Home Vestnik MGSU Library Vestnik MGSU 2014/11

Vestnik MGSU 2014/11

DOI : 10.22227/1997-0935.2014.11

Articles count - 20

Pages - 187

Dear readers and colleagues! (Editorial article)

  • Ambartsumyan Sergey Aleksandrovich - MonArch Group of Companies doctor of Technical Sciences, Professor, General Director, MonArch Group of Companies, Member of the Editorial Council, Vestnik MGSU, MonArch Group of Companies, .

Pages 5-6

Download

GENERAL PROBLEMS OF CONSTRUCTION-RELATED SCIENCES AND OPERATIONS. UNIFICATION AND STANDARDIZATION IN CIVIL ENGINEERING

Normalization of water flow rate for external fire fighting of the buildings in settlements with zone water supply

  • Deryushev Leonid Georgievich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Associate Professor, Department of Water Supply, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7 (499) 183-36-29; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Deryusheva Nadezhda Leonidovna - Moscow State University of Civil Engineering (MGSU) postgraduate student, Department of Water Disposal and Aquatic Ecology, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7 (499) 183-36-29; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Pham Ha Hai - Moscow State University of Civil Engineering (MGSU) postgraduate student, Department of Water Supply, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 7-13

In the article the requirements for fire safety assurance are justified for the objects, in which water is supplied with account for serial and parallel area zoning. In the process of zoning the district is segregated into such parts, for which head rate in any point of selection of water from network will not exceed 6 bar. In the current regulatory rules the requirements for the calculation of the costs of water points are stated, as well as in case of extinguishing fires at the sites with water-supply systems zones. It is recommended to analyze each zone of the system of water-supply separately, without interrelation with the common water feeders, water consumers and services of fire extinguishing. Such an approach to assign water discharge for fire extinguishing results in the decrease of fire safety of an object, deforms calculation technique of outside systems of water-supply of the similar-type objects located in different parts of the terrain. Taking the number of fires and water consumption for fire suppression by the number of residents in each zone, we thus underestimate the capacity of the pipeline system. It is offered to make changes in Norms and Standards in force on fire safety of settlements. The recommendations on regulation of the number of fires and water flow for fire fighting in residential objects with zoned systems of water-supply are formulated.

DOI: 10.22227/1997-0935.2014.11.7-13

References
  1. Postanovleniya Pravitel’stva RF ot 16 fevralya 2008 g. ¹ 87 «O sostave razdelov proektnoy dokumentatsii i trebovaniy k ikh soderzhaniyu (s izmeneniyami i dopolneniyami) [RF Government Regulation from February, 16, 2008 no. 87 “On Composition of Design Documentation Sections and Requirements to Their Contents (amended and revised)]. Garant : informatsionno-pravovoy portal [Garant: Legislation with Comments]. Available at: http://base.garant.ru/12158997/. Date of access: 22.10.2014. (In Russian).
  2. Federal’nyy zakon ot 22 iyulya 2008 g. ¹ 123-FZ. «Tekhnicheskiy reglament o trebovaniyakh pozharnoy bezopasnost» [Federal Law fron July 22, 2008 no. 123-FZ 2 “Technical Regulations on Fire Safety Requirements”]. Nezavisimaya stroitel’naya ekspertiza [Independent Construction Examination]. Available at: http://files.stroyinf.ru/Data1/53/53446/. Date of access: 22.10.2014. (In Russian).
  3. Zhuchkov V.V., Khorev D.V., Vasil’ev D.V. Normirovanie raskhoda vody na pozharotushenie v g. Moskve [Norms of Water Flow for Fire-Fighting in Moscow]. Tekhnologii tekhnosfernoy bezopasnosti [Safety Technologies in Technosphere]. 2013, no. 3 (49). Available at: http://academygps.ru/img/UNK/asit/ttb/2013-3/21-03-13.ttb.pdf/. Date of access: 22.10.2014. (In Russian).
  4. Brushlinskiy N.N. Sistemnyy analiz deyatel’nosti Gosudarstvennoy protivopozharnoy sluzhby [System Analysis of State Fire-Fighting Service]. Moscow, MIPB MVD RF, «Yuniks» Publ., 1998, 255 p. (In Russian).
  5. Belozerov V.V., Boguslavskiy E.I., Topol'skiy N.G. Model' optimizatsii sotsial›noekonomicheskikh poter' ot pozharov [Optimization Model of Social and Economic Losses as a Result of Fires]. Problemy informatsionnoy ekonomiki. Vypusk VI. Modelirovanie innovatsionnykh protsessov i ekonomicheskoy dinamiki: sbornik nauchykh trudov [Information Economy Problems. Issue 6. Modeling of Information Processes and Economical Dynamics: Collection of Scientific Articles]. Moscow, Lenand Publ., 2006, pp. 226—246. (In Russian).
  6. Terebnev V.V. Spravochnik rukovoditelya tusheniya pozhara [Guidebook for Manager of Fire Extinguishing]. Moscow, Akademiya GPS MChS RF Publ., 2005, 256 p. (In Russian).
  7. Baranov P.P., Belozerov V.V., Vorovich I.I., Kuraev G.A., Panich A.E., Trufanov V.N., Topol’skiy N.G. Metodologiya otsenki i upravleniya bezopasnost’yu tekhnosfery [Estimation and Management Methodology for Fire Safety in Technosphere]. Tekhnosfernaya bezopasnost’ : sbornik materialov VII Vserossiyskoy nauchno-prakticheskoy konferentsii [Technosphere Safety : Collection of the Works of the VII All-Russian Science and Practice Conference]. Rostov on Don, YuRO RAASN (RGSU) Publ., 2002, pp. 67—73. (In Russian).
  8. Brushlinskiy H.H., Vagner P., Sokolov C.B., Kholl D. Mirovaya pozharnaya statistika [World Fire Statistics]. Moscow, AGPS MChS Rossii Publ., 2004, 126 p. (In Russian).
  9. Men’shikh A.V. Obosnovanie obshchego vida avtoregressionnoy modeli dinamiki pozharov [General View Justification for Autoregressive Model of Fire Dynamics]. Chelovek. Priroda. Obshchestvo. Aktual’nye problemy : materialy Mezhdunarodnoy molodezhnoy konferentsii [Human. Nature. Society. Current Problems : Materials of the International Youth Conference]. Voronezh, Nauchnaya kniga Publ., 2012, pp. 68—70. (In Russian).
  10. Trostyanskiy S.N., Shutkin A.N., Bakaeva G.A. Ekonomicheskiy podkhod k prognozirovaniyu pozharnykh riskov na ob”ektakh razlichnykh form sobstvennosti [Economical Approach to Fire Risks Forecast on the Objects of Different Ownership Types]. Vestnik Voronezhskogo instituta GPS MChS Rossii [Proceedings of Voronezh Institute of State Fire Safety Service of the Ministry of Emergency Situations of Russia]. 2011, no. 1, pp. 27—29. (In Russian).
  11. Hutson A.C. Water Works Requirements for Fire Protection. Journal of the American Water Works Association. 1948, vol. 40, no. 9, pp. 936—940.
  12. Davis S.K. Fire Fighting Water: A Review of Fire Fighting Water Requirements. A New Zealand Perspective. Fire Engineering Research Report 2000/3, 2000, 110 p.
  13. Benfer M.E., Scheffey J.L. Evaluation of Fire Flow Methodologies. Fire Protection Research Foundation, January 2014, 57 p.
  14. Hadjisophocleous G.V., Richardson J.K. Water Flow Demands for Firefighting. Fire Technology. Manufactured in The United States, July 2005, vol. 41, no. 3, pp. 173—191. DOI: http://dx.doi.org/10.1007/s10694-005-1269-6.
  15. American Water Works Association. Distribution System Requirements for Fire Protection. Denver, CO : American Water Works Association, 1998, 63 p.
  16. Abramov N.N. Nadezhnost’ sistem vodosnabzheniya [Reliability of Water Supply Systems]. Moscow, Stroyizdat Publ., 1979, 231 p. (In Russian).
  17. Il’in Yu.A. Raschet nadezhnosti podachi vody [Reliability Calculation of Water Supply]. Moscow, Stroyizdat Publ., 1987, 320 p. (In Russian).
  18. Gnedenko B.V., Belyaev Yu.K., Solov’ev A.D. Matematicheskie metody v teorii nadezhnosti [Mathematical Methods in Reliability Theory]. Moscow, Nauka Publ., 1965, 524 p. (In Russian).
  19. Barlow R.E., Proschan F. Mathematical Theory of Reliability (Classics in Applied Mathematics). 1987, Society for Industrial and Applied Mathematics, 274 p.
  20. Bazovsky I. Reliability Theory and Practice (Dover Civil and Mechanical Engineering). Dover Publications, 2004, 304 p.

Download

ARCHITECTURE AND URBAN DEVELOPMENT. RESTRUCTURING AND RESTORATION

Problems of conservation and modern use of country manorial estates

  • Aksenova Irina Vasil’evna - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Associate Professor, Department of Architecture of Civil and Industrial Buildings, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Klavir Elizaveta Viktorovna - Moscow State University of Civil Engineering (MGSU) Master student, Department of Architecture of Civil and Industrial Buildings, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 14-25

Russian manorial estate, the importance of which for the Russian culture can scarcely be exaggerated, is an original and many-sided phenomenon, in which all socio-economic, historical and cultural processes of Russia are focused. Having come into being as dwelling and house-hold complexes, the estates gradually formed cultural framework of Russia in the period from the middle 18th to the end of 19th centuries. In connection with changing social conditions taking place in the 20th century and the loss of their primary meaning only the small part of the estates is conserved today and we are standing at the edge of loosing this invaluable layer of our cultural heritage. In recent years the attempts to revise our history have given positive improvement of public treatment of our historical and architectural heritage. As a result the public interest to the national phenomenon of estates provoked strong impulse to study and to accumulate information about them, but unfortunately did not answer the question how to use this heritage under present-day conditions. The legislation changes recently and the creation of programs and nonstate charitable funds give the hope for the positive improvement in the reconstruction of estates and involving them in the contemporary life. Possible variants of usage of historical settlements as well as estate and park complexes having the great scientific and cognitive and architectural value are considered. The revival of the historical estates together with the national cultural traditions is still not developed enough, but it is an inexhaustible source for the economical and cultural development of Russian regions.

DOI: 10.22227/1997-0935.2014.11.14-25

References
  1. Komech A.I. Pravovaya situatsiya v oblasti okhrany arkhitekturnogo naslediya [The Legal Situation in the Sphere of Preservation of Architectural Heritage] // Okhrana i restavratsiya arkhitekturnogo naslediya Rossii. Organizatsionno-pravovye i ekonomicheskie problemy : materialy Vserossiyskoy konferentsii [Conservation and Restoration of Russian Architectural Heritage. Management, Juridical and Economical Problems : Materials of All-Russian Conference]. Moscow, Informatsionno-izdatel'skiy otdel RAASN, 2000, p. 24. (In Russian).
  2. Chizhkov A.B. Podmoskovnye usad’by. Annotirovannyy katalog s kartoy raspolozheniya usad’b 3rd edition, revised and enlarged. Moscow, Non-profit Partnership “Russkaya Usad’ba” Publ. [Moscow-area Estates. The Annotated Catalogue with the Map of Estates Locations]. Moscow, Russkaya usad’ba Publ., 2006, 280 p. (In Russian).
  3. Chekmarev A.V. Arkhitekturnoe nasledie Rossii: pervoe desyatiletie XXI veka [The Architectural Heritage of Russia: the First Decade of the XXI Century]. Arkhitektura izmenyayushcheysya Rossii. Sostoyanie i perspektivy [The Architecture of Changing Russia. The Present State and Perspectives]. Moscow, KomKniga Publ., 2010, pp. 238—263. (In Russian).
  4. Neuzheli polozheno nachalo vozrozhdeniyu dvoryanskikh usadeb? [Has Really the Revival of Country Estates Begun?]. Planeta Dorog. Entsiklopediya puteshestviy [Planet of Roads. Travel Encyclopaedia]. Available at: http://www.roadplanet.ru/home/news/1033/. Date of access: 13.04.2014. (In Russian).
  5. Shvidkovskiy O.I. Ispol’zovanie pamyatnikov kak glavnoe uslovie ikh sokhraneniya [Usage of Cultural Monuments as the Main Condition of their Preservation] // Problemy okhrany i sovremennogo ispol'zovaniya pamyatnikov arkhitektury : materialy Mezhdunarodnogo kollokviuma IKOMOS ESSR, Tallin, 4—7 iyunya 1985 goda [Problems of Conservation and Modern Use of Architectural Monuments : Materials of International Colloquium IKOMOS ESSR, Tallin, June 4—7, 1985]. Tallin, Valgus, 1987, pp. 68—72. (In Russian).
  6. Venok russkikh usadeb [Wreath of Russian Estates]. Web site of the Touristic Program of Moscow. Available at: http://www.varna-gazoil.ru/Venok-russkih-usadeb.html. Date of access: 06.03.2014. (In Russian).
  7. Toporina V.A. Rol’ usadebnykh kompleksov v formirovanii kul’turnykh landshaftov [The Role of Estate Complexes in Forming of Cultural Landscapes]. Problemy regional’noy ekologii [Problems of the Regional Ecology]. 2011, no. 3, pp. 195—203. (In Russian).
  8. Proekty i programmy [Projects and Programs]. Natsional'nyy fond Vozrozhdenie russkoy usad'by [National Foundation Revival of the Russian Estate]. Available at: http://www.fondus.ru/projects/. Date of access: 06.03.2014. (In Russian).
  9. Dulenkova A. Spasti ryadovuyu usad’bu [Saving Private Estate]. Russian Business Consulting. 18.11.2013. Available at: http://rbcdaily.ru/market/562949989622775/. Date of access: 06.03.2014. (In Russian).
  10. Kuzina A. Komu "usad’bu za rubl’"? [Who Wants to Buy "Estate for One Ruble"?]. Moskovskiy komsomolets [Moscow Komsomol Member]. November 7, 2013. Available at: http://www.mk.ru/mosobl/article/2013/11/07/942314-komu-usadbu-za-rubl.html. Date of access: 02.04.2014. (In Russian).
  11. Khronika OIRU [Chronicle of the Society of Russian Estate Investigation]. Obshchestva izucheniya russkoy usad’by [Society of Russian Estate Investigation]. Available at: http://oiru.org/oiru.html. Date of access: 26.05.14. (In Russian).
  12. Krasnobaev I.V. K voprosu o sovremennom ispol’zovanii sel’skikh dvoryanskikh usadeb. Opyt Velikobritanii [To the Question of the Present-usage of Country Family Estates]. Izvestiya Kazanskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta [News of Kazan State University of Architecture and Engineering]. 2008, no. 2 (10), pp. 28—32. (In Russian).
  13. Darley G. A Future for Farm Buildings. London: SAVE Britain`s Heritage. 1988, 88 p.
  14. Oynas D. Usad’ba — proshloe v nastoyashchem [Estate — the Past in the Present. Natsional'nyy fond Vozrozhdenie russkoy usad'by [National Foundation Revival of the Russian Estate]. Available at: http://www.fondus.ru/manors. Date of access: 26.04.14. (In Russian).
  15. Kontseptsiya razvitiya turizma v Moskovskoy oblasti [The Concept of Tourism Development in the Moscow Region]. Ministry of Cultural Affairs of Moscow Region]. Available at: http://old.mk.mosreg.ru/min_projects/2077.html. Date of access: 31.03.2014. (In Russian).
  16. Aksenova I.V. Podmoskovnaya usad’ba Demidovykh Almazovo-Sergievskoe. Istoriya «sela Sergievskogo, Almazovo tozh» [The Demidovs› Estate Almazovo-Sergievskoe in Moscow Region. The History of «Sergievskoe Village or Almazovo»]. Russkaya usad'ba: sbornik obshchestva izucheniya russkoy usad›by [Russian Estate: the Collection of the Society of Russian Estates Investigation]. SPb, Kolo Publ., 2013, no. 18 (34), pp. 397—436. (In Russian).
  17. Aksenova I.V. Reconstruction of the Building History of the Demidovs’ Estate “Almazovo” Situated near Moscow. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2014, no. 3, pp. 36—49. (In Russian).

Download

DESIGNING AND DETAILING OF BUILDING SYSTEMS. MECHANICS IN CIVIL ENGINEERING

Experimental and theoretical studies into the stress-strain state of the purlin supported by sandwich panels

  • Danilov Aleksandr Ivanovich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Associate Professor, Department of Metal Structures, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Tusnina Ol’ga Aleksandrovna - Moscow State University of Civil Engineering (MGSU) postgraduate student, Department of Metal Structures, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 26-36

In the article, the co-authors analyze the findings of the experimental and theoretical studies into the real behaviour of a thin-walled cold-formed purlin as part of the roof structure made of sandwich panels. The roof structure fragment was tested; displacements and stresses, that the purlin was exposed to, were identified in respect of each loading increment. NASTRAN software was employed to perform the numerical analysis of the roof structure, pre-exposed to experimental tests, in the geometrically and physically non-linear setting. The finite element model, generated as a result (the numerical analysis pattern), is sufficiently well-set, given the proposed grid of elements, and it ensures reasonably trustworthy results. The diagrams describing the stress/displacement to the load ratio and obtained numerically are consistent with those generated experimentally. The gap between the critical loading values reaches 4%. Analytical and experimental findings demonstrate their close conformity, and this fact may justify the application of the numerical model, generated within the framework of this research project, in the course of any further research actions. The co-authors have identified that the exhaustion of the bearing capacity occurs due to the loss of the buckling resistance as a result of the lateral torsional buckling.

