicators gives opportunity to analyze the minimal number of quantitative indexes essential for an enterprise, which reflect the degree of achieving the stated goals. The key indicators are the indicators of performance efficiency of both the departments and the enterprise as a whole. A balanced system of indicators helps classifying the key efficiency indicators and establishing interrelation between strategic and operational performance level. The article describes the elements of accounting, in particular methods of assignment to production use of inventory, from the point of their impact on key economic indicators and, consequently, on the overall strategy of the construction enterprise.

DOI: 10.22227/1997-0935.2016.2.135-145

References
  1. Kaplan R., Norton D. The Balanced Scorecard: Translating Strategy into Action. Harvard Business Review Press; 1 edition, 1996, 336 p.
  2. Vrublevskiy N.D. Upravlencheskiy uchet material’nykh izderzhek proizvodstva [Management Accounting of Material Costs of Production]. Bukhgalterskiy uchet [Accounting]. 2014, no. 8, pp. 69—78. (In Russian)
  3. Glazkova A. Upravlenie proizvodstvennymi zapasami: optimizatsiya pribyli [Managing Inventories: Profit Optimization]. Finansovyy direktor [Financial Director]. 2014, no. 10. Available at: http://e.fd.ru/article.aspx?aid=354405. Date of access: 10.09.2015. (In Russian)
  4. PBU 5/01. Uchet material’no-proizvodstvennykh zapasov: utverzhdennyy Prikazom Minfina RF ot 30 marta 2001 g. № 26n (red. ot 24 dekabrya 2010 g.) [Russian Accounting Standards PBU 5/01. Accounting of Inventories: approved by the Order of the Ministry of Finance dated 30 March 2001. No. 26n, as amended on December 24. (In Russian)
  5. Metodicheskie ukazaniya po bukhgalterskomu uchetu material’no-proizvodstvennykh zapasov : utverzhdennyy Prikazom Minfina Rossii ot 28 dekabrya 2001 g. № 119n (deystvuyushchaya redaktsiya ot 01.01.2011 g.) [Methodology Guidelines on Accounting of Inventories : approved by the Order of the Ministry of Finance dated December 28, 2001. No. 119n (as amended on 01.01.2011)]. (In Russian)
  6. Druzhilovskaya E.S. Novye pravila otsenki i ucheta zapasov [New Rules of Evaluation and Account of Inventory]. Vse dlya bukhgaltera [All for Accountant]. 2013, no. 1, pp. 23—30 (In Russian)
  7. Vereshchagin S.A. Spisanie materialov na proizvodstvo stroitel’no-montazhnykh rabot [Assignment of Materials for Construction and Installation Works]. Bukhgalterskiy uchet [Accounting]. 2014, no. 2, pp. 39—46. (In Russian)
  8. Nikitina V.Yu. Uchet materialov [Material Accounting]. Bukhgalterskiy uchet [Accounting]. 2014, no. 6, pp. 27—32. (In Russian)
  9. Kaplan R., Norton D. Strategy Maps: Converting Intangible Assets into Tangible Outcomes. Harvard Business Review Press, 1 edition, 2004, 454 p.
  10. Karaulov N.N., Mirolyubov A.A. Ispol’zovanie paneley indikatorov dlya otsenki rezul’tativnosti deyatel’nosti predpriyatiya [Using Dashboards to Evaluate the Company Performance]. Nauchno-tekhnicheskie vedomosti Sankt-Peterburgskogo gosudarstvennogo politekhnicheskogo universiteta. Ekonomicheskie nauki [St. Petersburg State Polytechnical University Journal. Economic Sciences]. 2015, no. 3 (221), pp. 232—244. (In Russian)
  11. PBU 1/2008. Uchetnaya politika organizatsii : utverzhdennaya Prikazom Minfina RF ot 6 oktyabrya 2008 g. № 106n (red. ot 18 dekabrya 2012 g.) [Russian Accounting Standards PBU 1/2008 “Accounting Policy of an Organization” approved by the Order of the Ministry of Finance dated October 6, 2008 No. 106n, as amended on 18 December 2012]. (In Russian)
  12. Vysotskaya A.B. Transformatsiya bukhgalterskikh sistem v informatsionnoy ekonomike [Transformation of Accounting Systems in the Information Economy]. Bukhgalterskiy uchet [Accounting]. 2014, no. 11, pp. 123—125. (In Russian)
  13. Gumba Kh.M., Mishlanova M.Yu. Perspektivy razvitiya vektornoy SWOT — Modeli v prilozhenii k zadacham ekonomiki i upravleniya v stroitel’stve [Prospects for the Development of the Vector SWOT-Model as Applied to the Problems of Economics and Management in Construction]. Vestnik grazhdanskikh inzhenerov [Bulletin of Civil Engineers]. 2013, no. 5 (40),pp. 213—218. (In Russian)
  14. Dukhanina E.V., Polezhaev S.M. Osnovnye podkhody k kolichestvennoy otsenke effektivnosti sistemy upravleniya predpriyatiy investitsionno-stroitel’nogo kompleksa [Main Approaches to Quantify the Performance of the Management System of Enterprises of Investment — Building Complex]. Sovremennye problemy nauki i obrazovaniya [Modern Problems of Science and Education]. 2014, no. 6, article 356. (In Russian)
  15. Zubko E.I., Lobkova N.V. Printsipy bukhgalterskogo ucheta [Accounting Principles]. Ekonomika i predprinimatel’stvo [Economy and Entrepreneurship]. 2015, no. 6—3 (59—3), pp. 1075—1077. (In Russian)
  16. Korobov S.A., Trilitskaya O.Yu., Kulachenko E.V. Problemy razrabotki strategii razvitiya organizatsionnoy struktury upravleniya predprinimatel’skikh sistem [Development Problems of the Strategy of Development of Organizational Management Structure of Enterprise Systems]. Ekonomika i predprinimatel’stvo [Economy and Entrepreneurship]. 2015, no. 6—3 (59—3), pp. 1057—1062. (In Russian)
  17. Larina L.P. Uchetnaya politika dlya tseley nalogooblozheniya [Accounting Policy for Taxing Purposes]. Bukhgalterskiy uchet [Accounting]. 2013, no. 12, pp. 35—41. (In Russian)
  18. Patrina T.K., Chekunova A.S. Razrabotka strategicheskoy karty stroitel’noy organizatsii na osnove sbalansirovannoy sistemy pokazateley [Creation of a Strategic Map of a Construction Company Based on Balanced Scorecard]. Nauchnye trudy kollektiva kafedry ekonomiki i upravleniya v stroitel’stve [Proceedings of the Department of Economics and Management in the Construction]. Moscow, MGSU Publ., 2015, no. 22, pp. 142—147. (In Russian)
  19. Permyakov Yu. Sistema sbalansirovannykh pokazateley: opyt samostoyatel’nogo vnedreniya [Balanced Scorecard: the Experience of Self-Implementation]. Finansovyy direktor [Financial Director]. 2012, no. 7—8. Available at: http://e.fd.ru//article.aspx?aid=292735. Date of access: 10.09.2015. (In Russian)
  20. Sergeeva Yu.V., Romashova I.B. Postanovka kontrollinga stroitel’noy organizatsii na osnove sistemy sbalansirovannykh pokazateley [Controlling Setting of a Construction Organization on the Basis of Balanced Scorecard]. Fundamental’nye issledovaniya [Fundamental Research]. 2015, no. 2-14, pp. 3131—3135. (In Russian)
  21. Svetnik T.V. Strategicheskoe upravlenie i vozmozhnosti global’noy konkurentsii Rossiyskikh stroitel’nykh organizatsiy [Strategic Management and Global Competition Opportunities of Russian Construction Organizations]. Izvestiya Irkutskoy gosudarstvennoy ekonomicheskoy akademii [Izvestiya of Irkutsk State Economics Academy]. 2012, no. 4, pp. 84—87. (In Russian)
  22. Khrustalev B.B., Gorbunov V.N., Os’kina I.V., Khan’zhov I.S. Osobennosti strategii razvitiya i upravleniya predpriyatiem kak ekonomicheskoy sistemoy [Property Development Strategy and Enterprise Management as an Economic System]. Ekonomika i menedzhment innovatsionnykh tekhnologiy [Economics and Management of Innovative Technologies]. 2014, no. 8 (35). Available at: http://ekonomika.snauka.ru/2014/08/5764. Date of access: 13.09.2015. (In Russian)

Download

Development of institutional bases of leasing

  • Yas’kova Natal’ya Yur’evna - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Economic Sciences, Professor, Department of Economy and Management in the Construction, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Alekseeva Tat’yana Romanovna - Moscow State University of Civil Engineering (National Research University) (MGSU) Candidate of Economic Sciences, Associate Professor, Department of Economy and Management in the Construction, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 146-158

Institutional approach to the research of leasing in modern conditions is considered in the article. Formal and informal institutions of the leasing relations are investigated. Ratios of public and subjective expenses and benefits in institutional system of leasing are shown. Features of interaction of agents of the leasing relations, their interests and tendency to manifestation of opportunistic behavior are investigated. The typology of mechanisms of implementation of institutional changes is considered. The need of structural changes of the institutes of leasing relations is proved. It is offered to introduce “institution of engineering” in the structure of institutions of leasing relations. It will allow providing harmonization of the interests of the agents of leasing relations, decreasing their opportunistic behavior, and reducing the transactional expenses of the participants of leasing. It will promote prevention of their opportunistic behavior and reduction of transaction expenses of the participants of leasing. In our opinion, “the institution of leasing” is a set of formal and informal rules, norms and mechanisms of enforcement of their performance (institutes of property, financial rent (leasing), crediting, insurance and other institutes of leasing relations), which govern the property and economic relations, the arising relations with acquisition of ownership and its subsequent assignment for use for a certain time with payment. These norms and rules are necessary for ensuring stability and definiteness in the relations between the participants of leasing, and also for protection of their rights and economic interests.