DOI: 10.22227/1997-0935.2014.11.26-36

References
  1. Georgescu M. Distortional Behavior of Z Purlins Continuously Connected to Sandwich Panel Roofs. Proceedings of International Conference “Steel — a New and Traditional Material For Building”. Brasov, 2006, 143—148 p.
  2. Joo A.L. Analysis and Design of Cold-Formed Thin-Walled Roof Systems. PhD Dissertation, Budapest, 2009, 107 p.
  3. Ayrumyan E.L. Osobennosti rascheta stal’nykh konstruktsiy iz tonkostennykh gnutykh profiley [Features of Calculating Steel Structures of Thin-Walled Formed Sections]. Montazhnye i spetsial’nye raboty v stroitel’stve [Erection and Special Works in Construction]. 2008, no. 3, pp. 2—7. (In Russian).
  4. Ayrumyan E.L. Rekomendatsii po raschetu stal’nykh konstruktsiy iz tonkostennykh gnutykh profiley [Recommendations on Calculating Steel Structures of Thin-Walled Formed Sections]. StroyPROFIl’ [Construction Profile]. 2009, no. 8 (78), pp. 12—14. (In Russian).
  5. Ayrumyan E.L., Galstyan V.G. Issledovanie deystvitel’noy raboty tonkostennykh kholodnognutykh progonov iz otsinkovannoy stali [Investigation of the Actual Work of Thin-Walled Cold-Formed Beams of Galvanised Steel]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. 2002, no. 6, pp. 31—34. (In Russian).
  6. Luza G., Robra J. Design of Z-purlins: Part 1. Basics and Cross-section Values According to EN 1993-1-3. Proceedings of the 5th European Conference on Steel and Composite Structures EUROSTEEL. Graz, Austria, 2008, vol. A, pp. 129—134.
  7. Luza G., Robra J. Design of Z-purlins: Part 2. Design Methods Given in Eurocode EN 1993-1-3. Proceedings of the 5th European Conference on Steel and Composite Structures EUROSTEEL. Graz, Austria, 2008, vol. A, pp. 135—140.
  8. EN 1993-1-1:2009 Eurocode 3: Design of Steel Structures — Part 1-1: General Rules and Rules for Buildings. Available at: http://www.eurocodes.fi/1993/1993-1-1/SFS-EN1993-1-1-AC.pdf/. Date of access: 27.07.2014.
  9. Gardner L., Neterkot D.A. Rukovodstvo dlya proektirovshchikov k evrokodu 3: proektirovanie stal’nykh konstruktsiy EN 1993-1-1,1993-1-3, 1993-1-8 [Guidance for Designers to Eurocode 3: Design of Steel Structures EN 1993-1-1,1993-1-3, 1993-1-8]. Moscow, MISIMGSU Publ., 2013, 224 p. (In Russian).
  10. Young-Lin P., Put B.M., Trahair N.S. Lateral Buckling Strength of Cold-Formed Steel Z-Section Beams. Thin-Walled Structures. 1999, vol. 34, no. 1, pp. 65—93.
  11. Chu X., Rickard J., Li L. Influence of Lateral Restraint on Lateral-torsional Buckling of Cold-formed Steel Purlins. Thin-Walled Structures. 2005, vol. 43, no. 5, pp. 800—810. DOI: http://dx.doi.org/10.1016/j.tws.2004.10.012.
  12. Chu X., Ye Z., Kettle R., Li L. Buckling Behavior of Cold-formed Channel Sections under Uniformly Distributed Loads. Thin-Walled Structures. 2005, vol. 43, no. 4, pp. 531—542. DOI: http://dx.doi.org/10.1016/j.tws.2004.10.002.
  13. Duerr M., Misiek T., Saal H. The Torsional Restraint of Sandwich-panels to Resist the Lateral Torsional Buckling of Beams. Steel Construction. 2011, vol. 4, no. 4, pp. 251—258. DOI: http://dx.doi.org/10.1002/stco.201110033.
  14. Li L.Y. Lateral-torsional Buckling of Cold-formed Zed-purlins Partial-laterally Restrained by Metal Sheeting. Thin-Walled Structures. 2004, vol. 42, no. 7, pp. 995—1011.
  15. Seek M.W., Murray T.M. Mechanics of Lateral Brace Forces in Z-purlin Roof Systems. Conference Proceedings, Structural Stability Research Council Annual Stability Research Council. Rolla, Missouri, 2005, pp. 56—76.
  16. Albermani F.G.A., Kitipornchai S. Cold-formed purlin-sheeting systems. Proceedings of the Third International Conference on Advances in Steel Structures. Hong Kong, China, 2002, pp. 429—435.
  17. Lucas R.M., Albermani F.G.A., Kitiporchai S. Modelling of Cold-Formed Purlin-Sheeting Systems — Part 1: Full Model. Thin-Walled Structures. 1997, vol. 27, no. 4, pp. 223—243. DOI: http://dx.doi.org/10.1016/S0263-8231(96)00038-9.
  18. Rzeszut K., Czajkowski A. Laterally Braced Thin-walled Purlins in Stability Problems. Proceedings of the Conference Computer Methods in Mechanics. 2011. Available at: http://www.cmm.il.pw.edu.pl/cd/pdf/202.pdf/. Date of access: 27.07.2014.
  19. Vrany T., Braham M., Belica A. Restraint of Purlins for Various Roof Systems. 11th Nordic Steel Construction Conference NSCC. 2009, pp. 422—429.
  20. Kujawa M., Werochowski W., Urba?ska-Galewska E. Restraining of the Cold-formed Z-purlins with Sandwich Panels. Final Report. Gdansk, Poland, 2008, 126 p.
  21. Shimkovich D.G. Raschet konstruktsiy v MSC/NASTRAN for Windows [Calculation of Structures in MSC/NASTRAN for Windows]. Moscow, DMK Press, 2001, 448 p. (In Russian).

Download

Essential FEM statements applied to structural mechanics problems. Part 1

  • Ignat’ev Aleksandr Vladimirovich - Volgograd State University of Architecture and Civil Engineering (VSUACE) Candidate of Technical Sciences, Associate Professor, Department of Structural Mechanics, Volgograd State University of Architecture and Civil Engineering (VSUACE), 1 Akademicheskaya str., Volgograd, 400074, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 37-57

In the article, the author shares his classification of FEM statements that may serve as a guide in respect of the huge number of works that are published and being published with a view to the FEM efficiency improvement. The author provides a summarized history of the finite element method, and classifies its configurations and versions. The author also provides FEM statements applicable to the deflection method. Derivation of the rigidity matrix designated for shaft-based finite elements is demonstrated in the article. The author employs one-dimensional framing as an example aimed to demonstrate the convergence of the FEM method in terms of deflections, if the finite element grid is refined. However it is also noteworthy that in the event of a fine grid, the finite element designed for plates does not coincide with the finite element of a thin plate designed as the initial physical model. However, the system of equations, provided by the author, takes account of the influence produced by the load onto the finite element and generates the exact solution irrespective of any finite values of the length that are equal to the physical model of a finite element.

DOI: 10.22227/1997-0935.2014.11.37-57

References
  1. Ignat’ev V.A., Ignat’ev A.V., Zhidelev A.V. Smeshannaya forma metoda konechnykh elementov v zadachakh stroitel’noy mekhaniki [Mixed Form of Finite Element Method in Problems of Structural Mechanics]. Volgograd, VolgGASU Publ., 2006, 172 p. (In Russian).
  2. Hrennikoff A. Solution of problems in elasticity by the framework method. J. Appl. Mech. 1941, no. 8. Ser. A., pp. 169—175.
  3. McHenry D.A. Lattice Anthology of the Solution of Plane Stress Problems. J. Inst. Civ. Eng. 1943, no. 21, pp. 59—82.
  4. Newmark N.M. Numerical Methods of Analysis in Bars, Plates, and Elastic Bodies, "Numerical Methods in Analysis in Engineering". Ed. L.E. Grinter. Macmillan, 1949, pp. 313—344.
  5. Courant R. Variational Methods for the Solution of Problems of Equilibrium and Vibrations. Bull. Amer. Math. Soc. 1943, vol. 49, pp. 1—23. DOI: http://dx.doi.org/10.1090/S0002-9904-1943-07818-4.
  6. Turner M.J., Clough R.W., Martin H.C., Topp L.J. Stiffness and Deflection Analysis of Complex Structures. J. Aero. Sci. 1956, vol. 23, no. 9, pp. 805—824.
  7. Clough R.W. The Finite Element Method in Plane Stress Analysis. Proceedings of 2nd ASCE Conf. on Electronic Computation. Pittsburg, 1960.
  8. Argyris J.H. Energy Theorems and Structural Analysis. Aircraft Engineering. 1954, no. 26, pp. 347—356.
  9. Argyris J.H., Kelsey S. Energy Theorems and Structural Analysis. Butterwirth, London, 1960, 346 p.
  10. Argyris J. Triangular Elements with Linearly Varying Strain for the Matrix Displacement Method. J. Royal Aero. Sci. Tech. 1965, note 69, 711—713.
  11. Argyris J. Matrix Analysis of Three-dimensional Elastic Media — Small and Large Displacements. AIAA. 1965, vol. 3, no. 1, pp. 45—51. DOI: http://dx.doi.org/10.2514/3.2786.
  12. Oden J.T. Finite Elements on Nonlinear Continua. McGraw-Hill, New York, 1972.
  13. Oden J.T. A General Theory of Finite Elements. Int. J. Num. Eng. 1969, no. 1, pp. 205—226, 247—260.
  14. Oden J.T., Reddy J.N. Some Observation on Properties of Certain Mixed Finite Element Approximations. Int. J. Numer. Meth. Eng. 1975, vol. 9, no. 4, pp. 933—938. DOI: http://dx.doi.org/10.1002/nme.1620090412.
  15. Melosh R. Basis for Derivation of Matrices by the Direct Stiffness Method. AIAA J. 1963, vol. 1, no. 7, pp. 1631—1637.
  16. Fraeijs de Veubeke B., Sander G. An Equilibrium Model for Plate Bending. International J. Solids and Structures. 1968, vol. 4, no. 4, pp. 447—468. DOI: http://dx.doi.org/10.1016/0020-7683(68)90049-8.
  17. Jones R.E. A Generalization of the Direct-stiffness Method of Structural Anaysis. AIAA J. 1964, vol. 2, no. 5, pp. 821—826. DOI: http://dx.doi.org/10.2514/3.2437.
  18. Zienkiewicz O.C., Cheung Y.K. The Finite Element Method in Structural and Continuum Mechanics. London, McGraw-Hill Book Company; First Edition, 1967, 274 p.
  19. Rozin L.A. Sterzhnevye sistemy, kak sistemy konechnykh elementov [Frame Structures as Systems of Finite Elements]. Leningrad, Leningrad State University Publ., 1976, 232 p. (In Russian).
  20. Rozin L.A. Metod konechnykh elementov v primenenii k uprugim sistemam [FEM in Application to Elastic Systems]. Moscow, Stroyizdat Publ., 1977, 128 p. (In Russian).
  21. Postnov V.A., Kharkhurim I.Ya. Metod konechnykh elementov v raschetakh sudovykh konstruktsiy [FEM in Calculation of Ship Structures]. Leningrad, Sudostroenie Publ., 1974, 344 p. (In Russian).
  22. Strang G., Fix G. The Theory of Finite Element Method. Transl. into Russian. Moscow, Mir Publ., 1977, 350 p.
  23. Strang G. and Fix G. An Analysis of the Finite Element Method. Prentice-Hall, Englewood Cliffs, N. J., 1973.
  24. Zienkiewicz O.C. The Finite Element Method — from Intuition to Generality. Appl. Mech. Rev., 1970, 23, 249—256.
  25. Felipa C. Refined finite element analysis of linear and non-linear two-dimensional structures. Univ. of California, Berkeley, str. Eng. Lab., Rep. SESM 66-22, 1966, 212 p.
  26. Adini A., Clough R. Analysis of Plate Bending by the Finite Element Method, Rept. To National Sci. Foundation, 1960.
  27. Herrmann L.R. Elasticity Equations for Incompressible and Nearly Incompressible Materials by a Variational Theorem. AIAA J. 1965, vol. 3, no. 10, pp. 1896—1900. DOI: http://dx.doi.org/10.2514/3.3277.
  28. Herrmann L. A Bending Analysis for Plates. Proc. Conf. Matrix. Meth. Str. Mech. Wright Patterson AFB, Ohio, 1965.
  29. Herrmann L. Finite element bending analysis of plates. ASCE 93, No. EM5, 1967.
  30. Adini A. Analysis of Shell Structures by the Finite Element Method. Ph. D. Dis. Dept. Civil Eng. Univ. of California, Berkeley, 1961.
  31. Bogner F., Fox R., Schmit L. A Cylindrical Shell Discrete Element. AIAA. 1967, vol. 5, no. 4, pp. 745—750. DOI: http://dx.doi.org/10.2514/3.4056.
  32. Irons B.M., Zienkiewicz O.C. The Isoparametric Finite Element System — a New Concept in Finite Element Analysis. In Proc. Conf.: Recent Advances in Stress Analysis. Royal Aeronautical Society London, 1969.
  33. Clough R. Comparison of Three-Dimensional Finite Elements. Symp. Application of FEM in Civil Eng. Nashville, Ten. 1969, pp. 1—26.
  34. Pian T., Tong P. Basis for Finite Element Methods for Solid Continua. Int. J. Num. Meth. Eng. 1969, vol. 1, no. 1, pp. 3—28. DOI: http://dx.doi.org/10.1002/nme.1620010103.
  35. Atluri S., Tong P., Murakava H. Recent Studies in Hybrid and Mixed Finite Element Methods in Mechanics. Conf. Hybrid and Mixed M. John Wiley, 1983, pp. 51—71.
  36. Prato C. A Mixed Finite Element Method for Thin Shell Analysis. Ph. D. Th. Dept. Civil Eng. MIT, 1968.
  37. Connor J., Will D. A mixed finite element shallow shell formulation. Matrix Meth. Str. Anal. Design. Univ. Alabama, 1971, pp. 105—137.
  38. Poceski A. From Deformation to Mixed and Hybrid Formulation of the Finite Element Method. J. Theor. App. Mechanics, Yug. Society of Mechanics. Belgrade, 1979, no. 5.
  39. Poceski A., Simonee V. Metodot na koneeni elementi i hegovata primena. Gradezen fakultet, Skopje, 1972.
  40. Poceski A. A mixed finite element method for bending of plates. Int. J. Num. Meth. Eng. 1975, vol. 9, no. 1, pp. 3—15. DOI: http://dx.doi.org/10.1002/nme.1620090102.
  41. Poceski A. Meovit metod na koneni elementi (111). 12 Jug. Kon. Teor. Prim. Mehanike, Ohrid, 1974.
  42. Brezzi F., Douglas J., Marini L.D. Two Families of Mixed Finite Elements for Second Order Elliptic Problems. Numer. Math. 1985, vol. 47, pp. 217—235. DOI: http://dx.doi.org/10.1007/BF01389710.
  43. Brezzi F., Douglas J., Fortin M., Marini L.D. Efficient Rectangular Mixed Finite Elements in Two and Three Space Variables. RAIRO Mod`el. Math. Anal. Numer. 1987, vol. 21, no. 4, pp. 581—604.
  44. Maslennikov A.M. Raschet stroitel’nykh konstruktsiy chislennymi metodami [Calculation of Building Structures by Numerical Method]. Leningrad, LGU Publ., 1987, 224 p. (In Russian).
  45. Belkin A.E., Gavryushkin S.S. Raschety plastin metodom konechnykh elementov [Calculation of Plates by Finite Element Method]. Moscow, MGTU named after N.E. Baumana Publ., 2008, 232 p. (In Russian).
  46. Visser V. Uluchshennyy variant diskretnogo elementa smeshannogo tipa plastiny pri izgibe [Improved Variant of the Discreet Element of Mixed Type of a Plate at Bending]. Raketnaya tekhnika i kosmonavtika [Rocket Enineering and Space Technologies]. 1969, no. 9, pp. 172—174. (In Russian).
  47. Ayad R., Dhatt G., Batoz J.L. A New Hybrid-mixed Variational Approach for Reissner-Mindlin plates. The MiSP model. International J. for Numerical Methods in Engineering. 1998, vol. 42, no. 7, pp. 1149—1179. DOI: http://dx.doi.org/10.1002/(SICI)1097-0207(19980815)42:7<1149::AID-NME391>3.0.CO;2-2
  48. Nedelec J.C. Mixed Finite Elements in R3. Numerische Mathematik, September 1980, 35(3), pp. 315—341.
  49. Poceski A. Mixed Finite Element Method. Springer-Verlag Berlin Heidelberg, 1992, 356 p.
  50. Sekulovich M. Metod konechnykh elementov [Finite Element Method]. Translation from Serbian. Moscow, Stroyizdat Publ., 1993, 664 p.
  51. Bathe K.-J., Wilson E.L. Numerical Methods in Finite Element Analysis. New Jersey, Prentice-Hall, 1976, 528 p.
  52. Bathe K.-Yu. Metody konechnykh elementov [Finite Elements Methods]. Transl. Into Russian. Moscow, FIZMATLIT Publ., 2010, 1024 p.
  53. Bathe K.J. Finite Element Procedures. Prentice Hall, Englewood Cliffs, 1996, 1036 p.
  54. Bathe K.J., Wilson E.L. Numerical Methods in Finite Element Analysis. Prentice-Hall Inc., New Jersey, 1976.
  55. Vasidzu K. Variatsionnye metody v teorii uprugosti i plastichnosti [Variation Methods in Plasticity Theory]. Moscow, Mir Publ., 1987, 542 p. (In Russian).
  56. Gallager R. Metod konechnykh elementov. Osnovy [Finite Element Method. Basics]. Moscow, Mir Publ., 1984, 428 p. (In Russian).
  57. Zenkevich O.K., Morgan K. Konechnye elementy i approksimatsiya [Finite Elements and Approximation]. Moscow, Mir Publ., 1986, 318 p. (In Russian).
  58. Morrey D.O. O skhodimosti resheniy v metode konechnykh elementov [On Solutions’ Convegence in Finite Element Method]. Raketnaya tekhnika i kosmonavtika [Rocket Enineering and Space Technologies]. 1970, no. 4, pp. 112—114. (In Russian).
  59. Bazeley G.P., Cheung Y.K., Irons B.M., Zienkiewicz O.C. Triangular Elements in Plate Bending — Conforming and Non-conforming Solutions. Proc. Conf. On Matrix Methods in Structural Mechanics. Air Force Inst. of Tech., Wright Patterson A. F. Base, Ohio, 1965, pp. 547—576.
  60. Marchuk G.I., Agoshkov V.I. Vvedenie v proektsionno-setochnye metody [Introduction into Projective Grid Methods]. Moscow, Nauka Publ., 1981, 416 p. (In Russian).
  61. Zenkevich O.K. Metod konechnykh elementov v tekhnike [Finite Element Method in Technology]. Transl. into Russian. Moscow, Mir Publ., 1975, 541 p.
  62. Ignat’ev V.A. Metod konechnykh elementov v zadachakh stroitel’noy mekhaniki [Finite Element Method in Problems of Structural Mechanics]. Saratov, Saratov University Publ., 1980, 87 p. (In Russian).
  63. Chuvikovskiy V.S. Chislennye metody raschetov v stroitel’noy mekhanike korablya [Numerical Calculation Methods in Structural Mechanics of Ships]. Leningrad, Sudostroenie Publ., 1976, 376 p.

Download

Behaviour of high stretch bolts in tension working as part of elements of steel structures, and their tendency to delayed fracturing

  • Moyseychik Evgeniy Alekseevich - Novosibirsk State Universityof Architecture and Civil Engineering (NSUACE (Sibstrin)) Candidate of Technical Sciences, Associate Professor, Doctoral Student, Department of Metal and Wooden Structures, Novosibirsk State Universityof Architecture and Civil Engineering (NSUACE (Sibstrin)), 113 Leningradskaya str., Novosibirsk, 630008, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 58-67

In the article, the author has proven that manufacturing and installation errors, as well as contact deformations of high strength bolts, if analyzed as part of tensile connections of steel structures, work in eccentric tension. In pursuance of the effective state standards, the analysis of these bolts is based on the axial tension. The author has analyzed the failure of a steel structure, caused by the fracture of eccentrically loaded bolts made of steel grade XC 42 (France), or C40 (Germany), that later followed the delayed fracturing pattern. The author provides the findings of the lab tests, whereby the above bolts were tested in the presence of an angle washer. The author has also analyzed the findings of low-temperature tests of bolts in tension. The author demonstrates that the strength of high strength bolts is driven by the material, the structure shape, and the thermal treatment pattern. Eccentric tension tests of bolts have proven that cracks emerge in the areas of maximal concentration of stresses (holes in shafts, etc.) that coincide with the areas where fibers are in tension; cracks tend to follow the delayed fracturing pattern, and their development is accompanied by the deformation-induced metal heating in the fracture area. Therefore, the analysis of high strength bolts shall concentrate on the eccentric tension with account for contact-induced loads, while the tendency to delayed fracturing may be adjusted through the employment of both metallurgical and process techniques.