DOI: 10.22227/1997-0935.2016.2.146-158

References
  1. Bazhenova V.I. Institutsional’naya model’ lizingovykh otnosheniy [Institutional Model of the leasing relations]. Voprosy ekonomiki i prava [Economic and Law Issues]. 2011, no. 12 (42),pp. 16—23. (In Russian)
  2. Krutchankova K.A., Bukhtiyarova T.I. Institutsional’naya sreda innovatsionnogo razvitiya ekonomiki regiona [Institutional Environment of Innovative Development of Economy of the Region]. Fundamental’nye issledovaniya [Fundamental Research]. 2013, no. 6, pp. 1485—1492. (In Russian)
  3. Sannikova T.D. K voprosu o transformatsii institutsional’noy sredy innovatsionnoy deyatel’nosti v regione [To a Question of Transformation of the Institutional Environment of Innovative Activity in the Region]. Innovatsionnyy Vestnik Region [Innovation Proceedings “Region”]. 2013, no. 2, pp. 67—71. (In Russian)
  4. Timofeeva G.V. Institutsional’naya infrastruktura ekonomiki: metodologicheskiy aspekt issledovaniya [Institutional Infrastructure of Economy: Methodological Aspect of Research]. Izvestiya Volgogradskogo gosudarstvennogo tekhnicheskogo universiteta [News of Volgograd State Technical University]. 2005, no. 5, pp. 10—15. (In Russian)
  5. Kamenetskiy M.I., Yas’kova N.Yu. Administrativnyy resurs kak faktor povysheniya effektivnosti sistemy gosudarstvennogo upravleniya [Administrative Resources as a Factor in Improving the Efficiency of the State Administration System]. Problemy prognozirovaniya [Problems of Forecasting]. 2015, no. 2, pp. 33—42. (In Russian)
  6. Buchanan J. Choosing What to Choose. Journal of Institutional and Theoretical Economics. 1994, vol. 150, no. 1, pp. 123—135.
  7. Dahl R.A. A Preface to Democratic Theory. Chicago, University of Chicago Press, 1956.
  8. Dawns A. An Economic Theory of Democracy. New York, Harper&Row, 1957.
  9. Davis L., North D. Institutional Change and American Economic Growth. Cambridge, 1971, 803 p.
  10. Pejovich S. The Market for Institutions vs. Capitalism by Fiat. Kyklos. 1994, vol. 47, pp. 519—528.
  11. Pejovich S. The Market for Institutions versus the Strong Hand of the State: The Case of Eastern Europe. B. Dallago and L. Mittone (eds.). Economic Institutions, Markets and Competition. Cheltenham, Edward Elgar, 1996, pp. 111—126.
  12. Ayupov A.A. Primenenie innovatsionnogo lizingovogo optsiona kak instrumenta khedzhirovaniya operatsiy lizinga [Application of An Innovative Leasing Option as Instrument of Hedging of Operations of Leasing]. Vektor nauki Tol’yattinskogo gosudarstvennogo universiteta [Vektor Nauki of Togliatti State University]. 2012, no. 3 (21), pp. 115—118. (In Russian)
  13. Alekseeva T.R. Lizingovye tekhnologii v innovatsionnom razvitii stroitel’nogo kompleksa [Leasing Technologies in Innovative Development of Construction Complex]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2014, no. 5, pp. 152—161. (In Russian)
  14. Alekseeva T.R. Innovatsionnyy lizingovyy inzhiniring v stroitel’nom komplekse [Innovative Leasing Engineering in the Construction Complex]. Ekonomika i predprinimatel’stvo [Economy and Enterprenership]. 2015, no. 4—2 (57—2), pp. 583—590. (In Russian)
  15. Batrutdinov A.S., Fedoseev I.V. Lizing kak sposob finansovo-kreditnogo obespecheniya innovatsionnoy deyatel’nosti stroitel’nogo predpriyatiya [Leasing as way of Financial and Credit Ensuring of the Innovative Activity of a Construction Enterprise]. Problemy sovremennoy ekonomiki [Problems of Modern Economy]. 2006, no. 3—4, pp. 237—240. (In Russian)
  16. Ibraeva A.A. Sushchnost’ i funktsii lizinga v sisteme ekonomicheskikh otnosheniy khozyaystvuyushchikh sub”ektov [Essence and Functions of Leasing in the System of Economic Relations of Economic Entities]. Problemy sovremennoy ekonomiki [Problems of Modern Economy]. 2010, no. 4 (36), pp. 196—199. (In Russian)
  17. Prokaeva I.G. Sravnenie effektivnosti lizinga i kredita [Comparison of the Efficiency of Leasing and Credit]. Problemy sovremennoy ekonomiki (Novosibirsk) [Problems of Modern Economy (Novosibirsk)]. 2013, no. 11, pp. 8—12. (In Russian)
  18. Syrtsova O.N. Lizing kak instrument modernizatsii ekonomiki Rossii [Leasing as a Tool for Modernization of Russian Economy]. Lizing [Leasing]. 2012, no. 8, pp. 14—29. (In Russian)
  19. Filosofova T.G. Effektivnost’ ispol’zovaniya lizinga v skhemakh modernizatsii [Efficiency of Using Leasing in Modernization Schemes]. Lizing [Leasing]. 2011, no. 9, pp. 6—22. (In Russian)
  20. Yas’kova N.Yu., Kamenetskiy M.I. Krizis otechestvennoy modeli upravleniya stroitel’stvom i rynkom nedvizhimosti [Crisis of the Domestic Management Model of the Construction and Real Estate Market]. Ekonomika stroitel’stva [Economy of the Construction]. 2009, no. 3 (576), pp. 3—12. (In Russian)
  21. Miceli T.J., Sirmans C.F., Turnbull G.K. The Property-Contract Boundary: An Economic Analysis of Leases. American Law and Economics Review. Oxford University Press. 2001, vol. 3, no. 1, pp. 165—185. DOI: http://dx.doi.org/10.1093/aler/3.1.165.
  22. Yas’kova N.Yu. Tendentsii razvitiya stroitel’nykh korporatsiy v novykh usloviyakh [Development Trends of Construction Corporations in New Environment]. Nauchnoe obozrenie [Scientific Review]. 2013, no. 5, pp. 174—178. (In Russian)
  23. Yas’kova N.Yu. Evolyutsiya protsessov razvitiya investitsionno-stroitel’noy deyatel’nosti [Evolution of Investment and Construction Development Processes]. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta [Bulletin of Irkutsk State Technical University]. 2012, no. 1 (60), pp. 178—186. (In Russian)
  24. Auzan A.A. Institutsional'naya ekonomika: Novaya institutsional'naya ekonomicheskaya teoriya [Institutional Economics: New Institutional Economic Theory]. 2nd edition. Moscow, Infra-M Publ., 2011, 447 p. (In Russian)
  25. Blokhin A.A., Valitova L.A., Zolotov A.V., Ivanov V.V., Kalyagin G.V., Levin S.N., Lisin V.S., Martanus O.R., Ovsyannikova A.V. Institutsional'nye ogranicheniya ekonomicheskoy dinamiki [Institutional Restrictions of Economical Dynamics]. Moscow, TEIS Publ., 2009, 524 p. (In Russian)
  26. Nort D. Instituty, institutsional'nye izmeneniya i funktsionirovanie ekonomiki [Institutions, Institutional Changes and Functioning of the Economy]. Moscow, Nachala Publ., 1997, 180 p. (Sovremennaya institutsional'no-evolyutsionnaya teoriya) [Modern Institutional-Evolution Theory] (In Russian)
  27. Tambovtsev V.L. Pravo i ekonomicheskaya teoriya [Law and Economical Theory]. Moscow, INFRA-M Publ., 2005, 224 p. (In Russian)
  28. Uil'yamson O. Ekonomicheskie instituty kapitalizma: Firmy, rynki, «otnoshencheskaya kontraktatsiya» [Economical Institutions of Capitalism: Companies, Markets, “Relationship Contracts”]. Saint Petersburg, Lenizdat Publ., 1996, 702 p. (In Russian)