DOI: 10.22227/1997-0935.2014.11.58-67

References
  1. Augustin Ya., Shledzevskiy E. Avarii stal'nykh konstruktsiy [Accidents on Steel Structures]. Translated from Polish. Moscow, Stroyizdat Publ., 1978, 183 p. (In Russian).
  2. Katyushin V.V. Zdaniya s karkasami iz stal'nykh ram peremennogo secheniya (raschet, proektirovanie, stroitel'stvo) [Building with Steel Frames of Variable Cross Section (Calculation, Design, Construction)]. Moscow, Stroyizdat Publ., 2005, 656 p. (In Russian).
  3. SP 16.13330.2011. Stal'nye konstruktsii. Aktualizirovannaya redaktsiya SNiP II-23—81* [Requirements SP 16.13330.2011. Steel Structures. The Updated Edition of Construction Rules SNIP II-23—81*]. Minregion Rossii [Ministry of Regional Development of Russia]. Moscow, OAO «TsPP» Publ., 2011, 178 p. (In Russian).
  4. Moyseychik E.A. Avarii sooruzheniy i ikh uchet pri nauchnom i normativnom obespechenii mostostroeniya [Crash of Structures and Accounting for Them in the Scientific and Regulatory Provision of Bridge Construction]. Avtomobil'nye dorogi i mosty [Highways and Bridges]. 2010, no. 1(5), pp. 109—114. (In Russian).
  5. Goritskiy V.M., Khromov D.P. Kachestvo i ekspluatatsionnaya nadezhnost' vysokoprochnykh boltov iz stali 40Kh «selekt» [Quality and Operational Reliability of High-strength Bolts of 40 "Select" Steel]. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering]. 1999, no. 5, pp. 21—22. (In Russian).
  6. Goritskiy V.M., Guseva I.A., Sotskov N.I., Kulemin A.M. Ustanovlenie prichiny razrusheniya vysokoprochnykh boltov M30 klassa prochnosti 12.9 importnogo proizvodstva [Determining Destruction Causes of Imported High-Strength Bolts M30 of 12.9 Strength Class]. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering]. 2009, no. 5, pp. 21—24. (In Russian).
  7. Fridman Ya.B. Mekhanicheskie svoystva metallov : v 2-kh chastyakh. Ch. 2. Mekhanicheskie ispytaniya. Konstruktsionnaya prochnost' [Mechanical Properties of Metals. In 2 parts. 3rd edition, revised and enlarged. Part 2. Mechanical Tests. Structural Strength]. Moscow, Mashinostroenie Publ., 1974, 368 p. (In Russian).
  8. Potak Ya.M. Khrupkie razrusheniya stali i stal'nykh izdeliy [Brittle Fracture of Steel and Steel Products]. Moscow, Oborongiz Publ., 1955, 389 p. (In Russian).
  9. Sil'vestrov A.V., Chibryakov G.G., Moyseychik E.A. Prochnost' boltov uzlovykh sopryazheniy strukturnykh konstruktsiy tipa «MArkhI» pri nizkikh temperaturakh [Strength Bolts for Interface Structural Designs of "MArkhI" Type at Low Temperatures]. Nadezhnost' konstruktsiy v ekstremal'nykh usloviyakh : sbornik nauchnykh trudov [Reliability of Structures under Extreme Conditions : Collection of Scientific Articles]. Yakutsk, YaGU Publ., 1984, pp. 77—82. (In Russian).
  10. Biryulev V.V. Proektirovanie metallicheskikh konstruktsiy [Design of Metal Structures]. Leningrad, Stroyizdat Publ., 1990, 432 p. (In Russian).
  11. Lakhtin Yu.M. Metallovedenie i termicheskaya obrabotka metallov [Metallurgy and Heat Treatment of Metals]. 3rd edition. Moscow, Metallurgiya Publ., 1983, 360 p. (In Russian).
  12. Krutikova I.A., Panfilova L.M., Smirnov L.A. Issledovanie sklonnosti k zamedlennomu razrusheniyu vysokoprochnykh boltovykh staley, mikrolegirovannykh vanadiem i azotom [Investigation of Susceptibility to Delayed Fracture of High-strength Bolting Steels Microalloyed with Vanadium and Nitrogen]. Metallurg [Steel Worker]. 2010, no. 1, pp. 59—64. (In Russian).
  13. Chertov V.M. Tsinkovanie — odna iz prichin vodorodnoy khrupkosti vysokoprochnoy stali [Galvanizing — One of the Reasons of Hydrogen Embrittlement of High Strength Steel]. Tekhnologiya mashinostroeniya [Engineering Technology]. 2006, no. 2, pp. 11—14. (In Russian).
  14. Filippov G.A. Zakonomernosti yavleniya zamedlennogo razrusheniya vysokoprochnykh staley i sposoby povysheniya treshchinostoykosti stal'nykh izdeliy [Regularities of the Phenomenon of Delayed Fracture of High Strength Steels and Ways to Improve the Fracture Toughness of Steel Products]. Thesis of the Doctor of Technical Sciences. Moscow, TsNIIChM im. I.P. Bardina Publ., 1989, 43 p. (In Russian).
  15. Mishin V.M. Strukturno-mekhanicheskie osnovy lokal'nogo razrusheniya konstruktsionnykh staley : monografiya [Structural and Mechanical Bases of Local Fracture of Structural Steels: Monograph]. Pyatigorsk, Spetspechat' Publ., 2006, 226 p.
  16. Mishin V.M., Filippov G.A. Kriteriy i fiziko-mekhanicheskaya kharakteristika soprotivleniya stali zamedlennomu razrusheniyu [Criterion and Physical Mechanical Characteristics of Steel Resistance to Delayed Fracture]. Deformatsiya i razrushenie materialov [Deformation and Fracture of Materials]. 2007, no. 3, pp. 37—42. (In Russian).
  17. Mishin V.M., Filippov G.A. Kineticheskaya model' zamedlennogo razrusheniya zakalennoy stali [Kinetic Model of Delayed Fracture of Hardened Steel]. Problemy chernoy metallurgii i materialovedeniya [Problems Ferrous Metallurgy and Materials Science]. 2008, no. 3, pp. 28—33. (In Russian).
  18. Shikhovtsov A.A., Mishin V.M. Kinetika i mikromekhanika zamedlennogo razrusheniya stali [Kinetics and Micromechanics of Delayed Steel Fracture]. Fundamental'nye issledovaniya [Fundamental Research]. 2013, no. 4 (4), pp. 858—861. Available at: www.rae.ru/fs/?section=content&op=show_article&article_id=10000497. Date of access: 11.10.2014. (In Russian).
  19. Geoffrey L. Kulak, John W. Fisher, John H. A. Struik. Guide to Design Criteria for Bolted and Riveted Joints. Chicago, American Institute of Steel Construction, Inc, 2001, 333 p.
  20. Eliaz N., Shachar A., Tal B., Eliezer D. Characteristics of Hydrogen Embrittlement, Stress Corrosion Cracking and Tempered Martensite Embrittlement in High-strength Steels. Engineering Failure Analysis. 2002, no. 9, pp. 167—184. DOI: http://dx.doi.org/10.1016/S1350-6307(01)00009-7.
  21. Dayal R.K., Parvathavarthini N. Hydrogen Embrittlement in Power Plant Steels. Sadhana. June/August 2003, vol. 28, no. 3—4, pp. 431—–451. DOI: http://dx.doi.org/10.1007/BF02706442.

Download

Eigenfunction of the Laplace operator in +1-dimentional simplex

  • Ovchintsev Mikhail Petrovich - Moscow State University of Civil Engineering (MGSU) Candidate of Physical and Mathematical Sciences, Associate Professor, Department of Higher Mathematics, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Sitnikova Elena Georgievna - Moscow State University of Civil Engineering (MGSU) Candidate of Physical and Mathematical Sciences, Professor, Department of Higher Mathematics, Moscow State University of Civil Engineering (MGSU), .

Pages 68-73

In order to find eigenfunction of the Laplace operator in regular
n+1-dimensional simplex the barycentric coordinates are used. For obtaining this result we need some formulas of the analytical geometry. A similar result was obtained in the earlier papers of the author in a tetrahedron from
R
3 and in gipertetrahedron from
R
4. Let П be unlimited cylinder in the space
R
n, its cross-section with hyperplane has a special form. Let
L be a second order linear differential operator in divergence form, which is uniformly elliptic and η is its ellipticity constant. Let
u be a solution of the mixed boundary value problem in Π with homogeneous Dirichlet and Neumann data on the boundary of the cylinder. In some cases the eigenfunction of the Laplace operator allows us to continue this solution from the cylinder Π to the whole space
R
n with the same ellipticity constant. The obtained result allows us to get a number of various theorems on the solution growth for mixed boundary value problem for linear differential uniformly elliptical equation of the second order, given in unlimited cylinder with special cross-section. In addition we consider
n-1-dimensional hill tetrahedron and the eigenfunction for an elliptic operator with constant coefficients in it.

DOI: 10.22227/1997-0935.2014.11.68-73

References
  1. Sitnikova E.G. Sobstvennaya funktsiya operatora Laplasa v gipertetraedre [Eigenfunction of the Laplace Operator in the Tetrahedron]. Integratsiya, partnerstvo i innovatsii v stroitel’noy nauke i obrazovanii : sbornik trudov Mezhdunaridnoy nauchnoy konferentsii [Integration, Partnership and Innovations in Construction Science and Education : Collection of Works of International Scientific Conference]. Moscow, MGSU, 2011, pp. 755—758. (In Russian).
  2. Sitnikova E.G. Neskol’ko teorem tipa Fragmena-Lindelefa dlya ellipticheskogo uravneniya vtorogo poryadka [Several Theorems of Phragmen-Lindelof Type for the Second Order Differential Equation]. Voprosy matematiki i mekhaniki sploshnykh sred : sbornik nauchnykh trudov [Problems of Continuum Mathematics and Mechanics: Collection of Works]. Moscow, MGSU Publ., 1984, pp. 98—104. (In Russian).
  3. Sitnikova E.G. Sobstvennaya funktsiya operatora Laplasa v tetraedre [Eigenfunction of the Laplace Operator in the Tetrahedron]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2011, no. 4, pp. 80—82. (In Russian).
  4. Mikhaylov V.P. Differentsial’nye uravneniya v chastnykh proizvodnykh [Differential Equations in Partial Derivatives]. Moscow, Nauka Publ., 1976, 391 p. (In Russian).
  5. Mikhlin S.G. Kurs matematicheskoy fiziki [Course in Mathematical Physics]. Moscow, Nauka Publ., 1968, 576 p. (In Russian).
  6. Lazutkin V.F. Ob asimptotike sobstvennykh funktsiy operatora Laplasa [On Asymptotics of Eigenfunctions of the Laplace Operator]. Doklady AN SSSR [Reports of the Academy of Sciences of the USSR]. 1971, vol. 200, no. 6, pp. 1277—1279. (In Russian).
  7. Lazutkin V.F. Sobstvennye funktsii s zadannoy kaustikoy [Eigenfunctions with Preassigned Caustic Curve]. Zhurnal vychislitel’noy matematiki i matematicheskoy fiziki [Computational Mathematics and Mathematical Physics]. 1970, vol. 10, no. 2, pp. 352—373. (In Russian).
  8. Lazutkin V.F. Asimptotika serii sobstvennykh funktsiy operatora Laplasa, otvechayushchey zamknutoy invariantnoy krivoy «billiardnoy zadachi» [Asymptotics of Eigenfunctions Series of the Laplace Operator Matching Closed Invariant Curve of a "Billiard problem"]. Problemy matematicheskoy fiziki [Mathematical Physics Problems]. 1971, no. 5, pp. 72—91. (In Russian).
  9. Lazutkin V.F. Postroenie asimptotiki serii sobstvennykh funktsiy operatora Laplasa, otvechayushchey ellipticheskoy periodicheskoy traektorii «billiardnoy zadachi» [Asymptotics Creation of Eigenfunctions Series of the Laplace Operator Matching Elliptical Periodic Path of a "Billiard problem"]. Problemy matematicheskoy fiziki [Mathematical Physics Problems]. 1973, no. 6, pp. 90—100. (In Russian).
  10. Apostolova L.N. Initial Value Problem for the Double-Complex Laplace Operator. Eigenvalue Approaches. AIP Conf. Proc. 2011, vol. 1340, no. 1, pp. 15—22. DOI: http://dx.doi.org/10.1063/1.3567120.
  11. Pomeranz K.B. Two Theorems Concerning the Laplace Operator. AIP Am. J. Phys. 1963, vol. 31, no. 8, pp. 622—623. DOI: http://dx.doi.org/10.1119/1.1969694.
  12. Iorgov N.Z., Klimyk A.U. A Laplace Operator and Harmonics on the Quantum Complex Vector Space. AIP J. Math. Phys. 2003, vol. 44, no. 2, pp. 823—848.
  13. Fern?ndez C. Spectral concentration for the Laplace operator in the exterior of a resonator. AIP J. Math. Phys. 1985, vol. 26, no. 3, pp. 383—384. DOI: http://dx.doi.org/10.1063/1.526618.
  14. Davis H.F. The Laplace Operator. AIP Am. J. Phys. 1964, 32, 318. DOI: http://dx.doi.org/10.1119/1.1970275. Date of access: 25.03.2012.
  15. Gorbar E.V. Heat Kernel Expansion for Operators Containing a Root of the Laplace Operator. AIP J. Math. Phys. 1997, vol. 38, no. 3, pp. 1692. DOI: http://dx.doi.org/10.1063/1.531823. Date of access: 25.03.2012.

Download

Free flexural radial vibrations of a thin circular cylindrical shell bearing added mass

  • Seregin Sergey Valer’evich - Komsomolsk-na-Amure State Technical University postgraduate student, Department of Construction and Architecture, Komsomolsk-na-Amure State Technical University, 27 Lenin st., Komsomolsk-on-Amure, 681013, Russian Federation, (4217) 24-11-41; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 74-81

The author comes up with a refined mathematical model contemplating that added mass facilitates interaction between coupled flexural and radial vibrations in the linear setting. The author has identified a higher splitting of the flexural frequency spectrum due to the presence of the added mass and the wave generation parameters that characterize the relative length and thickness of the shell. Within the framework of the shallow-shell theory, the influence of the small concentrated mass onto natural dynamic properties of the shell is exposed to research. The refined mathematical model was employed to identify that the added mass binds the coupled flexural shape of the circular cylindrical shell and facilitates interaction between low-frequency flexural vibrations and high-frequency radial vibrations. Moreover, radial vibrations act as a supplementary inertial link between coupled flexural shapes. Due to the availability of the exciting load, non-resonant areas, identified through the application of the traditional mathematical model, can be resonant in essence. The findings of this research must be considered in the course of the assessment of the dynamic strength of any shell structures designed. This refined finite-dimensional model, capable of recognizing radial vibrations, has generated the results that comply with numerical analyses and experimental data both quantitatively and qualitatively. Therefore, dynamic problems that have already been resolved may need refinement.

DOI: 10.22227/1997-0935.2014.11.74-81

References
  1. Amabili M., Garziera R., Carra S. The Effect of Rotary Inertia of Added Masses on Vibrations of Empty and Fluid-filled Circular Cylindrical Shells. Journal of Fluids and Structures. 2005, vol. 21, no. 5—7, pp. 449—458. DOI: http://dx.doi.org/10.1016/j.jfluidstructs.2005.07.018.
  2. Seregin S.V. Vliyanie prisoedinennogo tela na chastoty i formy svobodnykh kolebaniy tsilindricheskikh obolochek [Influence of Attached Body on Natural Frequencies and their Forms]. Stroitel’naya mekhanika i raschet sooruzheniy [Building Mechanics and Calculation of Structures]. 2014, no. 3, pp. 35—38. (In Russian).
  3. Seregin S.V. Vliyanie ploshchadi kontakta i velichiny lineyno raspredelennoy i sosredotochennoy massy s krugovoy tsilindricheskoy obolochkoy na chastoty i formy svobodnykh kolebaniy [Influence of the Contact Area of Linearly Distributed and Concentrated Mass with a Circular Cylindrical Shell on the Frequency and Modes of Natural Oscillations]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2014, no. 7, pp. 64—74. (In Russian).
  4. Zarutskiy V.A., Telalov A.I. Kolebaniya tonkostennykh obolochek s konstruktivnymi osobennostyami. Obzor eksperimental’nykh issledovaniy [Frequencies of Thin-Walled Shells with Structiral Peculiarities]. Prikladnaya mekhanika [Applied mechanics]. 1991, vol. 278, no. 4, pp. 3—9. (In Russian).
  5. Trotsenko Yu.V. Frequencies and Modes of Vibration of a Cylindrical Shell with Attached Rigid Body. Journal of Sound and Vibration. 2006, vol. 292, no. 3—5, pp. 535—551. DOI: http://dx.doi.org/10.1016/j.jsv.2005.08.015.
  6. Mallon N.J. Dynamic Stability of a Thin Cylindrical Shell with Top Mass Subjected to Harmonic Base-acceleration. International Journal of Solids and Structures. 2008, vol. 45, no. 6, pp. 1587—1613. DOI: http://dx.doi.org/10.1016/j.ijsolstr.2007.10.011.
  7. Amabili M., Garziera R. Vibrations of Circular Cylindrical Shells with Nonuniform Constraints, Elastic Bed and Added Mass; Part III: Steady Viscous Effects On Shells Conveying Fluid. Journal of Fluids and Structures. 2002, vol. 16, no. 6, pp. 795—809. DOI: http://dx.doi.org/10.1006/jfls.2002.0446.
  8. Khalili S.M.R., Tafazoli S., Malekzadeh Fard K. Free Vibrations of Laminated Composite Shells with Uniformly Distributed Attached Mass Using Higher Order Shell Theory Including Stiffness Effect. Journal of Sound and Vibration. 2011, vol. 330, no. 26, pp. 6355—6371. DOI: http://dx.doi.org/10.1016/j.jsv.2011.07.004.
  9. Andreev L.V., Dyshko A.L., Pavlenko I.D. Dinamika plastin i obolochek s sosredotochennymi massami [Dynamics of Plates and Shells with Concentrated Masses]. Moscow, Mashinostroenie Publ., 1988, 200 p. (In Russian).
  10. Kubenko V.D., Koval’chuk P.S., Krasnopol’skaya T.S. Nelineynoe vzaimodeystvie form izgibnykh kolebaniy tsilindricheskikh obolochek [Nonlinear Interaction of Flexural Vibration Forms of Cylindrical Shells]. Kiev, Naukova dumka Publ., 1984, 220 p. (In Russian).
  11. Seregin S.V. Issledovanie dinamicheskikh kharakteristik obolochek s otverstiyami i prisoedinennoy massoy[Investigation of Dynamic Characteristics of Shells with Holes and Added Mass]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2014, no. 4, pp. 52—58. (In Russian).
  12. Sivak V.F., Sivak V.V. Experimental Investigation into the Vibrations of Shells of Revolution with Added Masses. International Applied Mechanics. 2002, vol. 38, no. 5, pp. 623—627. DOI: http://dx.doi.org/10.1023/A:1019770206949.
  13. Avramov K.V., Pellicano F. Dynamical Instability of Cylindrical Shell with Big Mass at the End. Reports of the National Academy of Science of Ukraine. 2006, no. 5, pp. 41—46.
  14. Vol’mir A.S. Nelineynaya dinamika plastinok i obolochek [Nonlinear Dynamics of Plates and Shells]. Moscow, Nauka Publ., 1972, 432 p. (In Russian).
  15. Amabili M. Nonlinear Vibrations and Stability of Shells and Plates. New York, USA, Cambridge university press, 2008, 392 p.
  16. Varadan T.K., Pratkhap Dzh., Ramani Kh.V. Nelineynye svobodnye izgibnye kolebaniya tonkostennykh krugovykh tsilindricheskikh obolochek [Nonlinear Free Frequencies of Thin-Walled Round Cylindrical Shells]. Aerokosmicheskaya tekh-nika [Aerospace Engineering]. 1990, no. 5, pp. 21—24. (In Russian).
  17. Seregin S.V. Svidetel’stvo o gosudarstvennoy registratsii programmy dlya EVM ¹ 2014617201. Svobodnye kolebaniya krugovoy tsilindricheskoy obolochki, nesushchey sosredotochennuyu massu [State Registration Certificate of a Computer Program no. 2014617201. Free vibrations of a circular cylindrical shell carrying a concentrated mass]. Programmy dlya EVM. Bazy dannykh. Topologii integral’nykh mikroskhem [Computer Programs. Databases. Typology of Integral Microchips]. Available at: http://www1.fips.ru/Archive/EVM/2014/2014.08.20/. Date of access: 28.08.2014. (In Russian).

Download

BEDDINGS AND FOUNDATIONS, SUBTERRANEAN STRUCTURES. SOIL MECHANICS

Numerical implementation of Voigt and Maxwell models for simulation of waves in the ground

  • Sheshenin Sergey Vladimirovich - Moscow State University (MSU) Doctor of Physical and Mathematical Sciences, Professor, Department of Composite Mechanics, Moscow State University (MSU), 1 Leninskie Gory, Moscow, 119991, Russian Federation; +7 (495) 939-43-43; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Zakalyukina Irina Mikhaylovna - Moscow State University of Civil Engineering (MGSU) Candidate of Physical and Mathematical Sciences, Assosiate Professor, Department of Theoretical Mechanics and Aerodynamics, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7 (499) 183-24-01; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Koval’ Sergey Vsevolodovich - 26 Central Research Institute, branch of 31 State Project Institute of Special Building (31 SPISB) Doctor of Technical Science, Ciief Research Worker, Department of Special Construction and Seismic Resistance, 26 Central Research Institute, branch of 31 State Project Institute of Special Building (31 SPISB), 19 Smolenskiy Bul’var, Moscow, 119121, Russian Federation; +7 (499) 241-2248; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 82-89

A lot of papers have been dedicated to simulation of dynamic processes in soil and underground structures. For example, some authors considered wave distribution in underground water pipes for creation of vibration monitoring system, others considered theoretical and algorithm aspects of efficient implementation of realistic seismic wave attenuation due to viscosity development with the help of Finite Difference Method, etc. The paper describes the numerical simulation, designed for simulation of the stress-strain state in the ground subjected to wave processes. We consider the ground with a concrete structure immersed in. The purpose of the work is the description of small vibrations in hard soil, which can nevertheless make undesirable impact on the objects in the ground or on the surface. Explicit Wilkins type scheme is used for time integration. It has proven to be successful, including the use in a well-known LS-DYNA code. As a result we created our own computer code based on the finite element method (FEM). An example of its practical usage is given.

DOI: 10.22227/1997-0935.2014.11.82-89

References
  1. Tsvetkov R.V., Shardakov I.N., Shestakov A.P. Analiz rasprostraneniya voln v podzemnykh gazoprovodakh primenitel’no k zadache proektirovaniya sistem monitoringa [Analysis of Wave Propagation in Underground Pipelines in Relation to Monitoring Systems Design]. Vychislitel’naya mekhanika sploshnykh sred [Computational Mechanics of Continuous Media]. 2013, vol. 6, no. 3, pp. 364—372. (In Russian).
  2. Kristek J., Moczo P. Seismic-Wave Propagation in Viscoelastic Media with Material Discontinuities: A 3D Fourth-Order Staggered-Grid Finite-Difference Modeling. Bulletin of the Seismological Society of America. 2003, vol. 93, no. 5, pp. 2273—2280. DOI: http://dx.doi.org/10.1785/0120030023.
  3. Kochetkov A. V., Poverennov E. Yu. Primenenie metoda kvaziravnomernykh setok pri reshenii dinamicheskikh zadach teorii uprugosti v neogranichennykh oblastyakh [Application of Quasi-uniform Nets Method in the Process of Solving the Dynamic Problems of the Elasticity Theory in Unbounded Domains]. Matematicheskoe modelirovanie [Mathematical Simulation]. 2007, no. 19, pp. 81–92. (In Russian).
  4. Glazova E.G., Kochetkov A.V., Krylov S.V. Chislennoye modelirovanie vzryvnykh protsessov v merzlom grunte [Numerical Simulation of Explosive Processes in Frozen Soil]. Izvestiya Rossiyskoy akademii nauk. Mekhanika tverdogo tela [News of the Russian Academy of Sciences. Solid Mechanics]. 2007, no. 6, pp. 128—136. (In Russian).
  5. Potapov A.P., Royz S.I., Petrov I.B. Modelirovanie volnovykh protsessov metodom sglazhennykh chastits (SPH) [Modeling of Wave Processes Using Smoothed Particle Hydrodynamics (SPH)]. Matematicheskoye modelirovaniye [Mathematical Modeling]. 2009, no. 7. Vol. 21. Pp. 20—28. (In Russian).
  6. Potapov A.P., Petrov I.B. Modelirovanie volnovykh protsessov pri vysokoskorostnykh soudareniyakh metodom sglazhennykh chastits (SPH) [Modeling of Wave Processes in High-Speed Collisions by Smoothed Particle Hydrodynamics (SPH)]. Vestnik Baltiyskogo federal'nogo universiteta im. I. Kanta [Proceedings of Immanuel Kant Baltic Federal University]. 2009, no. 10, pp. 5—20. (In Russian).
  7. Zamyshlyaev B.V., Evterev L.S. Modeli dinamicheskogo deformirovaniya i razrusheniya gruntovykh sred [Models of Soil Dynamic Deformation and Destruction]. Moscow, Nauka Publ., 1990, 215 p. (In Russian).
  8. Kiselev F., Sheshenin S.V. Modelirovanie kontakta podzemnykh sooruzheniy s uprugovyazkoplasticheskim gruntom [Modeling of Underground Structures Interaction with Elastic Ground]. Vestnik Moskovskogo universiteta. Seriya 1. Matematika i mekhanika [Proceedings of Moscow University. Series 1. Mathematics and Mechanics]. 2006, no. 3, pp. 61—65. (In Russian).
  9. Kondaurov V.I., Nikitin L.V. Teoreticheskie osnovy reologii geomaterialov [Theoretical Foundations of Rheology Theory for Geomaterials]. Moscow, Nauka Publ., 1990, 207 p. (In Russian).
  10. Rykov G.V., Skobeev A.M. Izmereniye napryazheniy v gruntakh pri kratkovremennykh nagruzkakh [Measurement of Stress in the Soil under Impulse Loadings]. Moscow, Nauka Publ., 1978, 168 p. (In Russian).
  11. Tukhvatullina A.V., Kantur O.V. Matematicheskie modeli deformirovaniya myagkikh gruntov [Mathematical Models of Soft Soil Deformation]. Sovershenstvovanie metodov rascheta i konstruktsiy podzemnykh sooruzheniy [Advancing Calculation Methods and Structures of Underground Constructions]. Moscow, 26 TSNII MO RF Publ., 2000. (In Russian).
  12. Del?pine N., Lenti L., Bonnet G., Semblat J.-F. Nonlinear Viscoelastic Wave Propagation: an Extension of Nearly Constant Attenuation Models. Jornal of Engineering Mechanics. 2009, vol. 135. Issue 11, pp. 1305—1314. DOI: http://dx.doi.org/10.1061/(ASCE)0733-9399(2009)135:11(1305).
  13. Morochnik V., Bardet J.P. Viscoelastic Approximation of Poroelastic Media for Wave Scattering Problems. Soil Dynamics and Earthquake Engineering. 1996, vol. 15, no. 5, pp. 337—346. http://dx.doi.org/10.1016/0267-7261(96)00002-4.
  14. Keunings R. Progress and Challenges in Computational Rheology. Rheologica Acta. 1990, vol. 29, no. 6, pp. 556—570.
  15. Brandes K. Blast — Resistant Structures. Proceedings of the International Workshop on Blast — Resistant Structures. Tsinghua Univ., Beijing, China, 1992.
  16. Wilkins M.L. Calculation of Elastic-Plastic Flow. Methods of Computational Physics. 1964, Academic Press, New York, vol. 3.
  17. Reshetova G., Tcheverda V., Vishnevsky D. Parallel Simulation of 3D Wave Propagation by Domain Decomposition. Journal of Applied Mathematics and Physics. 2013, no. 1, pp. 6—11. DOI: http://dx.doi.org/10.4236/jamp.2013.14002.
  18. ?erveny V., P?en??k I. Plane Waves in Viscoelastic Anisotropic Media—I. Theory. Geophysical. Jornal International. 2005, vol.161, no. 1, pp. 197—212.
  19. Daley P.F., Krebes E.S. SH Wave Propagation in Viscoelastic Media. CREWES Research Report. 2003, vol. 15, pp.1—25.
  20. Radim C., Saenger E.H., Gurevich B. Pore Scale Numerical Modeling of Elastic Wave Dispersion and Attenuation in Periodic Systems of Alternating Solid and Viscous Fluid Layers. Journal of the Acoustical Society of America. 2006, vol. 120 (2), pp. 642—648. DOI: http://dx.doi.org/10.1121/1.2216687.

Download

ENGINEERING RESEARCH AND EXAMINATION OF BUILDINGS. SPECIAL-PURPOSE CONSTRUCTION

Research into mechanical properties and structure of metals as part of restored construction facilities

  • Gustov Yuriy Ivanovich - Moscow State University of Civil Engineering (MGSU) Doctor of Technical Sciences, Professor, Department of Machinery, Machine Elements and Process Metallurgy, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7 (499) 183-94-95; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Pyatnitskiy Aleksandr Arkad’evich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Associate Professor, Department of Building Design and Urban Planning, head, Research and Production Laboratory "Design and Construction", Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Makhov Igor’ Olegovich - Moscow State University of Civil Engineering (MGSU) postgraduate student, Department of Building Design and Urban Planning, junior research worker, Research and Production Laboratory "Design and Construction", Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 90-97

The article represents a summarized methodology of the research into small-size pilot metal samples of restored construction facilities. In the article, the co-authors demonstrate an option that provides for the analytical identification of standard characteristic values of mechanical properties, based on initial hardness HRB and conversion of hardness values using the Brinell test. Towards this end, analytical dependence of HB hardness on HRB and HRC is proposed. The numerical identification of the temporary resistance to tensile stress σ
в required the pre-setting of the value of the average coefficient of relative elongation. This average coefficient was employed to identify the values of relative elongation and contraction, as well as the yield value of the metal. Standard plasticity and strength values were employed to compile an equation for complex criterion C. This criterion was employed to identify the value of relative uniform elongation and transverse contraction, and both were employed to assess the resistance to tensile stress and fatigue. The optical microscopy method was used to identify the pilot sample of the metal as structural carbon steel having grade C15. Its strength analysis based on the properties of its structural components has proven the identity between the sample metal and the aforementioned steel grade. The method proposed by the co-authors helps to identify the metals of restructured construction facilities on the basis of small-size samples to avoid the collapse of metal structures.

DOI: 10.22227/1997-0935.2014.11.90-97

References
  1. Bessonov G.B. Issledovanie deformatsiy, raschet nesushchey sposobnosti i konstruktivnoe ukreplenie drevnikh raspornykh system [Deformation Investigation, Bearing Capacity Calculation and Constructional Strengthening of Ancient Trust Systems]. Moscow, Soyuzrestavratsiya Publ., 1989, 119 p. (In Russian).
  2. Gudkov A.A., Slavskiy Yu.I. Metody izmereniya tverdosti metallov i splavov [Calculation Methods for Hardness of Metals and Alloys]. Moscow, Metallurgiya Publ., 1982, 168 p. (In Russian).
  3. Klesnil M., Lukas P. Fatigue of Metallic Materials. Prague, Academia Publ., 1980, 240 p.
  4. Callister W.D., Rethwich D.G. Fundamentals of Materials Science and Engineering. An Integrated Approach. John Wiley Sons. Ins., 2008, 896 p.
  5. Tylkin M.A. Spravochnik termista remontnoy sluzhby [Guide of the Heat-treater of Maintenance Service. Moscow, Metallurgiya Publ., 1981, 648 p.
  6. Radzimovsky E.I. Stress Distribution and Strength Condition of Two Rolling Cylinders Pressed Together. University of Illinois Engineering Experiment Station Bulletin Series No. 408, 1953, vol. 50, no. 44, 40 p.
  7. Dubov A., Kolokolnikov S. Quality Assurance of Welded Joints In Power Engineering by the Metal Magnetic Memory Method. Safety and Reliability of Welded Components in Energy and Processing Industry : Proceeding of the JJW International Conference, Graz, Austria. 2008, pp. 709—714.
  8. Kolokol’nikov S.M., Dubov A.A. Opredelenie mekhanicheskikh svoystv metalla svarnykh shvov po parametram tverdosti v zonakh kontsentratsii napryazheniy, vyyavlennykh metodom magnitnoy pamyati metalla [Determination of the Mechanical Properties of Welds Metals on Hardness Parameters in Stress Concentration Areas Detected by Metal Magnetic Memory Method]. Diagnostika oborudovaniya i konstruktsiy s ispol’zovaniem magnitnoy pamyati metallov : sbornik dokladov VII Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii [Diagnostics of Equipment and Structures with Application of Metal Magnetic Memory : Collection of the Papers of the 7th International Science and Practice Conference]. Moscow, OOO «Energodiagnostika» Publ., 2013, pp. 66—76. (In Russian).
  9. Gustov Yu.I., Allattouf H. Issledovanie vzaimosvyazi koeffitsientov plastichnosti i predela tekuchesti staley standartnykh kategoriy prochnosti [Study of Interdependence between Ductility Factors and Yield Limits for Steels of Standard Strength Grades]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2013, no. 7, pp. 22—26. (In Russian).
  10. Gustov Yu.I., Voronina I.V., Kurtenok N.P., Allattouf H. Sootnosheniya chisel tverdosti v raschetakh na staticheskuyu i tsiklicheskuyu prochnost' konstruktsionnykh staley [Ratios of Hardness Numbers in Calculations of Static and Cyclical Strength of Construction Types of Steels]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2013, no. 1, pp. 72—78. (In Russian).
  11. Allattouf H. Otsenka rabotosposobnosti truboprovodnykh staley po energeticheskim kriteriyam [Performance Evaluation of Pipe Steels According to Energetic Criteria]. Mekhanizatsiya stroitel’stva [Automation of Construction]. 2014, no. 6, pp. 46—48. (In Russian).
  12. Gustov Yu.I., Gustov D.Yu. Issledovanie vzaimosvyazi mekhanicheskikh svoystv metallicheskikh materialov [Interrelation Investigation of Mechanical Properties of Metal Materials]. Teoreticheskie osnovy stroitel’stva : doklad VII pol’sko-rossiyskogo seminara [Theoretical Basis of Construction : Reports of the 7th Polish-Russian Workshop]. Moscow, ASV Publ., 1998, pp. 225—228. (In Russian).
  13. Sansalone M., Jaeger B. Applications of the Impact — Echo Method for Detecting Flaws in Highway Bridges. Structural Materials Technology. An NTD Conference. San Diego, California, 1996, pp. 204—210.
  14. Ivanova V.S., Balankin A.S., Bunin I.Zh., Oksogoev A.A. Sinergetika i fraktaly v materialovedenii [Synergy and Fractals in Materials Science]. Moscow, Nauka Publ., 1994, 383 p. (In Russian).
  15. Fridman Ya.B. Mekhanicheskie svoystva metallov. Chast’ 2. Mekhanicheskie ispytaniya. Konstruktsionnaya prochnost’ [Mechanical Properties of Metals. Part 2. Mechanical Tests. Structural Strength]. Monograph. Moscow, Mashinostroenie Publ., 1972, 368 p. (In Russian).

Download

Inspection procedure of buildings for the purpose of subsequent assessment of their residual life

  • Zolina Tat’yana Vladimirovna - State Autonomous Educational Institution of the Astrakhan area of higher education "Astrakhan State Architectural and Construction University" (JSC GAOU VPO "AGASU") Candidate of Technical Sciences, Professor, First Vice-rector, State Autonomous Educational Institution of the Astrakhan area of higher education "Astrakhan State Architectural and Construction University" (JSC GAOU VPO "AGASU"), 18 Tatishcheva str., Astrakhan, 414000, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 98-108

This paper considers and asserts the need to obtain the results of inspection of a building at the stage of its commissioning in order to apply comprehensive methodology for assessing its residual life. The author proposes to build regression relationship by correlating the levels of the time series dynamics of stress at certain points of the object calculation scheme considering the results of subsequent surveys. It allows estimating the wear rate of structural elements. The assessment of the reliability and durability of the building frame in a deterministic form is based on the limit states method. The application of this method allows taking into account the random nature of not only the combination of existing loads, but also the strength properties of construction materials by creating a system of safety factors.

DOI: 10.22227/1997-0935.2014.11.98-108

References
  1. Rayzer V.D. Teoriya nadezhnosti v stroitel’nom proektirovanii : monografiya [Reliability Theory in Construction Design: Monograph]. Moscow, ASV Publ., 1998, 304 p. (In Russian).
  2. Sadchikov P.N., Zolina T.V. Sistematizatsiya metodov rascheta, analiza i prognozirovaniya rabotosposobnosti ob”ektov nedvizhimosti [Classification of Calculation Methods, Analysis and Prediction of Performance of Real Estate]. Perspektivy razvitiya stroitel'nogo kompleksa : materialy VII mezhdunarodnoy nauchno-prakticheskoy konferentsii professorsko-prepodavatel'skogo sostava, molodykh uchenykh i studentov 28—31 oktyabrya 2013 [Proceedings of the 7th International Scientific and Practical Conference of Academic Staff, Young Scientists and Students, October 28—31 "Prospects of Building Complex Development]. Under the general editorship of Gutmana V.A., Khachen'yana A.L. Astrakhan, GAOU AO VPO «AISI» Publ., 2013, vol. 1, pp. 102—107. (In Russian).
  3. Gordeev V.N., Lantukh-Lyashchenko A.I., Pashinskiy V.A., Perel’muter A.V., Pichugin S.F. Nagruzki i vozdeystviya na zdaniya i sooruzheniya [Loads and Effects on Buildings and Structures]. Moscow, ASV Publ., 2007, 482 p. (In Russian).
  4. Pshenichkina V.A., Belousov A.S., Kuleshova A.N., Churakov A.A. Nadezhnost’ zdaniy kak prostranstvennykh sostavnykh sistem pri seysmicheskikh vozdeystviyakh [Reliability of Buildings as Spatial Composite Systems under Seismic Actions]. Volgograd, VolgGASU Publ., 2010, 180 p. (In Russian).
  5. Chirkov V.P. Veroyatnostnye metody rascheta massovykh zhelezobetonnykh konstruktsiy [Probabilistic Methods of Calculation of Large Scale Reinforced Concrete Structures]. Moscow, Transport Publ., 1980, 134 p. (In Russian).
  6. Rzhanitsyn A.R. Teoriya rascheta stroitel’nykh konstruktsiy na nadezhnost’ [Theory of Reliability Calculation of Building Structures]. Moscow, Stroyizdat Publ., 1978, 240 p.
  7. Pshenichkin A.P. Osnovy veroyatnostno-statisticheskoy teorii vzaimodeystviya sooruzheniy s neodnorodno deformiruemymi osnovaniyami [Fundamentals of Probabilistic Theory of Cooperation of a Building with the Heterogeneous Deformed Grounds]. Volgograd, VolgGASU Publ., 2006, 226 p. (In Russian).
  8. Luzhin O.V. Veroyatnostnye metody rascheta sooruzheniy [Probabilistic Methods of Calculation of a Building]. Moscow, MISI im. V.V. Kuybysheva Publ., 1983, 78 p. (In Russian).
  9. Lychev A.S. Veroyatnostnye metody rascheta stroitel’nykh elementov i system [Probabilistic Methods of Calculation of Building Elements and Systems]. Moscow, ASV Publ., 1995, 143 p. (In Russian).
  10. Bulgakov S.N., Tamrazyan A.G., Rakhman I.A., Stepanov A.Yu. Snizhenie riskov v stroitel'stve pri chrezvychaynykh situatsiyakh prirodnogo i tekhnogennogo kharaktera [Reduction of Risks in Construction at the Emergencies of Natural and Technogenic Character]. Moscow, MAKS Press Publ., 2004, 304 p. (In Russian).
  11. Kul’terbaev Kh.P., Pshenichkina V.A. Sluchaynye protsessy i kolebaniya stroitel’nykh konstruktsiy i sooruzheniy [Casual Processes and Vibrations of Building Constructions and Structures]. Volgograd, VolgGASU Publ., 2006, 356 p. (In Russian).
  12. Skladnev N.N., Kurzanov A.M. Sostoyanie i puti razvitiya raschetov na seysmostoykost’ [State and Ways of Development of Seismic Strength Calculations]. Stroitel’naya mekhanika i raschet sooruzheniy [Structural Mechanics and Calculation of Building]. 1990, no. 4, pp. 3—9. (In Russian).
  13. Bolotin V.V. Stochastic Models of Fracture with Applications to the Reliability Theory. Structural Safety and Reliability. Amsterdam, Oxford, New York, Elsevier, 1981, pp. 31—56.
  14. Ditlevsen O. Reliability against Defect Generated Fracture. Journal of Structural Mechanics. 1981, vol. 9, no. 2, pp. 115—137.
  15. Blockley D.I. Reliability Theory — Incorporating Gross Errors. Structural Safety and Reliability. Amsterdam, Oxford, New York, Elsevier, 1981, pp. 259—282.
  16. Lin Y.K., Shih T.Y. Column Response to Horizontal and Vertical Earthquakes. Journal of Engineering Mechanics Division, ASCE. 1980, vol. 106, no. EM-6, pp. 1099—1109.
  17. Moan T., Holand I. Risk Assessment of Offshore Structures: Experience and Principles. Structural Safety and Reliability. Amsterdam, Oxford, New York, Elsevier, 1981, pp. 803—820.
  18. Brown C.B. Entropy Constructed Probabilities. Proceeding ASCE. 1980, vol. 106, no. EM-4, pp. 633—640.
  19. Holicky M., Ostlund L. Vagueness of Serviceability Requirements. Proceeding the International Conference "Design and Assessment of Building Structures". Prague, 1996, vol. 2, pp. 81—89.
  20. Hoef N.P. Risk and Safety Considerations at Different Project Phases. Safety, Risk and Reliability — Trends in Engineering. International Conference. Malta, 2001, pp. 1—8.
  21. Pshenichkin A.P., Pshenichkina V.A. Nadezhnost’ zdaniy i osnovaniy v osobykh usloviyakh [Reliability of Buildings and Foundations in Special Conditions]. Volgograd, VolgGASU Publ., 2009, 218 p. (In Russian).
  22. Zolina T.V., Sadchikov P.N. Kontseptual’naya skhema issledovaniya napryazhenno-deformirovannogo sostoyaniya promyshlennogo zdaniya [Conceptual Scheme for Investigating the Stress-Strain State of an Industrial Building]. Vestnik Volgogradskogo arkhitekturno-stroitel’nogo universiteta. Seriya: Stroitel’stvo i arkhitektura [Proceedings of Volgograd State University of Architecture and Civil Engineering. Series: Construction and Architecture]. 2013, no. 33 (52), pp. 47—50. (In Russian).
  23. Zolina T.V. Svodnyy algoritm rascheta promyshlennogo ob”ekta na deystvuyushchie nagruzki s otsenkoy ostatochnogo resursa [Synthesis Algorithm for Calculating Existing Load on an Industrial Facility with the Assessment of Residual Life]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering]. 2014, no. 6, no. 3—5. (In Russian).
  24. Zolina T.V., Sadchikov P.N. Metodika otsenki ostatochnogo resursa ekspluatatsii promyshlennogo zdaniya, osnashchennogo mostovymi kranami [Methods of Assessing the Residual Life of Industrial Buildings, Equipped with Overhead Cranes]. Vestnik Volgogradskogo arkhitekturno-stroitel’nogo universiteta. Seriya: Stroitel’stvo i arkhitektura [Proceedings of Volgograd State University of Architecture and Civil Engineering. Series: Construction and Architecture]. 2013, no. 33 (52), pp. 51—56. (In Russian).
  25. Zolina T.V., Sadchikov P.N. Programmno-raschetnyy kompleks «DINCIBnew». Svidetel’stvo o gosudarstvennoy registratsii programmy dlya EVM ¹ 2014613866.09.04.2014. [Software and Calculation Complex "DINCIB-new". Certificate of State Registration of Computer Programs no. 2014613866, 9 April 2014]. (In Russian).