Download

INFORMATION SYSTEMS AND LOGISTICS IN CIVIL ENGINEERING

Constantly operating geoinformation system for geoenvironment as a tool for pre-project investigations in city infrastructure development (on the example of moscow)

  • Osipov Viktor Ivanovich - Sergeev Institute of Environmental Geoscience of the Russian Academy of Sciences (IEG RAS) Doctor of Geologo-Mineralogical Sciences, Professor, academician, scientific supervisor, Sergeev Institute of Environmental Geoscience of the Russian Academy of Sciences (IEG RAS), 13-2 Ulanskiy pereulok, Moscow, 101000, Russian Federation, P.O.B. 145; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Mironov Oleg Konstantinovich - Sergeev Institute of Environmental Geoscience of the Russian Academy of Sciences (IEG RAS) Candidate of Physical and Mathematical Sciences, head, Laboratory of Geoinformatics and Computer Mapping, Sergeev Institute of Environmental Geoscience of the Russian Academy of Sciences (IEG RAS), 13-2 Ulanskiy pereulok, Moscow, 101000, Russian Federation, P.O.B. 145; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Belyaev Valeriy L’vovich - Moscow State University of Civil Engineering (National Research University) (MGSU) Candidate of Technical Sciences, Associate Professor, Department of Building Design and Urban Development, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoye Shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 159-172

The concept of a geoinformation system for urban geoenvironment is concerned. Geological data is necessary for the sustainable development of city infrastructure. The municipal departments should use geological and environmental information for perspective planning, selecting the location for important infrastructure objects, solving ecologycal problems, and in decision making. The concept includes a preliminary list of system’s users, their informational needs, main functionalities, methodical approaches to the system design and development. Geological data must contain source documents from geological archives “as is” and geodata based on its interpretation for various tasks. These data must be checked carefully and updated with new engineering-geological investigations. Geoinformation system must integrate various geological, engineering-geological, hydrogeological, and environmental data. Sophisticated procedures must be provided to check complicated logical dependences in the system database and to analyze contradictions between source documents. 3D modeling is an adequate language for presenting geological data, therefore, the considered system must include 3D models of various scales. In the suggested concept 3D modeling is considered as a tool for investigations, not only for presentations. The end users should have possibilities to get results of their queries in various formats: tables, geological and thematic maps, geological cross-sections, 2D and 3D grids as source data for mathematical modeling, etc. In conclusion, the paper briefly describes IEG RAS activities in GIS technologies for geological cartography and 3D modeling.