Download

Emergency destruction of a panel residence building, type series 1-115

  • Malakhova Anna Nikolaevna - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Associate Professor, Department of Architectural and Construction Design of Reinforced Concrete and Masonry Structures, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7 (495) 583-47-53; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Balakshin Andrey Sergeevich - State Unitary Enterprise of the Moscow Region Mosoblstroytsnil (Mosoblstroytsnil) Candidate of Technical Sciences, Director, State Unitary Enterprise of the Moscow Region Mosoblstroytsnil (Mosoblstroytsnil), 29-2, Olimpiyskiy prospect, Mytishchi, 141006, Moscow Region; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 109-117

The co-authors consider the design solution developed for a panel residence building, type series 1-115, and provide a description of the emergency destruction of structural elements of a 9-storey panel residence building of this type (built in 1979), following a gas explosion. The overall length of the building is 86.4 m; its width is 12 m. The structural system in this building represents a longitudinal wall. Its external longitudinal walls are wade of ceramsite concrete, while its interior walls are made of concrete. Its reinforced concrete hollow slabs rest on the longitudinal load-bearing walls. The transverse walls of staircases are made of concrete blocks. The strip foundation supports the load-bearing walls of the building. The epicenter of the explosion was located in the kitchen on the eighth floor of the building. The kitchen was immediately adjacent to the staircase of the building. Partial destruction of the building followed the gas explosion. Exterior walls of its eighth and ninth floors and the attic were destroyed. Panel buildings designed in pursuance of the longitudinal structural system are more vulnerable to explosive loads compared to buildings designed to the cross-wall structural system, where bearing slabs rest on three interior walls. Thus, all slabs rest on each of the three internal walls of the building on both sides. In the buildings designed to the longitudinal wall structural system, slabs rest on the two walls, one of which is external. The article is based on the report following the inspection of the technical condition of the building, undertaken subsequent to its emergency destruction.

DOI: 10.22227/1997-0935.2014.11.109-117

References
  1. Tipovoy proekt 111-94-43/75.2 Dom 9-etazhnyy 4-sektsionnyy 144-kvartirnyy [The Standard Project 111-94-43/75.2 9-storey 4-section 144-apartment Residential Building]. Moscow, MNIITEP Publ., 1969. Available at: http://allproekt.ru/catalog/project/599606. Date of access: 11.09.2014. (In Russian).
  2. Bulgakov S.N., Tamrazyan A.G., Rakhman I.A., Stepanov A.Yu. Snizhenie riskov v stroitel’stve pri chrezvychaynykh situatsiyakh prirodnogo i tekhnogennogo kharaktera [Reduction of Risks in the Construction in Emergency Situations of Natural and Technogenic Character]. Moscow, MAKS Press, 2004, pp. 180—209. (In Russian).
  3. Posobie po proektirovaniyu zhilykh zdaniy. Vyp. 3. Konstruktsii zhilykh zdaniy (k SNiP 2.08.01—85) [Guidelines on Design of Residential Houses. Issue 3. Constructions of Residential Houses (to SNiP 2.08.01—85)]. Moscow, TsNIIEPzhilishcha Publ., 1986, 305 p.
  4. Maklakova T.G. Konstruirovanie krupnopanel'nykh zdaniy [Construction of Large-panel Buildings]. Moscow, Stroyizdat Publ., 1975, pp. 33—35. (In Russian).
  5. Kashevarova G.G., Pepelyaev A.A. Modelirovanie i retrospektivnyy analiz vzryva bytovogo gaza v kirpichnom zdanii [Modeling and Lookback Study of Utility Gas Explosion in Brick Buildings]. Stroitel’naya mekhanika i raschet sooruzheniy [Structural Mechanics and Calculation of Buildings]. 2010, no. 2, pp. 31—36. (In Russian).
  6. Mkrtychev O.V., Dorozhinskiy V.B. Veroyatnostnoe modelirovanie vzryvnogo vozdeystviya [Probabilistic Modeling of Explosive Loading]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2012, no. 11, pp. 278—282. (In Russian).
  7. Mkrtychev O.V., Dorozhinskiy V.B. Analiz podkhodov k opredeleniyu parametrov vzryvnogo vozdeystviya [Assessment of Reliability of the Foundation Slab Resting on the Linearly Deformable Bed and Characterized by the Modulus of Deformation Variable in X- and Y-axis Directions]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2012, no. 5, pp. 45—49. (In Russian).
  8. Mkrtychev O.V., Dorozhinskiy V.B. Bezopasnost’ zdaniy i sooruzheniy pri vzryvnykh vozdeystviyakh [The safety of buildings and structures under explosive effects]. Vestnik NITs Stroitel’stvo [Proceedings of Scientific Research Center Construction]. 2011, no. 3—4, pp. 21—34. (In Russian).
  9. Maes M.A., Fritzsons K.E., Glowienka S. Structural Robustness in the Light of Risk and Consequence Analysis. Structural Engineering International. 2006, vol. 16, no. 2, pp. 101—107. DOI: http://dx.doi.org/10.2749/101686606777962468.
  10. Kashevarova G.G., Pepelyaev A.A., Zobacheva A.Yu. Vozdeystvie vzryva bytovogo gaza na protsess deformirovaniya i razrusheniya konstruktsiy kirpichnogo zhilogo zdaniya [Impact of Utility Gas Explosion on the Deformation and Fracture of the Constructions of Brick Residential Buildings]. SWold : sbornik nauchykh trudov. Sovremennye napravleniya teoreticheskikh i prikladnykh issledovaniy 2012 : materialy mezhdunarodnoy nauchno-prakticheskoy konferentsii [SWold: Collection of Scientific Works. Current Trends of Theoretical and Applied Investigations 2012 : Materials of International Science and Practice Conference]. Odessa, KUPRIENKO Publ., 2012, issue 1, vol. 4, pp. 58—61. (In Russian).
  11. Kashevarova G.G., Pepelyaev A.A. Issledovanie problemy zashchity tipovykh zhilykh zdaniy ot progressiruyushchego razrusheniya [Study of the Problems of Standard Residential Buildings Protection from Progressive Collapse]. International Journal for Computational Civil and Structural Engineering. 2008, vol. 4, issue. 2, pp. 69—70. (In Russian).
  12. Pilyugin L.P. Obespechenie vzryvoustoychivosti zdaniy s pomoshch’yu predokhranitel’nykh konstruktsiy [Providing Explosion Stability of Buildings with Safety Constructions]. Moscow, Pozharnaya bezopasnost’ i nauka Publ., 2000, 224 p. (In Russian).
  13. Timothy Beach, Peggy Van Eepoel. Blast Protection and Historic Preservation. Civil Engineerig. October, 2012, pp. 66—71.
  14. Smith J.W. Structural Robustness Analysis and the Fast Fracture Analogy // Structural Engineering International. 2006, vol. 16, no. 2, pp. 118—123. DOI: http://dx.doi.org/10.2749/10.2749/101686606777962521.
  15. Starossek U. Typology of Progressive Collapse. Engineering Structures. 2007, vol. 29, no. 9, pp. 2302—2307. DOI: http://dx.doi.org/10.1016/j.engstruct.2006.11.025.
  16. Starossek U. Disproportionate Collapse: a Pragmatic Approach. Structures and Buildings. 2007, vol. 160, no. 6, pp. 317—325. DOI: http://dx.doi.org/10.1680/stbu.2007.160.6.317.
  17. Starossek U., Haberland M. Disproportionate Collapse: Terminology and Procedures. Journal of Performance of Constructed Facilities. 2010, vol. 24, no. 6, pp. 519—528. DOI: http://dx.doi.org/10.1061/(ASCE)CF.1943-5509.0000138.
  18. Ellingwood B.R., Dusenberry D.O. Building Design for Abnormal Loads and Progressive Collapse. Infrastructure Engineering. 2005, vol. 20, no. 3, pp. 194—205. DOI: http://dx.doi.org/10.1111/j.1467-8667.2005.00387.x.
  19. Starossek U., Haberland M. Approaches to Measures of Structural Robustness. Structure and Infrastructure Engineering. 2011, vol. 7, nos. 7 and 8, pp. 625—631. DOI: http://dx.doi.org/10.1080/15732479.2010.501562.
  20. Al’bom rabochikh chertezhey po vosstanovleniyu konstruktsiy razrushennogo vzryvom gaza 9-etazhnogo doma po adresu: MO, g. Sergiev Posad, pos. Zagorskie Dali, d. 3 (OAO «KB im. A.A. Yakusheva») [Album of Working Drawings for Restoration of the Constructions of 9 Storey Building Destroyed by a Gas Explosion at Moscow Region, Sergiev Posad, Zagorskie Dali village, 3]. Moscow, 2013. (In Russian).

Download

RESEARCH OF BUILDING MATERIALS

Determination of the heating temperature of potholes surface on road pavement in the process of repairs using hot asphalt concrete mixes

  • Giyasov Botir Iminzhonovich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Associate Professor, chair, Department of Architectural and Construction Design, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7 (495) 287-49-14; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Zubkov Anatoliy Fedorovich - Tambov State Technical University (TSTU) Doctor of Technical Sciences, Associate Professor, Department of Urban Development and Motor Roads, Tambov State Technical University (TSTU), 112 E Michurinskaya str., 392032, Tambov, Russian Federation; +7 (4752) 63-09-20, 63-03-72; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Andrianov Konstantin Anatol’evich - Tambov State Technical University (TSTU) Candidate of Technical Sciences, Associate Professor, Department of Urban Development and Motor Roads, Tambov State Technical University (TSTU), 112 E Michurinskaya str., 392032, Tambov, Russian Federation; +7 (4752) 63-09-20, 63-03-72; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 118-127

In the process of roads construction the necessary transport and operational characteristics should be achieved, which depend on the quality of the applied, material and technologies. Under the loads of transport means and the influence of weather conditions on the road pavement deformations and destructions occur, which lead to worsening of transport and operational characteristics, decrease of operational life of the road and they are often the reason of road accidents. According to the data of the Strategic Research Center of "Rosgosstrah" more than 20 % of road accidents in Russia occur due to bad quality of road pavement. One of the main directions in traffic security control and prolongation of operational life for road pavement of non-rigid type is road works, as a result of which defects of pavement are eliminated and in case of timely repairs of high quality the operational life of the road increases for several years. The most widely used material for non-rigid pavement repairs is hot road concrete mixes and in case of adherence to specifications they provide high quality of works. The authors investigate the problems of hot asphalt concrete mixes for repairs of road surfaces of non-rigid type. The results of the study hot asphalt concrete mix’s temperature regimes are offered in case of repair works considering the temperature delivered to the work site and the ambient temperature depending on the type of mix and class of bitumen.

DOI: 10.22227/1997-0935.2014.11.118-127

References
  1. B?chler S., Wistuba M.P. Modellierung des K?lteverhaltens von Asphalten. Strasse und Autobahn. 2012, no. 4, pp. 233—240.
  2. Wellner F., Werkmeister S., Ascher D. Auswirkung der Alterung und des Schichtenverbundes auf den Beanspruchungs zustand von Asphaltbefestigungen. Strasse und Autobahn. 2012, no. 7, pp. 430—437.
  3. Evdorides H.T., Snaitin M.S. A Knowledge-based Analyses Process for Road Pavement Condition Assessment. Proceedings of the ICE — Transport. 1996, vol. 117, Aug., pp. 202—210. DOI: http://dx.doi.org/10.1680/itran.1996.28631.
  4. Snyder R.W. Asphalt Paving: Smoothing Nerves. Roads & Bridges. 2014, no. 3. Available at: http://www.roadsbridges.com/asphalt-paving-smoothing-nerves. Date of access: 14.10.2014.
  5. Fort L. No 5 Road: Massive Impact. Roads & Bridges. 2014, no. 5. Available at: http://www.roadsbridges.com/no-5-road-massive-impact. Date of access: 14.10.2014.
  6. Hofko B., Blab R. Einfluss der Verdichtungsrichtung auf das mechanische Verhalten von Asphaltprobek?rpern aus walzsegmentverdichteten Platten. Stra?e und Autobahn. 2013, vol. 64, no. 7, pp. 522—530.
  7. Vasil’ev A.P., Bystrov N.V., Nadezhko A.A., Fedotov G.A., Pospelov P.I., editors. Spravochnaya entsiklopediya dorozhnika. T. 2. Remont i soderzhanie avtomobil’nykh dorog [Reference Book of Road Worker. Vol. 2. Repairs and Maintenance of Roads]. Moscow, Informavtodor Publ., 2004, 1129 p. (In Russian)
  8. Sostoyanie avtomobil’nykh dorog v Rossii [Condition of Roads in Russia]. Website Klintsy.ru. 09.04.2011. Available at: http://www.klintsy.ru/auto/sostojanie-avtomobilnykhdorog-v-rossii_2014.html. Date of access: 19.09.2014. (In Russian)
  9. Kupriyanov R.V., Evseev E.Yu. Analiz tekhnologiy dlya remonta vyboin na pokrytiyakh nezhestkogo tipa [Repairs Technologies Analysis of Potholes on Pavements of Non-rigid Type]. Dorogi Rossii XXI veka [Roads of Russia in the 21st Century]. 2010, no. 4, pp. 84—87. (In Russian)
  10. Apestin V.K. O raskhozhdenii proektnykh i normativnykh mezhremontnykh srokov sluzhby dorozhnykh odezhd [On the Disagreement of Design and Normative Intermaintenance Period of Road Pavements]. Nauka i tekhnika v dorozhnoy otrasli [Science and Technology in Road Field]. 2011, no. 1, pp. 18—20.
  11. Aleksikov S.V. Abdulzhalilov O.Yu., Osobennosti transportirovki goryachikh asfal’tobetonnykh smesey pri remonte dorozhnykh pokrytiy v gorodskikh usloviyakh [Features of Transport Hot Asphalt Concrete Mixes in the Process of Road Pavement Repairs in City Conditions]. Vestnik Volgogradskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. Seriya: Stroitel’stvo i arkhitektura [Proceedings of Volgograd State University of Architecture and Civil Engineering. Series: Construction and Architecture]. 2009, no. 16, pp. 65—71. (In Russian)
  12. Abdulzhalilov O.Yu., Aleksikov S.V., Karpushko M.O. Ukladka goryachikh asfal’tobetonnykh smesey pri remonte pokrytiy gorodskikh dorog [Laying of Hot Asphalt Concrete Mixes in the Process of Repairs of City Roads’ Pavement]. Vestnik Volgogradskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. Seriya: Stroitel’stvo i arkhitektura [Proceedings of Volgograd State University of Architecture and Civil Engineering. Series: Construction and Architecture]. 2010, no. 17, pp. 35—42. (In Russian)
  13. Abdulzhalilov O.Yu., Aleksikov S.V., Karpushko M.O. Issledovanie zavisimosti proizvoditel’nosti ABZ ot proizvodstvennykh usloviy [Investigation of the Dependence of Asphalt Concrete Mixing Plant Productivity from Production Conditions]. Uchenye Volgograda — razvitiyu goroda : sbornik statey [School of Volgograd for the Development of the City: Collection of Articles]. Volgograd, MUP «Gorodskie vesti» Publ., 2009, pp. 102—104. (In Russian)
  14. Abdulzhalilov O.Yu., Aleksikov S.V., Karpushko M.O. Transportnoe obespechenie stroitel’stva dorozhnykh pokrytiy dorog [Transport Provision for Road Pavement Construction]. Progress transportnykh sredstv i sistem, 2009 : materialy mezhdunarodnoy nauchnoprakticheskoy konferentsii, Volgograd. 13—15 oktyabrya 2009 goda [Progress of Transport Facilities and Systems, 2009 : Materials of International Scientific and Practical Conference, Volgograd. October 13—15, 2009]. Volgograd, Volgograd State Technical University Publ., 2009, part. 2, pp. 95—96. (In Russian)
  15. Abdulzhalilov O.Yu., Aleksikov S.V. Optimizatsiya marshruta perevozki goryachikh asfal’tobetonnykh smesey v gorodskikh usloviyakh [Optimization of Transport Route of Hot Asphalt Concrete Mixes in City Conditions]. Progressivnye tekhnologii v transportnykh sistemakh : sbornik materialov IX rossiyskoy nauchno-prakticheskoy konferentsii (26—27 noyabrya 2009 g.) [Progressive Technologies in Transport Systems : Collection of Works of the 9th Russian Science and Practice Conference (October 26—27, 2009)]. Orenburg, IPK GOU OGU Publ., 2009, pp. 21—23. (In Russian)
  16. Abdulzhalilov O.Yu., Aleksikov S.V. Operativnoe upravlenie resursnym obespecheniem stroitel’stva asfal’tobetonnykh pokrytiy [Operational Management of Resources Provision for Constructing Asphalt Concrete Pavement]. Maloetazhnoe stroitel’stvo v ramkakh natsional’nogo proekta «Dostupnoe i komfortnoe zhil’e grazhdanam Rossii»: materialy mezhdunarodnoy nauchno-prakticheskoy konferentsii [Low-Rise Construction in Frames of National Project "Affordable and Comfortable Housing for Russian Citizens" : Materials of International Svience and Practice Conference]. December 15—16, 2009, Volgograd, VolgGASU Publ., 2009, pp. 439—441. (In Russian)
  17. Zubkov A.F., Matveev V.N., Evseev E.Yu. Razrabotka teplofizicheskoy modeli pri proizvodstve remontnykh rabot pokrytiy nezhestkogo tipa [Development of Thermophysical Model in Case of Repair Works of Non-rigid Type Pavements] // Vestnik tsentral'nogo regional'nogo otdeleniya Rossiyskoy akademii arkhitektury i stroitel'nykh nauk [Proceedings of Central Regional Department of the Russian Academy of Architecture and Construction Sciences]. Tambov — Voronezh, 2012, no. 11, pp. 303—309. (In Russian)
  18. Zubkov A.F., Odnol’ko V.G. Tekhnologiya stroitel’stva asfal’tobetonnykh pokrytiy avtomobil’nykh dorog [Construction Technology of Asphalt Concrete Road Pavements]. Moscow, Mashinostroenie Publ., 2009, 223 p. (In Russian).
  19. Zubkov A.F. Tekhnologiya ustroystva pokrytiy iz goryachikh asfal’tobetonnykh smesey s uchetom temperaturnykh rezhimov [Technology of Pavement Construction of Hot Asphalt Concrete Mixes with Account for Temperature Modes]. Tambov, Pershina R.V. Publ., 2006, 152 p. (In Russian)
  20. Zubkov A.F., Khrebtova O.A., Matveev V.N., Evseev E.Yu. Raschet temperatury goryachego asfal’tobetona v ogranichennom ob”eme vyemki dorozhnogo pokrytiya. Svidetel’stvo o gosudarstvennoy registratsii programmy dlya EVM ¹ 2013661215 [Calculation of Hot Asphalt Concrete Temperature in Limited Volume of Road Pavement Pothole. State Registration Certificate of a Program for a Computer no. 2013661215]. 02.12.2013. (In Russian)

Download

Using rice straw to manufacture ceramic bricks

  • Gorbunov German Ivanovich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Professor, Department of Technology of Finishing and Insulation Materials, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Rasulov Olimdzhon Rakhmonberdievich - Moscow State University of Civil Engineering (MGSU) postgraduate student, Department of Technology of Finishing and Insulation Materials, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 128-136

In the article, the co-authors offer their advanced and efficient methodologies for the recycling of the rice straw, as well as the novel approaches to the ceramic brick quality improvement through the application of the rice straw as the combustible additive and through the formation of amorphous silica in the course of the rice straw combustion. The co-authors provide characteristics of the raw materials, production techniques used to manufacture ceramic bricks, and their basic properties in the article. The co-authors describe the simulated process of formation of amorphous silica. The process in question has two independent steps (or options): 1) rice straw combustion and ash formation outside the oven (in the oxidizing medium), and further application of ash as the additive in the process of burning clay mixtures; 2) adding pre-treated rice straw as the combustible additive into the clay mixture, and its further burning in compliance with the pre-set temperature mode. The findings have proven that the most rational pre-requisite of the rice straw application in the manufacturing of ceramic bricks consists in feeding milled straw into the clay mixture to be followed by molding, drying and burning. Brick samples are highly porous, and they also demonstrate sufficient compressive strength. The co-authors have also identified optimal values of rice straw and ash content in the mixtures under research.