DOI: 10.22227/1997-0935.2016.2.159-172

References
  1. Gradostroitel’nyy kodeks Rossiyskoy Federatsii : ot 29.12.2004 № 190-FZ (red. ot 30.12.2015) (s izm. i dop., vstup. v silu s 10.01.2016) [City-Planning Code of the Russian Federation from 29.12.2004 no. 190-FZ (edited 30.12.2015) (as amended from 10.01.2016)]. Informatsionno-pravovoy portal «Konsul’tantPlyus» [Information-legal Portal “Consultantplus”]. Available at: https://www.consultant.ru/document/cons_doc_LAW_51040/. Date of access: 29.11.2015. (In Russian)
  2. Belyaev V.L. Osnovy podzemnogo gradoustroystva [Underground Planning Basics]. Moscow, MGSU Publ., 2012, 224 p. (Biblioteka nauchnykh razrabotok i proektov MGSU) [Library of Scientific Developments and Projects of MGSU] (In Russian)
  3. Proekt Federal’nogo zakona «O vnesenii izmeneniy v Gradostroitel’nyy kodeks Rossiyskoy Federatsii i otdel’nye zakonodatel’nye akty Rossiyskoy Federatsii v chasti sovershenstvovaniya regulirovaniya podgotovki, soglasovaniya i utverzhdeniya dokumentatsii po planirovke territorii» [Draft of the Federal Law “on Amendments to the City Planning Code of the Russian Federation and Certain Legislative Acts of the Russian Federation with Regard to Improving the Management of the Preparation, Agreement and Approval of Documentation for the Planning of the Territory”]. Informatsionnyy portal Minstroya Rossii [Informational portal of Construction Ministry of Russia]. Available at: http://www.minstroyrf.ru/docs/2339/. Date of access: 29.11.2015. (In Russian)
  4. Osipov V.I. Krupnomasshtabnoe geologicheskoe kartirovanie territorii g. Moskvy [Large-Scale Geological Mapping of Moscow]. Geoekologiya, inzhenernaya geologiya, gidrogeologiya, geokriologiya [Environmental Geoscience: Engineering Geology, Hydrogeology, Geocryology]. 2011, no. 3, pp. 195—197. (In Russian)
  5. Postanovlenie Pravitel’stva Rossiyskoy Federatsii ot 09.06.2014 № 534 «O vnesenii izmeneniy v Polozhenie o vypolnenii inzhenernykh izyskaniy dlya podgotovki proektnoy dokumentatsii, stroitel’stva, rekonstruktsii, kapital’nogo remonta ob”ektov kapital’nogo stroitel’stva» [Decree of the Government of the Russian Federation dated 09.06.2014 No. 534 “On Modification in Regulations about Carrying Out Engineering Studies for the Preparation of Project Documentation, Construction, Reconstruction, Overhaul”]. Dokipediya. Available at: http://dokipedia.ru/document/5179981. Date of access: 29.11.2015. (In Russian)
  6. Osipov V.I., Antipov A.V. Printsipy inzhenerno-geologicheskogo rayonirovaniya territorii Moskvy [Principles of Engineering-Geological Zoning of Moscow]. Geoekologiya, inzhenernaya geologiya, gidrogeologiya, geokriologiya [Environmental Geoscience: Engineering Geology, Hydrogeology, Geocryology]. 2009, no. 1, pp. 3—13. (In Russian)
  7. Antipov A.V., Koshkarev A.V., Potapov B.V., Filippov N.V. Edinoe geoinformatsionnoe prostranstvo goroda Moskvy kak sostavnaya chast’ infrastruktury prostranstvennykh dannykh Rossiyskoy Federatsii. Chast’ 1 [Unified Geoinnformation Space of the Moscow City as a Part of Spatial Data Infrastructure of the Russian Federation. Part 1]. Moscow, OOO Izdatel’stvo Prospekt Publ., 2013, 222 p. (In Russian)
  8. Alpatov S.N., Belyaev V.L., Lomakin E.A. Razvitie gorodskogo podzemnogo prostranstva — put’ ot dorozhnoy karty k proektnym resheniyam [City Underground Development —a Way from the Road Map to Project Design]. Rossiyskiy opyt stroitel’stva metropolitena v g. Moskve. Tendentsii. Problemy. Perspektivy : sbornik trudov Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii (15 oktyabrya 2014 g.) [Russian Experience of Metro Construction in Moscow. Tendencies. Problems. Prospects : Collection of Works of the International Science and Technical Conference (October 15, 2014)]. Moscow, 2014, pp. 7—14. (In Russian)
  9. Belyaev V. 3D Models as Vista Information Management Governance in the Field of Development of Underground Space in Cities. Applied Mechanics and Materials. Jul. 2014, vols. 580—583, pp. 3227—3230.
  10. Sepúlveda S.A., Rebolledo S., Bórquez X., Prieto J., Muñoz J.A. Geohazard Studies for Urban Planning in the Santiago Metropolitan Region, Chile: Some Lessons for Future Interactions Between Engineering Geoscientists and Urban Planners in Developing Countries. Engineering Geology for Society and Territory — Vol. 5. Urban Geology, Sustainable Planning and Landscape Exploitation : Proceedings of IAEG 2014 Congress. Springer, 2015, pp. 327—330. DOI: http://www.doi.org/10.1007/978-3-319-09048-1_62.
  11. Marker B. Communication of Geological Information in Planning of Urban Areas. Engineering Geology for Society and Territory — Vol. 5. Urban Geology, Sustainable Planning and Landscape Exploitation : Proceedings of IAEG 2014 Congress. Springer, 2015, pp. 335—338. DOI: http://www.doi.org/10.1007/978-3-319-09048-1_64.
  12. Jackson L.E.Jr., Ellerbeck M., Carmona F.M. The COMCOM Process: Informing and Transforming Communities in the Developing World through Geotechnical Information. Engineering Geology for Society and Territory — Vol. 5. Urban Geology, Sustainable Planning and Landscape Exploitation : Proceedings of IAEG 2014 Congress. Springer, 2015, pp. 355—358. DOI: http://www.doi.org/10.1007/978-3-319-09048-1_68.
  13. De Mulder E.F.J. Communicating Applied Geoscientific Expertise to Rural and Urban Planners: Some Lessons Learned. Engineering Geology for Society and Territory — Vol. 5. Urban Geology, Sustainable Planning and Landscape Exploitation : Proceedings of IAEG 2014 Congress. Springer, 2015, pp. 345—349. DOI: http://www.doi.org/10.1007/978-3-319-09048-1_66.
  14. Royse K.R., Bricker S.H., Jackson C.R., Kingdon A., Hughes A.G. The Development of Linked Databases and Environmental Modelling Systems for Decision-Making in London. Engineering Geology for Society and Territory — Vol. 5. Urban Geology, Sustainable Planning and Landscape Exploitation : Proceedings of IAEG 2014 Congress. Springer, 2015, pp. 1195—1199. DOI: http://www.doi.org/10.1007/978-3-319-09048-1_228.
  15. Otraslevoy uzel Edinogo geoinformatsionnogo prostranstva goroda Moskvy // Komitet po arkhitekture i gradostroitel’stvu goroda Moskvy [Industrial Site of a United Geo-Information Space of Moscow]. Available at: http://www.http://egip.mka.mos.ru/egip/egip.nsf. Date of access: 29.11.2015. (In Russian)
  16. Mironov O.K. O kontseptsii bazy znaniy v fondakh geologicheskoy informatsii [On the Concept of Knowledge Database for a Geological Archive]. Sergeevskie chteniya [Sergeevskie Readings]. No. 16. Razvitie idey akademika E.M. Sergeeva na sovremennom etape [Development of the Ideas of an Academitian Sergeev E.M. on the Modern Stage]. Moscow, RUDN Publ., 2014, pp. 595—599. (In Russian)
  17. Mironov O.K., Pikulik E.A., Fesel’ K.I. O ponyatii trekhmernoy geologicheskoy karty [On the Concept of a 3-Dimensional Geological Map]. Geodeziya i kartografiya [Geodesy and cartography]. 2011, no. 6, pp. 36—41. (In Russian)
  18. Osipov V.I., Kutepov V.M., Anisimova N.G., Kozhevnikova I.A., Kozlyakova I.V. Rayonirovanie geologicheskoy sredy goroda Moskvy dlya tseley stroitel’stva ob”ektov s zaglublennymi osnovaniyami [Zoning of Moscow Geonvironment for Building of Objects with Deep Fundaments]. Geoekologiya, inzhenernaya geologiya, gidrogeologiya, geokriologiya [Environmental Geoscience: Engineering Geology, Hydrogeology, Geocryology]. 2011, no. 3, pp. 227—237. (In Russian)
  19. Mironov O.K. Geoinformatsionnye tekhnologii dlya sostavleniya krupnomasshtabnykh geologicheskikh kart territorii Moskvy [Geoinformation Technologies for Large-Scale Geological Mapping of Moscow]. Geoekologiya, inzhenernaya geologiya, gidrogeologiya, geokriologiya [Environmental Geoscience: Engineering Geology, Hydrogeology, Geocryology]. 2011, no. 3, pp. 198—214. (In Russian)
  20. Kutepov V.M., Anisimova N.G., Eremina O.N., Kozhevnikova I.A., Kozlyakova I.V. Karta dochetvertichnykh otlozheniy kak osnova krupnomasshtabnogo geologicheskogo kartirovaniya territorii g. Moskvy [Geological Map of Pre-Quaternary Deposits as the Basis for Large-Scale Geological Mapping of Moscow]. Geoekologiya, inzhenernaya geologiya, gidrogeologiya, geokriologiya [Environmental Geoscience: Engineering Geology, Hydrogeology, Geocryology]. 2011, no. 5, pp. 399—410. (In Russian)
  21. Osipov V.I., Burova V.N., Zaikanov V.G., Molodykh I.I., Pyrchenko V.A., Savis’ko I.S. Karta krupnomasshtabnogo (detal’nogo) inzhenerno-geologicheskogo rayonirovaniya territorii g. Moskvy [Large-Scale Engineering-Geological Zoning Map of Moscow]. Geoekologiya, inzhenernaya geologiya, gidrogeologiya, geokriologiya [Environmental Geoscience: Engineering Geology, Hydrogeology, Geocryology]. 2011, no. 4, pp. 306—318. (In Russian)
  22. Kutepov V.M., Kozlyakova I.V., Anisimova N.G., Eremina O.N., Kozhevnikova I.A. Otsenka karstovoy i karstovo-suffozionnoy opasnosti v proekte krupnomasshtabnogo geologicheskogo kartirovaniya g. Moskvy [Karst and Karst-Suffosion Hazard Estimation in the Project of Large-Scale Geological Mapping of Moscow]. Geoekologiya, inzhenernaya geologiya, gidrogeologiya, geokriologiya [Environmental Geoscience: Engineering Geology, Hydrogeology, Geocryology]. 2011, no. 3, pp. 215—226. (In Russian)
  23. Sevost’yanov V.V., Mindel’ I.G., Trifonov B.A., Ragozin N.A., Shpektorova O.A. Seysmicheskoe mikrorayonirovanie territorii g. Moskvy dlya vysotnogo stroitel’stva [Seismic Microzoning of Moscow Territory for High-Rise Construction]. Geoekologiya, inzhenernaya geologiya, gidrogeologiya, geokriologiya [Environmental Geoscience: Engineering Geology, Hydrogeology, Geocryology]. 2011, no. 4, pp. 319—327. (In Russian)
  24. Pozdnyakova I.A., Galitskaya I.V., Mironov O.K., Kostikova I.A., Dorozhko A.L., Batrak G.I., Matveeva L.A., Fesel’ K.I. Vyyavlenie gidrogeologicheskikh okon na osnove krupnomasshtabnogo kartirovaniya geologicheskogo stroeniya i gidrogeologicheskikh usloviy territorii g. Moskvy [Detection of Hydrogeological Windows Based on Large-Scale Geological and Hydrogeological Mapping of Moscow]. Geoekologiya, inzhenernaya geologiya, gidrogeologiya, geokriologiya [Environmental Geoscience: Engineering Geology, Hydrogeology, Geocryology]. 2015, no. 4, pp. 352—364. (In Russian)
  25. Mironov O.K., Viktorov A.A., Fesel’ K.I. O problemakh vedeniya baz dannykh fondovoy informatsii [On the Problems of Maintenaning Geological Archive Databases]. Geoekologiya, inzhenernaya geologiya, gidrogeologiya, geokriologiya [Environmental Geoscience: Engineering Geology, Hydrogeology, Geocryology]. 2011, no. 5, pp. 455—464. (In Russian)