DOI: 10.22227/1997-0935.2014.11.128-136

References
  1. Adylov D.K., Bekturdiev G.M., Yusupov F.M., Kim R.N. Tekhnologiya polucheniya modifitsirovannykh volokon iz otkhodov agropromyshlennogo kompleksa dlya ispol'zovaniya pri proizvodstve asbestotsementnykh izdeliy [The Technology of Producing Modified Fibres of Agricultural Sector Waste for Producing Asbestos Cement Products]. Sotrudnichestvo dlya resheniya problemy otkhodov : materialy 8 Mezhdunarodnoy konferentsii, 23—24 fevralya 2011 goda, Khar'kov [Cooperation for Deciding the Problem of Waste: Materials of the 8th International Conference, February 23—24, 2011, Kharkiv]. Available at: http://waste.ua/cooperation/2011/theses/adylov.html. Date of access: 20.05.2014. (In Russian)
  2. Vinogradov V.V., Bylkov A.A., Vinogradov D.V. Patent RF ¹ 2171780, MPK Ñ01Â33/12, Ñ01Â33/32, Ñ09Ñ1/48. Tekhnologicheskiy modul' kompleksnoy pererabotki risovoy shelukhi. Zayavl. 05.10.1999 ; opublikovano 10.08.2001 [Russian Patent no. 2171780, MPK Ñ01Â33/12, Ñ01Â33/32, Ñ09Ñ1/48. Technological Modulus of Complex Processing of Rice Hulls. Appl. 05.10.1999 ; Publ. 10.08.2001]. Available at: http://www.findpatent.ru/patent/217/2171780.html/. Date of access: 20.05.2014. (In Russian)
  3. Vurasko A.V., Minakova A.R., Gulemina N.N., Driker B.N. Fiziko-khimicheskie svoystva tsellyulozy, poluchennoy okislitel'no-organosol'ventnym sposobom iz rastitel'nogo syr'ya [Physical and Chemical Properties of Cellulose Obtained by Oxidating-Organosolv Way of Vegetable Raw Materials]. Lesa Rossii v XXI veke : materialy 1-y Mezhdunarodnoy nauchno-prakticheskoy internet-konferentsii, iyun' 2009 [Forests of Russia in the 21st Century : Materials of the 1st International Scientific and Practical Internet-Conference, June 2009]. Saint Petersburg, 2005, pp. 231—233. (In Russian)
  4. Monsef Shokri R., Khripunov A.K., Baklagina Yu.G., Gofman I.V., Astapenko E.P., Smyslov R.Yu., Pazukhina G.A. Issledovanie komponentnogo sostava risovoy solomy IRI i svoystv poluchaemoy iz nee tsellyulozy [Investigation of the Composition of Rice Straw IRI and the Properties of Cellulose Obtained from It]. Novye dostizheniya v khimii i khimicheskoy tekhnologii rastitel'nogo syr'ya : materialy III Vserossiyskoy konferentsii 23—27 aprelya 2007 goda: v 3-kh knigakh [New Achievements in Chemistry and Chemical Technologies of Vegetable Raw Materials : Materials of the 3rd All-Russian Conference, April, 23—27, 2007 : in 3 volumes]. Barnaul, AltGU Publ., 2007, vol. 1, pp. 53—55. (In Russian)
  5. Vurasko A.V., Driker B.N., Mozyreva E.A., Zemnukhova L.A., Galimova A.R., Gulemina N.N. Resursosberegayushchaya tekhnologiya polucheniya tsellyuloznykh materialov pri pererabotke otkhodov sel’skokhozyaystvennykh kul’tur [Resource Saving Technology for Obtaining Cellulose Materials in Case of Crop Residues Processing]. Khimiya rastitel’nogo syr’ya [Vegetable Raw Materials Chemistry]. 2006, no. 4, pp. 5—10. (In Russian)
  6. Vurasko A.V., Driker B.N., Galimova A.R., Mertin E.V., Chistyakova K.N. Patent RF ¹ 2418122, MPK D21C3/26, D21C3/02, D21C3/04, D21C5/00. Sposob polucheniya tsellyulozy iz solomy risa. Zayavl. ¹ 2010118642/12, 07.05.2010; opubl. 10.05.2011. Byul. ¹ 13 [Russian Patent no. 2418122. MPK D21C3/26, D21C3/02, D21C3/04, D21C5/00. Method of Obtaining Cellulose of Rice Straw. No. 2010118642/12, Appl. 07.05.2010; Publ. 10.05.2011. Bull. no. 13]. Patent holder Ural State Forest Engineering University; 5 p. (In Russian)
  7. Dobrzhanskiy V.G., Zemnukhova L.A., Sergienko V.I. Patent RF ¹ 2106304. Sposob polucheniya vodorastvorimykh silikatov iz zoly risovoy shelukhi. ¹ 96118801; zayavl. 23.09.1996; opubl. 10.03.1998 [Russian Patent no. 2106304. Method of Obtaining Water-Soluble Silicates of Rice Straw Ashes. No. 96118801; appl. 23.09.1996; publ. 10.03.1998]. Patent holder Chemistry Institute of Far Eastern Branch of RAS. Available at: http://www.freepatent.ru/patents/2106304. Date of access: 20.05.2014. (In Russian)
  8. Pazukhina G.A., Sh.R. Monsef. Patent RF ¹ 2423570. MPK D21C1/06, D21C3/02, D21C5/00. Sposob polucheniya tsellyulozy iz solomy. ¹ 2010129321/12 ; zayavl. 16.07.2010; opubl. 10.07.2011, Byul. ¹ 19 [Russian Patent no. 2423570. MPK D21C1/06, D21C3/02, D21C5/00. Method of Obtaining Cellulose of the Straw. No. 2010129321/12 ; appl. 16.07.2010; Publ. 10.07.2011; Bulletin no. 19]. 6 p. Available at: http://www.freepatent.ru/patents/2423570. Date of access: 20.05.2014. (In Russian)
  9. Vinogradov V.V., Vinogradova E.P. Patent RF ¹ 2191159. MPK C01B33/00. Sposob polucheniya ul'tradispersnogo amorfnogo ili nanokristallicheskogo dioksida kremniya. ¹: 2001113925/12; zayavl. 25.05.2001; opubl. 20.10.2002 [Russian Patent no. ¹ 2191159. MPK C01B33/00. Method of Obtaining Ultradisperse Amorphic or Nanocrystal Silicon Dioxide. No. 2001113925/12; appl. 25.05.2001; publ. 20.10.2002]. Patent Holder N.A. Khachaturov. Available at: http://www.freepatent.ru/patents/2191159. Date of access: 20.05. 2014. (In Russian)
  10. Vinogradov V.V., Vinogradova E.P. Patent: RF ¹ 2191158. MPK. Ñ01Â33/12. Sposob podgotovki risovoy shelukhi dlya polucheniya vysokochistogo dioksida kremniya. ¹: 2001113525/12; zayavl. 22.05.2001; opubl. 20.10.2002 [Russian Patent no. 2191158. MPK. Ñ01Â33/12. Method of Preparing Rice Hulls for Obtaining High-purity Silicon Dioxide. No. 2001113525/12; appl. 22.05.2001; publ. 20.10.2002]. Patent holder N.A. Khachaturov. Available at: http://www.findpatent.ru/patent/219/2191158.html/. Date of access: 20.05.2014. (In Russian)
  11. Zemnukhova L.A., Fedorishcheva G.A. Patent RF ¹ 2394764. MPK Ñ01Â33/12; Â82Â1/00. Sposob polucheniya dioksida kremnya. ¹ 2009114380/15, zayavl. 15.04.2009; opubl. 20.07.2010. Byul. ¹ 20 [Russian Patent no. 2394764. MPK Ñ01Â33/12; Â82Â1/00. Method of Obtaining Silicon Dioxide. No. 2009114380/15, appl. 15.04.2009; publ. 20.07.2010. Billetin no. 20]. 8 p. Patent holder Chemistry Institute of Far Eastern Branch of RAS. Available at: http://www.freepatent.ru/patents/2394764. Date of access: 20.05.2014. (In Russian)
  12. Zemnukhova L.A., Fedorishcheva G.A., Egorov A.G., Sergienko V.I. Issledovanie usloviy polucheniya, sostava primesey i svoystv amorfnogo dioksida kremniya iz otkhodov proizvodstva risa [Investigation of the Obtaining Conditions, Admixture Composition and Properties of the Amorphous Silicon Dioxide of Rice Production Waste]. Zhurnal prikladnoy khimii [Applied Chemistry Journal]. 2005, vol. 78, no. 2, pp. 324—328. (In Russian)
  13. Skryabin A.A., Sidorov A.M., Puzyrev E.M, Shchurenko V.P. Patent RF 2291105. MPK Ñ01Â33/12; F23Ñ9/00. Sposob polucheniya dioksida kremniya i teplovoy energii iz kremniysoderzhashchikh rastitel'nykh otkhodov i ustanovka dlya szhiganiya melkodispersnykh materialov. Zayavl. 06.09.2005; opubl. 10.01.2007. Byul. ¹ 1 [Russian Patent no. 2291105. MPK Ñ01Â33/12; F23Ñ9/00. Method of Obtaining Silicon Dioxide and Heat Energy of Siliceous Vegetable Raw Materials and Installation for Burning Fine Materials. Appl. 06.09.2005; publ. 10.01.2007. Bulletin no. 1]. Patent holder Research and Design Canter “Biyskenergomash”, 10 p. Available at: http://www.freepatent.ru/patents/2291105. Date of access: 20.05.2014. (In Russian)
  14. Barmin M.I., Golubev M.I., Grebenkin A.N., Kartavykh V.P., Mel’nikov V.V. Tsellolignin v kachestve vygorayushchey dobavki pri proizvodstve keramicheskogo kirpicha [Cellolignin as a Combustible Addition in the Process of Ceramic Brick Production]. StroyPROFIl’ [Construction Profile]. 2008, no. 4-08, pp. 54—56. Available at: http://stroyprofile.com/archive/3122. Date of access: 20.05.2014. (In Russian)
  15. Rumyantsev B.M., Dang Shi Lan. Penozolobeton s aktivnym kremnezemom [Foam Ash Concrete with Activated Silica]. Stroitel’nye materialy, oborudovanie, tekhnologii XXI veka [Construction Materials, Equipment, Technologies of the 21st Century]. 2006, no. 6, pp. 38—40. (In Russian)
  16. Gorbunov G.I., Rasulov O.R. Problemy ratsional’noy utilizatsii risovoy solomy [Problems of Rational Straw Utilization]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2013, no. 7, pp. 106—113. (In Russian)
  17. Zhukov A.D., Gorbunov G.I., Belash N.V. Energosberegayushchaya tekhnologiya keramicheskoy plitki [Energy Saving Technology of Ceramic Tiles]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2013, no. 10, pp. 122—130. (In Russian)
  18. Zemnukhova L.A., Yudakov A.A., Sergienko V.I. Patent RF ¹ 2245300, MPK C01B33/12, 33/18; F23G7/10. Sposob pererabotki kremniysoderzhashchego syr'ya i ustanovki dlya ego osushchestvleniya. ¹: 2003137329/15; zayavl. 24.12.2003; opubl. 27.01.2005. Byul. ¹ 3 [Russian Patent no. 2245300. Method of Processing Siliceous Raw Materials and Installations for that. No. 2003137329/15; appl. 24.12.2003; publ. 27.01.2005. Bulletin no. 3]. 10 p. Available at: http://www.freepatent.ru/images/patents/223/2245300/patent-2245300.pdf. Date of access: 20.05.2014. (In Russian)

Download

HYDRAULICS. ENGINEERING HYDROLOGY. HYDRAULIC ENGINEERING

Measurement method applicable to the liquid level in elevation meters

  • Ambartsumyan Petros Vardgesovich - Yerevan State University of Architecture and Construction (YSUAC) Doctor of Technical Sciences, Associate Professor, Dean, Construction Department, Yerevan State University of Architecture and Construction (YSUAC), 105a Teryan str, Yerevan, 3750009, Armenia; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Palikyan Frunz Akopovich - Yerevan State University of Architecture and Construction (YSUAC) postgraduate student, Department of Engineering Geodesy, Yerevan State University of Architecture and Construction (YSUAC), 105a Teryan str, Yerevan, 3750009, Armenia; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 137-144

The co-authors offer a new method designated for the measurement of the liquid level inside hydrostatic and hydrodynamical elevation meters. This innovative leveling method prevents any temperature influence on the measurement results in each vessel, although the temperature inside the vessels does not need to be measured. The result is reduced to the base temperature value inside each vessel. Another strength of this method consists in its insensitivity to the liquid temperature in the vessels or to the difference of temperatures. Moreover, there is no need to be aware of the function describing the temperature to density correlation, whereas the accuracy that ensures the prevention of any influence of the temperature-induced error is solely determined by the accuracy of the liquid level registration alongside the top edge of the float. Besides, the temperature range being measured is unimportant, although it must remain within the limits that assure the preservation of the water properties (to prevent boiling, freezing, etc.).

DOI: 10.22227/1997-0935.2014.11.137-144

References
  1. Movsesyan R.A., Taplashvili I.A., Vardanyan V.N. Patent SSSR 480906. Sposob gidrodinamicheskogo nivelirovaniya. ¹ 1904526/18-10. Zayavl. 06.04.73, opubl. 15.08.75. 1975. Byull. ¹ 30 [USSR Patent 480906. Method of Hydrodynamic Leveling. No. 1904526/18-10. Appl. 06.04.73, publ. 15.08.75. 1975. Bulletin no. 30]. 3 p. (In Russian)
  2. Sinanyai R.R., Babayan G.A., Taplashvili I.A. Eksperimental'nye issledovaniya sistemy gidrodinamicheskogo nivelirovaniya s polnym tsiklom izmereniy [Experimental Investigation of Hydrodynamic Leveling System with Full Cycle of Changes]. Problemy inzhenernoy geodezii : mezhvuzovskiy tematicheskiy sbornik nauchnykh trudov [Problems of Engineering Geodesy : Interuniversity Subject Collection of Scientific Works]. Erevan, ErPI Publ., 1983, pp. 34—41. (In Russian)
  3. Movsesyan R.A, Pogosyan A.G., Babayan G.A., Dzhenteredzhyan A.G. Patent SSSR 1106989. Sistema gidrodinamicheskogo nivelirovaniya. 3612045/18-10. Zayavl. 29.06.83, opubl. 07.08.84. 1984. Byul. ¹ 29 [USSR Patent 1106989. Hydrodynamic Leveling System. 3612045/18-10. Appl. 29.06.83, publ. 07.08.84. 1984. Bulletin no. 29]. 5 p. (In Russian)
  4. Beglaryan A.G., Ambartsumyan P.V., Babayan G.S., Pogosyan V.V. K voprosu teoreticheskogo obosnovaniya sposoba gidrostaticheskogo nivelirovaniya [To the Problem of Theoretical Justification of Hydrodynamic Leveling Method]. Izvestiya ERGUAS [News of Yerevan State University of Architecture and Construction]. 2011, no. 6, pp. 3—6. (In Russian)
  5. Schell G. Sistematische Fehler des hydrostatischen Nivellements und Verfahren zu ihrer Ausschalting. Ver?ff Dtsch. Geod. Komiss Bayer Akad. Wiss., D,m 1956, no. 27.
  6. Svagr V. Vyuziti soupravy hydrostatisckech var problemi presnou nivelaci v dolech. Prace vyzkum ustavu, Rudy. 1962, no. 8, 10, 11.
  7. Movsesyan R.A., Barkhudaryan A.M. Teoreticheskie osnovy gidrodinamicheskogo nivelirovaniya [Theoretical Basis of Hydrodynamic Leveling]. Izvestiya vuzov. Geodeziya i aerofotos"emka [News of the Institution of Higher Education. Geodesy and Aerial Survey]. 1976, no. 1, pp. 9—14. (In Russian)
  8. Vardanyan V.N., Taplashvili I.A., Beglaryan A.G. Eksperimental'noe issledovanie opredeleniya popravok za temperaturu pri gidrodinamicheskom nivelirovanii [Experimenta; Study of Temperature Correction Determination at Hydrodynamic Leveling]. Geodeziya i kartografiya [Heodesy and Mapping]. 1984, no. 4, pp. 27—28. (In Russian)
  9. Barkhudaryan A.M., Movsesyan R.A. Uchet vliyaniya temperatury na tochnost' izmereniy pri gidrodinamicheskom nivelirovanii [Account for Temperature Changes Influence on Accuracy of Measurements at Hydrodynamic Leveling]. Izvestiya vuzov. Geodeziya i aerofotos"emka [News of the Institution of Higher Education. Geodesy and Aerial Survey]. 1981, no. 6, pp. 12—16. (In Russian)
  10. Trozyan K.R. Opredelenie prevysheniya tochek s pomoshch'yu gidrodinamicheskogo nivelirovaniya [Determining the Difference in Level between Points with the Help of Hydrodynamic Leveling]. Izvestiya Akademii nauk Armyanskoy SSR. Nauka o Zemle. XXXIII [News of Armenian SSR Academy of Sciences. Earth Science. XXXIII]. 1980, no. 6, pp. 96—102. (In Russian).
  11. Vasyutinskiy I.Yu. Gidrodinamicheskoe nivelirovanie [Hydrodynamic Leveling]. Moscow, Nedra Publ., 1976, 167 p. (In Russian)
  12. Barkhudaryan A.M., Movsesyan R.A., Ambartsumyan P.V. Opredelenie prevysheniy pri gidrodinamicheskom nivelirovanii [Determination of Exceedances in the Process of Hydrodynamic Leveling]. Izvestiya Akademii nauk Armyanskoy SSR. Seriya: Tekhnicheskie nauki. XXXVI [News of Armenian SSR Academy of Sciences. Series: Technicak Sciences. XXXVI]. 1983, no. 2, pp. 33—37. (In Russian)
  13. Barkhudaryan A.M., Movsesyan R.A., Ambartsumyan P.V. Patent SSSR 1044975. Sposob gidrodinamicheskogo nivelirovaniya. ¹ 3367285/18-10. Zayavl. 11.12.,81, opubl. 30.09.83. 1983. Byul. ¹ 36 [USSR Patent 1044975. Hydrodynamic Leveling Method. No. 3367285/18-10. Appl. 11.12.,81, publ. 30.09.83. 1983. Bulletin no. 36]. 4 p. (In Russian)
  14. Ambartsumyan P.V. Opredelenie osadkov fundamentov sooruzheniy i oborudovaniya 5-go energobloka Razdanskoy TES s ispol'zovaniem gidronivelirovaniya [Determination of Foundation Settlement of the Structures and Equipment of the 5th Electric Power Unit of Razdan TPP with Application of Hydrodynamic Leveling]. Sbornik nauchnykh trudov ErGUAS [Collection of Scientific Papers of Yerevan State University of Architecture and Construction]. 2012, vol. III (46), pp. 98—102. (In Russian)
  15. Kiviniemi A. Measurements of Wave Motion in the Ice Surface. Suomen geod. Laitok, tied. 1975, no. 4, 12 p.