Download

Discussions and reviews

Control of thermal resistance of building envelopes according to heat comfort in a premise

  • Perekhozhentsev Anatoliy Georgievich - Volgograd State University of Architecture and Civil Engineering (VSUACE) Doctor of technical sciences, Honorary Figure of Russian Higher Education, member, the Union of Architects of Russia, Professor, chair, Department of the Architecture of Buildings and Structures, Volgograd State University of Architecture and Civil Engineering (VSUACE), 1 Akademicheskaya str., 400074, Volgograd, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 173-185

Setting standards of thermal resistance of building envelopes is a current task related with energy saving and energy efficiency of building envelopes. The problem of choosing the factor determining the standard thermal resistance also stays current even after updating of the Construction Norms. The author consider the concept of norming the thermal resistance of building envelope, in which the temperature of the inner surface of a building envelope providing comfortable temperature conditions in premises. The main task of an architect, who is designing an energy efficient building envelope is providing comfortable conditions in premises both in cold and warm periods of the year. The temperature of the inner surface of building envelopes should be included into the construction norms as the main criterion providing comfortable air temperature in premises.

DOI: 10.22227/1997-0935.2016.2.173-185

References
  1. Gagarin V.G. O nedostatochnoy obosnovannosti povyshennykh trebovaniy k teplozashchite naruzhnykh sten zdaniy [On the Lack up Inadequate Rationale of the Raised Requirements to the Thermal Protection of the Outside Walls of the Buildings]. Problemy stroitel’noy teplofiziki sistem mikroklimata i energosberezheniya v zdaniyakh : sbornik dokladov 3-y nauchno-prakticheskoy konferentsii (23—25 aprelya 1998 g.) [Problems of Construction Thermal Physics of Microclimate Systems and Energy Saving in Buildings : Collection of Reports of the 3rd Science and Practice Conference (April 23—25, 1998)]. Moscow, GASNTI Publ., 1998, pp. 69—94. (In Russian)
  2. Brodach M.M. VIIKKI — novyy vzglyad na energosberezhenie [VIIKKI — New View on Energy Saving]. AVOK : Ventilyatsiya, otoplenie, konditsionirovanie vozdukha, teplosnabzhenie i stroitel’naya teplofizika [AVOK : Ventilation, Heating, Air Conditioning, Heat Supply and Construction Thermal Physics]. 2002, no. 6, pp. 14—20. (In Russian)
  3. Prokhorov V.I. Oblik energosberezheniya. Aktual’nye problemy stroitel’noy teplofiziki [The Concept of Energy Saving. Current Problems of Construction Thermal Physics]. Akademicheskie chteniya : sbornik dokladov 7-y nauchno-prakticheskoy konferentsii (18—20 aprelya 2002 g.) [Academic Readings : Collection of the Reports of the 7th Science and Practice Conference (April 18—20, 2002)]. Moscow, 2002, pp. 73—93. (In Russian)
  4. Uvarov A.V., Stavtsev D.A., Kuznetsov D.I. Problemy ekonomii tepla v sisteme ZhKKh [Problems of Heat Saving in Housing and Utilities Infrastructure]. Stroitel’naya fizika v XXI veke : materialy nauchno-tekhnicheskoy konferentsii [Construction Physics in the 21st Century : Materials of Science and Technical Conference]. Moscow, NIISF RAASN Publ., 2006, pp. 212—216. (In Russian)
  5. Gorshkov A.S., Livchak V.I. Istoriya, evolyutsiya i razvitie normativnykh trebovaniy k ograzhdayushchim konstruktsiyam [History, Evolution and Development of the Requirements to Building Envelopes]. Stroitel’stvo unikal’nykh zdaniy i sooruzheniy [Construction of Unique Buildings and Structures]. 2015, no. 3 (30), pp. 7—37. (In Russian)
  6. Energeticheskaya strategiya Rossii na period do 2020 goda [Energy Strategy of Russia for the Period up to 2020]. Moscow, GUIES ; Energiya Publ., 2003, 135 p. (In Russian)
  7. Banhidi L. Teplovoy mikroklimat pomeshcheniy : raschet komfortnykh parametrov po teplooshchushcheniyam cheloveka [Thermal Microclimate of Premises. Calculus of the Comfort Parameters of Human Thermal Feelings]. Translated from English. Moscow, Stroyizdat Publ., 1981, 248 p. (In Russian)
  8. Fanger P.O. Thermal Comfort. McGrowHill, 1970, 244 p.
  9. SanPiN 2.1.2.2645-10. Sanitarno-epidemiologicheskie trebovaniya k usloviyam prozhivaniya v zhilykh zdaniyakh i pomeshcheniyakh. Sanitarno-epidemiologicheskie pravila i normativy [Sanitary Rules and Regulations SanPiN 2.1.2.2645-10. Sanitary Epidemiologic Requirements to the Living Conditions in Residential Buildings and Premises. Sanitary Epidemiologic Rules and Norms]. (In Russian)
  10. Andrskevicius R., Bielinskis F. Investigation of Temperature Variations in Heated Rooms. Pap. of 4th conf. of VGTU. 2000, pp. 215—222.
  11. Keller B., Magyari E. A Simple Calculation Method of General Validity for the Design-Parameters of a Room/Building, Minimizing Its Energy and Power Demand for Heating and Cooling in a Given Climate. Zurich, 1998, 57 p.
  12. Samarin O.D. Teplofizika. Energosberezhenie. Energoeffektivnost’ [Thermal Physics. Energy Saving. Energy Efficuency]. Moscow, ASV Publ., 2009, 292 p. (Biblioteka nauchnykh proektov i razrabotok MGSU) [Library of Scientific Projects and Developments of MGSU]. (In Russian)
  13. Perekhozhentsev A.G. Metodika rascheta raspredeleniya temperatury v mnogosloynykh ograzhdayushchikh konstruktsiyakh zdaniy s uchetom vliyaniya infil’tratsii kholodnogo vozdukha [Methods of Calculating Temperature Distributions in Multilayered Enveloping Structures of Buildings with Account for the Influence of Cold Air Infiltration]. Teoreticheskie osnovy teplosnabzheniya i ventilyatsii : materialy 2-oy Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii [Theoretical Foundations of Heat Supply and Ventilation : Materials of the 2nd International Science and Technical Conference]. Moscow, MGSU Publ., 2007. (In Russian)
  14. Jaraminieme E., Juodis E. The Discrepancy between Design Heat Demand and Actual Heat Consumption Due To Air Infiltration. Pap. of Conf. of VGTU. 2008, vol. II, pp. 804—809.
  15. Zhukov A.N. Vliyanie klimaticheskikh osobennostey Volgogradskoy oblasti na temperaturnyy rezhim sovmeshchennykh pokrytiy zdaniy [Influence of the Climatic Features of Volgograd Region on the Temperature Regime of Combined Building Shells]. Tekhnicheskie nauki — ot teorii k praktike : materialy XII Mezhdunarodnoy nauchno-prakticheskoy konferentsii (30 iyulya 2012 g.) [Technical Sciences — from Theory to Practice : Materials of the 12th International Science and Practical Conference (July 30, 2012)]. Novosibirsk, 2012, pp. 67—70. (In Russian)
  16. Fokin K.F. Stroitel’naya teplotekhnika ograzhdayushchikh chastey zdaniy [Construction Heat Engineering of Building Envelopes]. 5th edition, revised. Moscow, AVOK-Press Publ., 2006, 250 p. (Tekhnicheskaya biblioteka NP «AVOK») [Technical Library of “AVOK”] (In Russian)
  17. Ramanauskas R. Efficient Use of Rotary Heat Exchangers. Pap. of REHVA’S General Assembly. 2004, pp. 360—366.
  18. GOST 30494—96. Zdaniya zhilye i obshchestvennye. Parametry mikroklimata v pomeshcheniyakh [Russian State Standard GOST 30494—96. Residential and Public Buildings. Microclimatic Parameters in Premises]. Moscow, MNTKS Publ., 1996, 23 p. (In Russian)
  19. Blazi V. Spravochnik proektirovshchika. Stroitel’naya fizika [Reference Book of a Designer. Structural Physics]. Translated from German. Moscow, Tekhnosfera Publ., 2005, 535 p. (Mir stroitel’stva) [The World of Construction] (In Russian)
  20. Petras D., Matej P. The Optimization of the Heat Pump Operation in Low-Temperature Heating Systems. Pap. of REHVA’S General Assembly. 2004, pp. 346—351.
  21. Belyaev N.V., Fursov V.V. O raznoobrazii prichin obrazovaniya povrezhdeniy nesushchikh ograzhdayushchikh konstruktsiy [On the Diversity of the Reasons of Damages of Bearing Enveloping Structures]. Vestnik SibADI [SibADI Journal]. 2013, no. 5 (33), pp. 45—51. (In Russian)
  22. Energetika i energosberezhenie: polozhenie na segodnyashniy den’ i puti dal’neyshego razvitiya [Energy Industry and Energy Saving: the Present-Day State and Ways of Future Development]. Energoeffektivnost’: opyt, problemy, resheniya [Energy Efficiency: Experience, Problems, Solutions]. 2007, no. 1—2, pp. 79—94. (In Russian)