Download

Effect of fine-dispersed inclusions on the critical velocity analysis in the two-phase flow

  • Volgina Lyudmila Vsevolodovna - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Associate Professor, Department of Hydraulic Engineering and Water Resources, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Medzveliya Manana Levanovna - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Associate Professor, Department of Hydraulic Engineering, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Chemeris Ol’ga Gennad’yevna - Moscow State University of Civil Engineering (MGSU) postgraduate student, Department of Hydraulic Engineering and Water Resources, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 145-153

The co-authors have designated the point for the identification of the critical velocity and intensity of the hydro-abrasive wear within the framework of the two-phase flow mechanics challenges. In this article, the two-phase flow is analyzed as the flow that has the solid phase, including ore particles, concentrates and tailings, solid fuel combustion products, sand, and construction materials, etc., and as the flow containing the liquid phase, or water. The authors have identified the influence produced by the presence of fine-dispersed solid particles in the two-phase flows that transport the milled ore concentrate due to the presence of the water. Variations in critical velocity values, driven by the per-cent clay content in the ore, were exposed to the experimental research performed by the Laboratory of Hydraulic Transportation at the Hydraulics Department, MGSU. The experimental data are consistent with the findings of the analysis of the influence produced by dust fractions on the critical velocity at the Eastern site’s placer of Malyshev deposit. The co-authors offer their methodology for the refinement of the critical velocity analysis depending on varied per cent clay content values; the diagram compiled in relative coordinates, and the approximative correlation required for practical applications. The proposed methodology consisting in feeding fine-dispersed additives into the two-phase flow, reduces the critical velocity.

DOI: 10.22227/1997-0935.2014.11.145-153

References
  1. Klein A.D. Black Mesa and Capsule Pipeline Research Center. University of Missuri-Columbia. 1995, 162 p.
  2. Dokukin V.P. Klassifikatsiya sistem gidrotransporta [Classification of Hydraulic Systems] // Zapiski Gornogo instituta : sbornik nauchykh trudov SPGGI (TU) [Proceedings of the University of Mines : Collection of Scientific Articles of the National Mineral Resources University]. Saint Petersburg, 2004, vol. 158, pp. 191—193. (In Russian)
  3. Mel’nik V.V. Sovremennaya kontseptsiya i modeli povysheniya effektivnosti razrusheniya ugol’nogo massiva struyami pri skvazhinnoy gidrodobyche [The Modern Concept and Models of the Destruction Efficiency Increase of the Coal Array by Jets in Case of Borehole Hydropobic]. Gornyy informatsionno-analiticheskiy byulleten’ (GIAB) [Mining Informational and Analytical Bulletin]. 2001, no. 12, pp. 101—106. (In Russian)
  4. Kirichenko E.A., Cherebyachko I.M., Shvorak V.G., Evteev V.V. Opredelenie proektnykh parametrov gidrotransportnoy ustanovki na baze ekonomiko-matematicheskoy modeli [Determination of the Design Parameters of Hydro-transport Devices on the Basis of Economic-mathematical Models]. Geotekhn³chna mekhan³ka : Mezhvedomstvennyy sbornik nauchnykh trudov [Geotechnic Mechanics : Interdepartmental Collection of Scientific Works]. Dnepropetrovsk, 2006, no. 62, pp. 77—83. (In Russian)
  5. Volgina L.V., Tarasov V.K., Volgin G.V. Opredelenie koeffitsienta poleznogo deystviya vzvesenesushchego potoka [Definition of Efficiency Coefficient of a Suspension-Carrying Flow]. Ledovye i termicheskie protsessy na vodnykh ob”ektakh Rossii : Materialy IV Vserossiyskoy nauchnoy konferentsii [Ice and Heat Processes on Water Bodies of Russia : Proceedings of the 4th All-Russian Scientific Conference]. Moscow, 2013, pp. 251—256. (In Russian)
  6. Volgina L.V., Tarasov V.K., Zommer T.V. Vliyanie kharakteristik dvukhfaznogo potoka na effektivnost’ sistemy gidrotransporta [Influence of Two-Phase Flow Characteristics on the Efficiency of Hydraulic Handling System]. Internet-vestnik VolgGASU. Seriya: Politematicheskaya [Internet Journal of Volgograd State University of Architecture and Civil Engineering, Polythematic Series]. 2012, no. 3 (23). Availavle at: http://vestnik.vgasu.ru/attachments/VolginaTarasovZommer-2012_3(23).pdf. (In Russian)
  7. Gordienko S.N. Moiseev S.S. O turbulentnoy diffuzii passivnoy primesi [On the Turbulent Diffusion of a Passive Admixture]. Pis’ma v Zhurnal Tekhnicheskoy Fiziki [Letters to Technical Physics Journal]. 1999, vol. 25, no. 7, pp. 51—56. (In Russian)
  8. Kril’ S.I., Semenenko E.V. Metodika rascheta parametrov truboprovodnogo gidrotransporta raznoplotnostnykh polidispersnykh materialov [Method of Calculating the Parameters of Pipeline Hydrotransport of Disperse Materials of Different Density]. Prikladnaya gidromekhanika [The Applied Hydromechanics]. 2010, vol. 12, no. 1, pp. 48—54. (In Russian)
  9. Semenyuk A.V. Matematicheskoe modelirovanie turbulentnoy diffuzii dispersnoy fazy v pogranichnom sloe dvukhfaznogo potoka [Mathematical Modeling of Turbulent Diffusion of a Dispersed Phase in the Boundary Layer of Two-phase Flow]. Vestnik Dal'nevostochnogo otdeleniya Rossiyskoy akademii nauk [Bulletin of the Far Eastern Branch of the Russian Academy of Sciences]. 2004, no. 5, pp. 29—37. (In Russian)
  10. Volynov M.A., Borovkov V.S., Markova I.M., Kurochkina V.A. Osobennosti peremeshcheniya i osazhdeniya melkodispersnoy vzvesi v vodnom potoke [Thin Particles Transport and Sedimentation in Turbulent Water Flow]. Zhurnal nauchnykh publikatsiy aspirantov i doktorantov [Journal of Scientific Publications of Postgraduate and Doctoral Students]. Available at: http://www.jurnal.org/articles/2012/stroi3.html. Date of access: 04.09.2014. (In Russian)
  11. Gorbis E.R., Spokoynyy F.E. Fizicheskaya model’ i matematicheskoe opisanie protsessa dvizheniya melkikh chastits v turbulentnom potoke gazovzvesi [The Physical Model and Mathematical Description of the Motion of Small Particles in a Turbulent Flow of Gas Suspensions]. Teplofizika vysokikh temperatur [Thermal Physics of High Temperatures]. 1977, vol. 15, no. 2, pp. 399—408. (In Russian)
  12. Kondrat’ev A.S. Raschet dvizheniya bimodal’noy smesi sfericheskikh tverdykh chastits v potoke n’yutonovskoy zhidkosti v vertikal’noy i gorizontal’noy trubakh [Calculation of the Movement of Bimodal Mixture of Spherical Solid Particles in the Flow of Newtonian Fluid in a Vertical and Horizontal Pipes]. Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo [Bulletin of the Nizhny Novgorod University Named after N.I. Lobachevsky]. 2011, no. 4 (3), pp. 868—870. (In Russian)
  13. Nazimko E.I., Papushin Yu.L. Issledovanie svoystv porovoy sredy tonkodispersnykh materialov s tsel’yu intensifikatsii ikh obrabotki [Study of the Properties of the Porous Medium of Finely Dispersed Materials in Order to Intensify their Processing]. Donetsk, 2005, 140 p. (In Russian)
  14. Reggio M., Camarero R. Numerical Solution Procedure for Viscous Incompressible Flows. Numerical Heat Transfer. 1986, vol. 10, no. 2, pp. 131—146. DOI: http://dx.doi.org/10.1080/10407788608913512.
  15. Volgin G.V. Vliyanie dliny realizatsii pul’satsiy skorosti na tochnost’ rascheta turbulentnykh kasatel’nykh napryazheniy [Effect of Velocity Fluctuations Length on the Calculation Accuracy of Turbulent Shearing Stresses]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2014, no. 9, pp. 93—99. (In Russian)
  16. Yufin A.P., Gusak L.N. Gidravlicheskiy transport smesi gliny i zernistogo materiala : otchet po NIR [Hydraulic Transport of a Mixture of Clay and Granular Material: a Report on Scientific Research Work]. Moscow, MISI Publ., 1969, 59 p. (In Russian)
  17. Vasil’eva M.A. Eksperimental’noe opredelenie raskhodno-napornykh kharakteristik gruntovykh nasosov v sisteme gidrotransporta khvostov obogashcheniya zheleznoy rudy [Experimental Determination of Flow-Pressure Characteristics of Groundwater Pumps in the System of Hydraulic Tailings of Iron Ore]. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe i gornoe delo [Proceedings of Perm National Research Polytechnic University]. 2013, no. 6, pp. 111—119. (In Russian)
  18. Anan’eskiy V.A., Mel’tser A.M. Osobennosti konstruktsii reguliruyushchikh klapanov dlya upravleniya potokami slozhnykh dvukhfaznykh rabochikh sred [Design Features of the Control Valves to Control the Flow of Two-phase Complex Working Environments]. Promislova g³dravl³ka ta pnevmatika (Promyshlennaya gidravlika i pnevmatika) [Industrial Hydraulics and Pneumatics]. 2006, no. 2, pp. 23—27. (In Russian)
  19. Maliska C.R., Raithby G.D. A Method for Computing Three Dimensional Flows Using Non-orthogonal Boundary-fitted Coordinates. Int. J. Num Meth. in Fluids. 1984, vol. 4, no. 6, pp. 519—537. DOI: http://dx.doi.org/10.1002/fld.1650040606.
  20. Mulenkov V.P., Kostylev Yu.V., Modorskiy V.Ya., Pershin A.M., Pisarev P.V., Sokolkin Yu.V. Chislennoe modelirovanie gidroabrazivnogo iznosa fasonnykh izdeliy truboprovodov [Numerical Modeling of Hydro-abrasive Wear Fittings Piping]. Aerokosmicheskaya tekhnika, vysokie tekhnologii i innovatsii : Materialy XII Vserossiyskoy nauchno-tekhnicheskoy konferentsii [Proceedings of the 12th All-Russian Scientific Technical Conference: Aerospace Engineering, High Technologies and Innovations]. Perm, 2009, pp. 42—45. (In Russian)

Download

Research into the stress-strained state of the concrete dam given the variability of the linear expansion coefficient of concrete

  • Krutov Denis Anatol’evich - Institute Hydroproject named after S.Ya. Zhuk (Institute Hydroproject) Candidate of Technical Sciences, Chief Specialist, Hydraulic Department 1, Institute Hydroproject named after S.Ya. Zhuk (Institute Hydroproject), 2 Volokolamskoe Shosse, Moscow, 125993, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Shilov Leonid Andreevich - Institute Hydroproject named after S.Ya. Zhuk (Institute Hydroproject); Moscow State University of Civil Engineering (MGSU) category 1 engineer Hydraulic Department 1, Institute Hydroproject; Master student, Institute of Engineering and Ecological Construction, and Automation, MGSU, Institute Hydroproject named after S.Ya. Zhuk (Institute Hydroproject); Moscow State University of Civil Engineering (MGSU), 2 Volokolamskoe Shosse, Moscow, 125993, Russian Federation; 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 154-160

The article has summarized findings of the research into the stress-strained state of the concrete dam. Within the framework of this project, the co-authors have analyzed particular features accompanying field data processing, if the concrete dam serves as the data source. The co-authors have derived average linear expansion coefficients for frozen concrete samples originating from varied dam zones. The findings of numerical studies are provided with the account for the variable value of the linear expansion coefficient of the concrete exposed to negative temperatures. Specialized contact methods in finite elements simulations were employed to simulate the casting joints, with the monolith height being equal to 1.5 m, to take account of the non-linear shear strain of joints and their opening. The analysis performed by the co-authors is based on the combinations of loads and other exposures typical for January as the coldest month of an average year. Casting joints were only simulated in the bottom of the finite element dam model, while no joints were simulated for the dam top. The findings have proven, that the 1.53-fold rise in the value of α accompanying concrete freezing, influences the strain state of the dam at Bogouchanskaya hydropower plant. However no effect was produced by the change in the α value onto the strain state of the dam face. Besides, the rock-to-concrete contact depth and width increased. Although, given the small value of the aforementioned increase (decimal points of a millimeter), it will produce no effect on the filtration underway within the bedrock base of the dam. Changes in the value of the linear expansion coefficient of concrete must be taken into account when physico-mechanical characteristics of concrete are identified for the purpose of the finite element analysis.

DOI: 10.22227/1997-0935.2014.11.154-160

References
  1. England G.L., Illston J.M. Methods of Computing Stress in Concrete from a History Measured Strain. Civil Engineering and Public Works Review. April—June, 1965, pp. 513—517, 692—694, 846—847.
  2. Fifteenth Congress on Large Dams : General Report. Georges Post. Q.56, Lausanne, Switzerland, 1985, pp. 1623—1723.
  3. Rapfael J.M. The Development of Stresses in Shasta Dam. Transactions, American Society of Civil Engineers. 1953, vol. 118 A, p. 289.
  4. Powers T.C. The Physical Structure and Engineering Properties of Concrete. Research and Development Laboratories of P.C.A., Chicago, 1958, Bulletin No. 90, 28 p.
  5. Blinov I.F., Mirzak E.M., Lavrov B.A., Gal’perin I.E. Monitoring of the Concrete Dam of the Boguchany Hydroelectric Station in the Construction Period. Power Technology and Engineering. 1993, vol. 27, no. 9, pp. 501—507. DOI: http://dx.doi.org/10.1007/BF01545368.
  6. Blinkov V.V., Aleksandrovskaya E.K. Kompleks naturnykh issledovaniy vysokikh betonnykh plotin v surovykh klimaticheskikh usloviyakh [Complex of Field Investigations of High Concrete Dams in Harsh Climatic Conditions]. Gidrotekhnicheskoe stroitel’stvo [Hydraulic Engineering]. 1974, no. 10, pp. 23—28. (In Russian)
  7. Durcheva V.N., Mayorova M.A. Tenzometricheskie izmereniya svobodnykh deformatsiy betona plotin [Strain Gauge Measurement of Free Deformation of Concrete Dams]. Gidrotekhnicheskoe stroitel’stvo [Hydraulic Engineering]. 2002, no. 11, pp. 6—9.
  8. Durcheva V.N. K voprosu o vliyanii zamorozhennogo betona na rabotu gidrotekhnicheskikh sooruzheniy [On the Effect of Frozen Concrete on Waterworks’ Operation]. Trudy koordinatsionnykh soveshchaniy po gidrotekhnike [Works of Coordination Meetings on Hydrotechnics]. 1974, no. 91, pp. 87—91. (In Russian)
  9. Durcheva V.N., Zagryadskiy I.I. Analiz sobstvennykh deformatsiy betona na ekspluatiruemykh plotinakh po dannym naturnykh nablyudeniy [Analysis of the Characteristic Deformations of Concrete in Operating Dams According to Field Observations]. Izvestiya VNIIG im. B.E. Vedeneeva [Proceedings of All-Russian Research and Development Institute of Hydraulic Engineering Named after B.E. Vedeneev]. 2000, vol. 237, pp. 54—62. (In Russian)
  10. Kozlov D.V., Krutov D.A. Naturnye issledovaniya svobodnykh deformatsiy betona v blokakh plotiny Boguchanskogo gidrouzla [Field Investigations of Free Deformation of Concrete Blocks in Boguchansky Hydrosystem Dam]. Vodnye resursy Tsentral’noy Azii [Water Resources of Central Asia]. 2004, no. 1, pp. 88—97. (In Russian)
  11. Kozlov D.V., Krutov D.A. Analysis of Natural Deformations of Concrete According to Data of Field Observations of the Dam of the Boguchanskii Waterworks Facility. Power Technology and Engineering. 2005, vol. 39, no. 2, pp. 78—83. http://dx.doi.org/10.1007/s10749-005-0029-6.
  12. Durcheva V.N. Naturnye issledovaniya monolitnosti vysokikh betonnykh plotin [Field Investigations of Monolithic High Concrete Dams]. Moscow, Energoatomizdat Publ., 1988, 120 p. (In Russian)
  13. Kozlov D.V., Krutov D.A. Svobodnye temperaturnye deformatsii betona plotiny Boguchanskogo gidrouzla pri deystvii otritsatel’noy temperatury [Free Thermal Deformations of the Concrete of Boguchansky Waterworks Dam under the Action of Negative Temperature]. Problemy nauchnogo obespecheniya razvitiya ekologo-ekonomicheskogo potentsiala Rossii : sbornik nauchykh trudov Vserossiyskoy nauchno-tekhnicheskoy konferentsii 15—19 marta 2004 g. [Collection of Scientific Works of All-Russian Scientific and Technical Conference, March 15—19, 2004 "Problems of Scientific Support for the Development of Ecological and Economic Potential of Russia"]. Moscow, MGUP Publ., 2004, pp. 199—204. (In Russian)
  14. Lyadov Yu.D., Semenenok S.N., Sukhotskaya S.S., Sharkunov S.V. O nadezhnosti betona osnovnykh sooruzheniy Boguchanskoy GES [On the Reliability of Concrete of the Main Structures of the Boguchanskaya HPP]. Gidrotekhnicheskoe stroitel’stvo [Hydraulic Engineering]. 1995, no. 5, pp. 22—28. (In Russian)
  15. Otsenka sostoyaniya plotiny Bureyskoy GES po dannym kompleksnykh naturnykh nablyudeniy stroitel’no-ekspluatatsionnogo kontrolya : otchet o NIR. Etap 4 [State Assessment of Bureiskaya HPP Dams According to Comprehensive Field Observations of Construction and Operational Control. Research Report. Step 4]. Saint Petersburg, VNIIG im. B.E. Vedeneeva Publ., 2002, 140 p. (In Russian)
  16. Obosnovanie znacheniy fiziko-mekhanicheskikh kharakteristik na osnove rezul’tatov issledovaniy betona plotiny Boguchanskoy GES : otchet o NIR. Etap 3 [Justification of Physical and Mechanical Properties Values on the Basis of the Results of the Studies of the Boguchanskaya HPP Concrete Dam. Research Report. Step 3]. Moscow, NIIES Publ., 1992, 38 p. (In Russian)
  17. Radkevich D.B. Razvitie kompleksa sredstv kontrolya sostoyaniya gidrotekhnicheskikh sooruzheniy i ikh osnovaniy [Development of Control Devices for Hydraulic Structures and their Foundations]. Sbornik nauchnykh trudov Gidroproekta [Collection of the Scientific Papers of Hydroproject]. Moscow, 1982, no. 79, pp. 97—103. (In Russian)
  18. Razrabotka determinirovannykh i smeshannykh matematicheskikh modeley povedeniya plotiny i osnovaniya, obespechivayushchikh uchet rezul’tatov naturnykh nablyudeniy i issledovaniy. Tekhnicheskiy otchet ¹ 349, etap ¹ 3 [Development of deterministic and mixed mathematical behavior models of a dam and its foundation for integrating the results of field observations and investigations. Technical Report ¹349, step 3]. Saint Petersburg, VNIIG im. B.E. Vedeneeva Publ., 1996, 64 p. (In Russian)
  19. Tsarev A.I., Enikeev F.G. O predel’no dopustimykh pokazatelyakh bezopasnoy raboty gidrotekhnicheskikh sooruzheniy [On the Performance Limits of Safe Operation of Hydraulic Structures]. Gidrotekhnicheskoe stroitel’stvo [Hydraulic Engineering]. 1981, no. 9, pp. 34—37. (In Russian)
  20. Eydel’man S.Ya., Durcheva V.N. Betonnaya plotina Ust’-Ilimskoy GES [Concrete dam of Ust-Ilim hydroelectric station]. Biblioteka gidrotekhnika i gidroenergetika [Library of Hydraulic Engineer and Hydropower Worker]. Moscow, Energiya Publ., 1981, 136 p. (In Russian)

Download

Particles of bottom and suspended sediments: height of rise

  • Khodzinskaya Anna Gennadievna - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Associate Professor, Department of Hydraulic Engineering, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .
  • Zommer Tat’yana Valentinovna - Moscow State University of Civil Engineering (National Research University) (MGSU) Lecturer, Department of Engineering Geology and Geoecology, head, Laboratory of Hydraulics, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 161-170

In the article, characteristic values of dynamic sizes of bottom and suspended sediments, including their probabilistic assessment, are considered. The article presents the processing results in respect of the experimental data for bottom and suspended sediments, obtained in the laboratory environment using samples and filming methods. The experiments have proven that the dynamic hydraulic size determines the height of rise for the particles of the saltation load, rather than suspended ones. In the laboratory environment, the maximal height of rise is mainly driven by the relative flow depth. According to the assessment made by the co-authors, depths of flows employed in the experiments designated for the identification of heights of rises, were comparable to saltation heights of particles. Besides, the saltation height of particles, having relative density well below 2.65, nearly always exceeded half of the depth of the laboratory flow. Hydrodynamic conditions favourable for the separation and motion of artificial particles in coarse surface tanks are far different from the motion of sand particles on the bottom of lowland rivers. Values of hydraulic resistance ratios typical for laboratory experiments by far exceed their values typical for lowland rivers, and it means that the conditions of the experiments performed in the laboratory were similar to those typical for mountain rivers. The research findings have proven that the particle separation and motion pattern, if artificial particles are made of the materials demonstrating variable density and elasticity values and if loose particles travel over fixed ones, is different from the pattern typical for natural particles having variable coarseness.

DOI: 10.22227/1997-0935.2014.11.161-170

References
  1. Velikanov M.A. Tri tipa dvizheniya rechnykh nanosov [Two Movement Types of River Drifts]. Izvestiya AN SSSR. Energetika i transport [News of the Academy of Sciences of the USSR. Energy Sector and Transport]. 1963, no. 1, pp. 122—128. (In Russian)
  2. Einstein H.A. Bed-load Transport as a Probability Problem. Sedimentation. Fort Collins., Colorado, 1972, pp. 1—105.
  3. Bagnold R.A. The Nature of Saltation and "Bed-load"-Transport in River. Proc. Roy. Soc. L., 1973, vol. A332, no. 1591, pp. 473—504.
  4. Borovkov V.S. Ruslovye protsessy i dinamika rechnykh potokov na urbanizirovannykh territoriyakh [River Bed Evolution and River Flows Dynamics on Urban Lands]. Leningrad, Gidrometeoizdat Publ., 1989, 286 p. (In Russian)
  5. Veksler A.B., Donenberg V.M. SO 34.21.204. Rekomendatsii po prognozu transformatsii rusla v nizhnikh b’efakh gidrouzlov. [Recommendations on Bed Transformation Forecast in Tail Bays of Hydroelectric Complexes]. Saint Petersburg, VNIIG im. B.E. Vedeneeva Publ., 2005, 104 p. (In Russian)
  6. Dobycha nerudnykh stroitel’nykh materialov v vodnykh ob”ektakh. Uchet ruslovykh protsessov i rekomendatsii po proektirovaniyu i ekspluatatsii ruslovykh kar’erov [Mining of Non-ore Construction Materials in Water Bodies. Account for Bed Evolution and Recommendations on Design and Operation of Channel Pits]. Saint Petersburg, Globus Publ., 2012, 140 p. (In Russian)
  7. Goncharov V.N. Dvizhenie nanosov v ravnomernom potoke [Sediment Movement in Uniform Flow]. Moscow—Leningrad, NKTP SSSR ONTI Publ., 1938, 312 p. (In Russian)
  8. Francis J.R.D. Experiments on the Motion of Solitary Grains along the Bed of a Water-Streams. Proc. Roy. Soc. London, 1973, vol. A332, no. 1591, pp. 443—471. DOI: http://dx.doi.org/10.1098/rspa.1973.0037.
  9. Bryanskaya Yu.V., Markova I.M., Ostyakova A.V. Gidravlika vodnykh i vzvesenesushchikh potokov v zhestkikh i deformiruemykh granitsakh [Hydraulics of Water and Suspension-Carrying Flows within Rough and Deformable Boundaries]. Moscow, ASV Publ., 2009, 264 p. (In Russian)
  10. Khodzinskaya A.G. Dvizhenie donnykh nanosov i otsenka deformatsii rusel kanalov [Bed Sediments Movement and Deformation Estimation of Channel Beds]. Candidate of Technical Sciences Thesis. Moscow, VNIIGiM Publ., 1988. (In Russian)
  11. Grishin N.N. Mekhanika pridonnykh nanosov [Natural Sediments Mechanics]. Moscow, Nauka Publ., 1982, 160 p. (In Russian)
  12. Verbitskiy V.S., Khodzinskaya A.G. Opredelenie raskhoda donnykh nanosov s pomoshch’yu kharakteristik sal’tatsii [Estimation of Bed Sediments Expenditure with the Help of Saltation Features]. Gidrotekhnicheskoe stroitel’stvo [Hydraulic Engineering]. 1999, no. 6, pp. 24—29. (In Russian)
  13. Mikhaylova N.A. Perenos tverdykh chastits turbulentnymi potokami vody [Transport of Particulate Matter by Turbulent Water Flows]. Leningrad, Gidrometeoizdat Publ., 1966, 234 p. (In Russian)
  14. Razumikhina K.V. Naturnoe issledovanie i raschet transporta nanosov [Field Investigations and Sediments Transport Calculation]. Trudy GGI [Works of State Hydrological Institute]. 1967, no. 141, pp. 5—34. (In Russian)
  15. Bernatskaya N.V. Raspredelenie nanosov po glubine vzvesenesushchego potoka [Sediment Distribution along the Depth of Suspension-Carrying Flow]. Candidate of Technical Sciences Thesis. Moscow, 1984, 150 p. (In Russian)
  16. Volgina L.V., Gusak L.N., Zommer T.V. Gidravlika dvukhfaznykh potokov i gidrotransportnye sistemy [Hydraulics of Two-Phase Flows and Hydraulic Transport Systems]. Moscow, MGSU Publ., 2013, 92 p. (In Russian)
  17. Silin H.A., Vitoshkin Yu.K., Karasik V.M., Ochered’ko V.F. Gidrotransport (voprosy gidravliki) [Hydraulic Transport (Problems of Hydraulics). Kiev, Naukova dumka Publ., 1971, 158 p. (In Russian)
  18. Karaushev A.V. Teoriya i metody rascheta rechnykh nanosov [Calculation Theory and Methods for River Sediments]. Leningrad, Gidrometeoizdat Publ., 1977, 271 p. (In Russian)
  19. Yalin M.S. River Mechanics. N.Y., Pergamon Tarrytown, 1992, 219 p.
  20. Raudkivi A.G. Loose Boundary Hydraulics. Rotterdam, Balkema, 1998, 497 p.
  21. Borovkov V.S., Volinov M.V. Conditions Weighting of Large Soil Particles by a Turbulent Flow Downstream. Power Technology and End Engineering. 2013, no. 7, pp. 12—16.
  22. Chalov R.S. Fluvial Processes as a Reflection of River Sediment Transport. Examples from Russia. Prace Geografiche. 2001, vol. 127, pp. 61—70.

Download

TRANSPORTATION SYSTEMS

Design of ropeways of the mountain recreational centers

  • Tseva Anna Victorovna - Mytishchinskiy Branch, Moscow State University of Civil Engineering (MGSU) Assistant Lecturer, Department of Architectural and Construction Design, Mytishchinskiy Branch, Moscow State University of Civil Engineering (MGSU), 50 Olimpiyskiy prospekt, Mytishchi, Moscow Region, 141006, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 171-179

Ropeways are an eco-friendly and economically viable transport used for transportation of passengers and shipment. Ropeways are widely applied during construction in the conditions of a mountainous relief. The state programs aimed at the development of mountain recreational centers (MRCs) stipulate ropeways construction in accordance with the MRC situational plan. Safety and comfort of a ropeway are defined not only by its technical characteristics, but also by its linking to the relief, MRC facilities and infrastructure. The article describes the main design stages of a ropeway starting from the concept, a choice of its axis, determination of capacity, type of a ropeway, requirements to the track before the design of drop-off/pick-up zones. For each design stage the explanations, which reflect real work specifics, are provided, together with the technical characteristics for calculations and solution samples. The concept defines the functional purpose of a ropeway: ski slopes/ tourist zones/ recreation areas; the season of ropeway operation, the scheme of communications with the MRC objects, the capacity of reception base, the minimum distance from the bottom stations to residential complexes. The critical decisions of axis and track design are carried out by a coalition of designer-planners, expert designers and ropeway technologists. The ropeway, which performs transport function, unites all the objects of the mountain recreational center into a single complex. The optimum placement of a ropeway deals with the questions of comfort, safety and profitability, therefore greatly contributing to the quality of the whole ropeway project. During the MRC development one should consider the questions of infrastructure expansion, year-round ropeway operation and increasing ski tracks capacity, which will demand ropeway modernization and/ or changes in the situational plan of the mountain recreational center.

DOI: 10.22227/1997-0935.2014.11.171-179

References
  1. Le t?l?ph?rique urbain, un mode de transport qui monte. Qu’en savons-Nous? Agence d’Urbanisme de Caen-M?tropole. 2013, no. 56, p. 4.
  2. Transports par c?bles a?riens en milieu urbain et p?riurbain : quel domaine de pertinence en France? 15 p. (CERTU — STRMTG — CETE ; D?cembre 2011). Available at: http://www.strmtg.developpement-durable.gouv.fr/IMG/pdf/transports_cables.pdf. Date of access: 12.07.2014.
  3. Bovskiy G. Kanatnye dorogi [Ropeways]. Gornolyzhnaya industriya Rossii [Skiing Industry in Russia]. 2007, no. 7, pp. 44—45. (In Russian)
  4. Obustroystvo gornykh kurortov [Arrangement of Mountain Resorts]. Gorimpeks Publ., Moscow, 2008, 96 p. (In Russian)
  5. Stations skis aux pieds. Available at: http://www.france-montagnes.com/webzine/activites/stations-skis-aux-pieds/. Date of access: 12.07.2014.
  6. PB 10-559—03. Pravila ustroystva i bezopasnoy ekspluatatsii passazhirskikh podvesnykh i buksirovochnykh kanatnykh dorog [PB 10-559-03. Rules for Arrangement and Safe Operation of Passenger Out-Board and Towingropeways]. Rossiyskaya gazeta [Russian Newspaper]. 2003, June 21, no. 120/1. (In Russian)
  7. Kontseptsiya sozdaniya turisticheskogo klastera v Severo-Kavkazskom federal’nom okruge, Krasnodarskom krae i Respublike Adygeya [The Concept of Creation of a Tourist Cluster in North Caucasus Federal District, Krasnodar Krai and the Republic of Adygea]. Moscow, 2011, 221 p. (In Russian)
  8. RM2. Conception g?n?rale des t?l?ph?riques : Les Guide Technique. Version du 29 janvier 2008. 135 p. Available at: http://www.bulletin-officiel.developpement-durable.gouv.fr/fiches/BO20087/A0070004RM2.pdf. Date of access: 12.07.2014.
  9. Tekhnologii gornolyzhnoy industrii [Technologies of the Aalpine Skiing Industry]. Rosinzhiniring Publ. Available at: http://skibuild.ru/images/pic-news/tecnology-ukreplenie-sklonov.pdf. Date of access: 12.07.2014. (In Russian)
  10. Inzhenernye resheniya po zashchite territorii [Engineering Decisions on Protection of the Territory]. Rosinzhiniring Publ. Available at: http://roing.ru/pdf/engprotection.pdf. Date of access: 12.07.2014. (In Russian)
  11. Tekhnologicheskiy proekt. PPKD TSD 13 c shestimestnymi kreslami na ottseplyaemykh zazhimakh. STK «Gornaya karusel’» pos. Krasnaya Polyana g. Sochi. Poyasnitel’naya zapiska ¹ 14401PZ [Technological project. PPKD TSD13 with Six-seater Chairs on the Unhooked Clips. Sports and Tourist Complex "Gornaya karusel’" in the village Krasnaya Polyana, Sochi. Explanatory Note no. 14401PZ].Gortekhproektpostavka Publ., Moscow, 2013, 33 p. (In Russian)
  12. Etude de faisabilit? d'une liaison t?l?ph?rique entre Gallieni et La Noue. Egis Rail. Available at: http://www.bagnoletlanoue.info/laNoue1/docs/Telepherique.pdf. Date of access: 12.07.2014.
  13. Alshalalfah B., Shalaby A., Dale S. Experiences with Aerial Ropeway Transportation Systems in the Urban Environment. Journal of Urban Planning and Development. March 2014, vol. 140, no. 1, 04013001. DOI: http://dx.doi.org/10.1061/(ASCE)UP.1943-5444.0000158.
  14. Alshalalfah B., Shalaby A., Dale S., Othman F. Improvements and Innovations in Aerial Ropeway Transportation Technologies: Observations from Recent Implementations. Journal of Transportation Engineering. August 2013, vol. 139, no. 8, pp. 814—821. DOI: http://dx.doi.org/10.1061/(ASCE)TE.1943-5436.0000548.
  15. Alshalalfah B., Shalaby A., Othman F. Aerial Ropeway Transit — Exploring its Potential for Makkah. Center of Research Excellence in Hajj and Omrah. 279 p. Available at: http://www.civil.engineering.utoronto.ca/Assets/Civil+Engineering+Digital+Assets/Makkah+Project+Report+-+Part+1.pdf; http://www.civil.engineering.utoronto.ca/Assets/Civil+Engineering+Digital+Assets/Makkah+Project+Report+-+Part+2.pdf. Date of access: 12.07.2014.

Download

INFORMATION SYSTEMS AND LOGISTICS IN CIVIL ENGINEERING

Concept for the generation of the model designated for the simulation of interaction between enterprises comprising one major construction company

  • Dubovkina Alla Viktorovna - Moscow State University of Civil Engineering (MGSU) postgraduate student, Assistant Lecturer, Department of Information Systems, Technologies and Automation in Construction, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Pages 180-187

The author offers an original concept designated for the generation of the model designated to simulate interaction between the enterprises comprising one major construction company within the framework of the production and logistics chain, comprising production facilities, transport enterprises, construction and assembly companies. The author has identified the factors that may produce an adverse effect on construction operations or cause untimely commissioning of a construction facility. The author employed methods of mathematics to describe the operations performed by each constituent enterprise. A graphic model describing each operation was compiled through the integration of mathematical functions. The model binds specific operations, performed by constituent companies, to deadlines, drives attention to interaction bottlenecks, and makes adjustments to assure reliable attainment of the main goal, that is, the timely commissioning of a construction facility.

DOI: 10.22227/1997-0935.2014.11.180-187

References
  1. Alekseev N.S. Evolyutsiya sistem upravleniya predpriyatiem [Evolution of Enterprise Management Systems]. Problemy teorii i praktiki upravleniya [Problems of the Theory and Practice of Management]. 1999, no. 2. Available at: http://vasilievaa.narod.ru/ptpu/19_2_99.htm/. Date of access: 12.10.2014. (In Russian)
  2. Bowersox D., Closs D. Logistical Management: The Integrated Supply Chain Process. McGraw-Hill Companies, 4th edition, 496 p.
  3. Egorov A.I. Osnovy teorii upravleniya [Fundamentals of Management Theory]. Moscow, FIZMATLIT Publ., 2011, 504 p.
  4. Zaytsev E.I. Logistika i sinergetika. Novaya paradigma v teoreticheskoy logistike [Logistics and Synergy. A New Paradigm in Theoretical Logistics]. Logistika i upravlenie tsepyami postavok [Logistics and Supply Chain Management]. 2004, no. 1, pp. 7—13. (In Russian)
  5. Bigdan V.B., Pepelyaev V.A., Sakhnyuk M.A. Aktual’nye problemy i tendentsii v oblasti sovremennogo imitatsionnogo modelirovaniya [Current Problems and Trends in the Field of Modern Simulation] // Problemy programmuvaniya [Problems of Programming]. 2004, no. 2, 3, pp. 505—509. Naukova elektronna b³bl³oteka per³odichnikh vidan’ NAN Ukra¿ni [Scientific Internet Library of Periodicals of the National Academy of Sciences of Ukraine]. Available at: http://dspace.nbuv.gov.ua/bitstream/handle/123456789/2304/68%20-%20Bigdan.pdf?sequence=1. Date of access: 12.10.2014. (In Russian)
  6. Burkov V.N., Irikov V.A. Modeli i metody upravleniya organizatsionnymi sistemami [Models and Methods for Managing Organizational Systems]. Moscow, Nauka Publ., 1994, 270 p. (In Russian)
  7. Gol’dshteyn G.Ya. Strategicheskiy innovatsionnyy menedzhment: tendentsii, tekhnologii, praktika : monografiya [Strategic Innovation Management: Trends, Technology, Practice: a Monograph]. Taganrog, TRGU Publ., 2006, 179 p. (In Russian)
  8. Degtyarev Yu.I. Issledovanie operatsiy [Operations Research]. Moscow, Vysshaya shkola Publ., 1996, 320 p. (In Russian)
  9. Dubeykovskiy V.I. Effektivnoe modelirovanie s CA ERwin Process Modeler (BPwin; AllFusion Process Modeler) [Effective Modeling with CA ERwin Process Modeler (BPwin; AllFusion Process Modeler)]. Moscow, Dialog-MIFI Publ., 2009, 384 p. (In Russian)
  10. Ivanov D.A. Razrabotka modeli upravleniya logisticheskimi tsepyami v slozhnykh proizvodstvennykh strukturakh [Developing a Model of Logistic Chains in Complex Production Structures]. Biznes i logistika — 2003 : sbornik materialov Moskovskogo Mezhdunarodnogo logisticheskogo foruma [Business and Logistics — 2003: Collection of the Moscow International Logistics Forum]. Moscow, Stolichnyy biznes Publ., 2003, pp. 33—37. (In Russian)
  11. Moiseev N.N. Elementy teorii optimal’nykh sistem [Elements of the Theory of Optimal Systems]. Moscow, Nauka Publ., 1975, 528 p. (In Russian)
  12. Moiseev N.N. Matematicheskie zadachi sistemnogo analiza [Mathematical Problems of System Analysis]. Moscow, Nauka Publ., 1981, 488 p. (In Russian)
  13. Savin G.I. Sistemnoe modelirovanie slozhnykh protsessov [System Modeling of Complex Processes]. Moscow, Fazis Publ., 2000, 280 p. (In Russian)
  14. Toluev Yu.I., Nekrasov A.G., Morozov S.I. Analiz i modelirovanie material’nykh potokov v setyakh postavok [Analysis and Modeling of Material Flow in Supply Chains]. Integrirovannaya logistika [Integrated Logistics]. 2005, no. 5, pp. 7—14. (In Russian)
  15. Toluev Yu.I. Metodologiya sozdaniya modeley logisticheskikh setey na baze standartnykh sredstv imitatsionnogo modelirovaniya [Methodology for creating models of logistics networks based on the standard tools of simulation]. Logistics, Supply Chain Management and Information Technologies: Proceedings of the German-Russian Logistics Workshop. St. Petersburg, Publishing House of the State Polytechnic University, 2006, pp. 133—142. (In Russian)
  16. Nekrasov A.G. Vzaimodeystvie informatsionnykh resursov v logisticheskikh tsepochkakh postavok (na primere transportnoy otrasli) [Interaction of Information Resources in Logistic Supply Chains (on the Example of the Transport Sector)]. Moscow, Tekhpoligraftsentr Publ., 2002, 205 p. (In Russian)
  17. Stock J., Lambert D. Strategic Logistics Management. McGraw-Hill/Irwin; 4 edition, 2000, 896 p.
  18. Davidow W., Malone M. The Virtual Corporation: Structuring and Revitalizing the Corporation for the 21st Century. New York, Harper Collins, 1992, 187 p.
  19. Orlovskiy S.A. Problemy prinyatiya resheniy pri nechetkoy iskhodnoy informatsii [Decision Making with Fuzzy Initial Information]. Moscow, Nauka Publ., 1981, 208 p. (In Russian).
  20. Nishiyama D., Radosavljevic M. Mathematical Modelling of Decision Making Processes in Construction Projects. 25th Annual ARCOM Conference, 7—9 September 2009, Nottingham, UK. 2009, pp. 95—94.

Download