Download

Personalia. Information Messages

Improving the efficiency of urban planning activity as a result of implementing working plans of build-up areas

  • Zhukhovitskiy Grigoriy Mikhaylovich - LLC Company Credo-Dialogue full member, International Transport Academy, Honorary Road Builder of CIS, chairman, Department of Information Technologies in the Construction and Territorial Management of the Federal Intersectoral Board of All-Russian Public Organization “Business Russia”, Chairman of the Management Board, LLC Company Credo-Dialogue, 71-8 Izmaylovskoe shosse, Moscow, 105187, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Karpov Aleksandr Aleksandrovich - LLC Company Credo-Dialogue Development Director, development manager of the software CREDO of engineering-geological aim, LLC Company Credo-Dialogue, 71-8 Izmaylovskoe shosse, Moscow, 105187, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 186-193

In the process of state structure transformation in the Russian Federation in 1990-2010s the legal base was greatly changed. In the process of these changes the issues of topographic plans of the territories indented for building and inter-settlement territories were almost withdrawn from legal and normative-technical regulation. As a result the legal status of city geological services and the accumulated materials the same as the whole activity on topographic plans’ maintenance is now out of the unified legal and normative framework. At the same time old technologies of creating and updating topographic plans is now beneath criticism in terms of effectiveness and quality of the obtained results. The authors consider the problem of creating, updating and use of topographic plans of urban settlements. Brief historical background of the topic is given, the existing information technologies and suggestions on the changes in the regulatory framework of urban development activity are described.

DOI: 10.22227/1997-0935.2016.2.186-193

References
  1. Vasil’ev I.V., Korobov A.V., Pobedinskiy G.G., Pridankin A.B. Topografo-geodezicheskoe i kartograficheskoe obespechenie Rossiyskoy Federatsii. Sostoyanie i perspektivy razvitiya otrasli geodezii i kartografii [Topographic-Geodesic and Cartographic Support of the Russian Federation. State and Development Prospects of the Geodetic Branch and Cartography]. Geodeziya i kartografiya [Geodesy and Cartography]. 2014, no. 12, pp. 2—11. (In Russian)
  2. Kontseptsiya razvitiya otrasli geodezii i kartografii do 2020 g. Utverzhdena Rasporyazheniem Pravitel’stva Rossiyskoy Federatsii ot 17.12.2010 g. № 2378-r [The Concept of Geodesy and Cartography Development up to 2020. Approved by the Decree of the Government of the Russian Federation from 17.12.2010 g. № 2378-r]. (In Russian)
  3. Brovko E.A. Gosudarstvennyy topograficheskiy monitoring: sovremennoe reshenie problemy aktualizatsii prostranstvennykh dannykh [State Topographic Monitoring: Modern Solution to the Problem of Updating Spatial Data]. Geodeziya i kartografiya [Geodesy and Cartography]. 2012, no. 2, pp. 38—46. (In Russian)
  4. Lamert D.A., Portnov A.M. Sovremennye zadachi gosudarstvennogo geodezicheskogo nadzora v strukture territorial’nykh organov Rosreestra [Contemporary Tasks of State Geodesic Control in the Structure of Territorial Bodies of Federal Service for State Registration, Cadastre and Cartography]. Interekspo Geo-Sibir’ : sbornik statey po materialam Mezhdunarodnogo nauchnogo kongressa [Interexpo Geo-Siberia : Collection of the Articles of the International Scientific Congress]. Novosibirsk, 2011, vol. 3, no. 2, pp. 11—16. (In Russian)
  5. Obidenko V.I., Nefedov S.N. Avtomatizatsiya deyatel’nosti territorial’nykh organov gosudarstvennogo geodezicheskogo nadzora. Na puti k postroeniyu informatsionnogo obshchestva [Automation of Territorial Bodies’ Activity of the State Geodesic Control. On the Way to Building Information Society]. Geodeziya i kartografiya [Geodesy and Cartography]. 2009, no. 9, pp. 51—57. (In Russian)
  6. Novoselov D.B., Zvyagintsev E.A. Sozdanie i vedenie tsifrovogo dezhurnogo plana territoriy promyshlennykh predpriyatiy [Creation and Maintenance of Digital Working Plan of Industrial Enterprises’ Territories]. Interekspo Geo-Sibir’ : sbornik statey po materialam Mezhdunarodnogo nauchnogo kongressa [Interexpo Geo-Siberia : Collection of the Articles of the International Scientific Congress]. Novosibirsk, 2012, vol. 1, no. 1—2, pp. 37—41. (In Russian)
  7. Kolobov R.V. Novye tekhnologii vedeniya dezhurnogo plana goroda [New Technologies of Keeping Working City Plan]. Stroykompleks Srednego Urala [Stroykomplex of Middle Ural]. 2010, no. 12 (December). (In Russian)
  8. Silyakova L.V. Tekhnologiya vedeniya tsifrovogo topograficheskogo plana Nizhnego Novgoroda [Technology of Keeping Digital Topographic Plan of Nizhny Novgorod]. Avtomatizirovannye tekhnologii izyskaniy i proektirovaniya [Automated Technologies of Research and Design]. 2011, no. 4 (43), pp. 65—68. (In Russian)
  9. Kontseptsiya sozdaniya i vedeniya topografo-geodezicheskogo monitoringa territoriy poseleniy [Concept of Creating and Maintaining Topographic-Geodesic Monitoring of the Territories of Settlements]. Geoprofi [Geoprofi]. 2013, no. 2, pp. 10—14. (In Russian)

Download