Оценка влияния отделочных покрытий на изменение влажностного режима газобетонной ограждающей конструкции
Страницы 1349-1356
Введение. Приведены сведения о влажностном режиме ограждающей конструкции из газобетона при наличии отделочных покрытий. Рассмотрены штукатурные покрытия на основе сухих строительных смесей (ССС) Knauf Grunband, разработанных авторами известковых составов с применением полых стеклянных микросфер и зольных алюмосиликатных микросфер, цементно-песчаных составов. Материалы и методы. В качестве основного материала стены принимали газобетонные блоки различных марок: D350, D400, D500, D600. В качестве внутреннего отделочного слоя для всех вариантов была принята цементно-шлаковая штукатурка. Наружная поверхность стены отделана ССС Knauf Grunband, а также разработанными известковыми составами с применением полых стеклянных микросфер и зольных алюмосиликатных микросфер. Определялась температура наружного воздуха, при которой начинается конденсация влаги в стене и на границе отделочный слой - газобетонная стена. Результаты. При использовании в качестве отделки штукатурного состава Knauf Grunband температура начала конденсации понижается всего до -9,0 °C. При применении разрабатываемых ССС, полученных с использованием в качестве наполнителей полых стеклянных микросфер и зольных алюмосиликатных микросфер, температура начала конденсации понижается соответственно до -11,4 и -11,9 °С. В ограждающей конструкции из газобетона марки D350 со штукатурным покрытием плотностью 1800 кг/м3 конденсация на границе отделочное покрытие - газобетон начинается при температуре -2,4 °C, в ограждающей конструкции из газобетона марки D400 со штукатурным покрытием плотностью 1800 кг/м3 - при температуре -3,8 °C, а из газобетона марки D400 с плотностью штукатурки 1100 кг/м3 - при температуре -5,5 °C. Выводы. Проведенные исследования доказывают, что за счет использования для отделки газобетонных блоков марок D300-D600 теплоизоляционных ССС, позволяющих получить покрытия с плотностью менее 800 кг/м3, снижается наружная температура воздуха, при которой начинается конденсация влаги в стене. Также за счет использования разрабатываемых покрытий значительно снижается наружная температура воздуха, при которой начинается конденсация на границе отделочное покрытие - газобетон. Это позволяет минимизировать количество конденсирующейся влаги в толще ограждающей конструкции и продлить срок службы как отделочного покрытия, так и всей стены в целом.
DOI: 10.22227/1997-0935.2018.11.1349-1356
- Ватин Н.И., Глумов А.В., Горшков А.С. Влияние физико-технических и геометрических характеристик штукатурных покрытий на влажностный режим однородных стен из газобетонных блоков // Инженерно-строительный журнал. 2011. № 1. С. 28-33.
- Корниенко С.В., Ватин Н.И., Петриченко М.Р., Горшков А.С. Оценка влажностного режима многослойной стеновой конструкции в годовом цикле // Строительство уникальных зданий и сооружений. 2015. № 6 (33). С. 19-33.
- Zaborova D., Musorina T., Selezneva A., Butyrin A. Thermal resistance and accumulation of heat by the wall construction // Advances in Intelligent Systems and Computing. 2017. Vol. 692. Pp. 473-481. DOI: 10.1007/978-3-319-70987-1_50
- Vasilyev G.P., Tabunshchikov Iu.A., Brodach M.M., Leskov V.A., Mitrofanova N.V., Timofeev N.A. et al. Modeling moisture condensation in humid air flow in the course of cooling and heat recovery // Energy and Buildings. 2016. Vol. 112. Pp. 93-100. DOI: 10.1016/j.enbuild.2015.12.002
- Vasilyev G.P., Kolesova M.V., Gornov V.F., Yurchenko I.A. Study of the dependence effectiveness of low-potential heat of the ground and atmospheric air for heating buildings from climatic parameters // MATEC Web of Conferences. 2016. Vol. 40. P. 05006. DOI: 10.1051/matecconf/20164005006
- Mukhopadhvaya P., Kumaran K., Plescia S., Lackey J., Normandin N., van Reenen D. High performance stucco to optimize moisture management in wood-frame stucco walls // Journal of Testing and Evaluation. 2008. Vol. 36. Issue 6. Pp. 506-515. DOI: 10.1520/jte101447
- Логанина В.И., Фролов М.В. Эффективность применения теплоизоляционной штукатурки с применением микросфер для отделки газобетонной ограждающей конструкции // Известия высших учебных заведений. Строительство. 2016. № 5 (689). С. 55-62.
- Loganina V.I., Frolov M.V., Skachkov Yu.P. Lime composition for the walls of buildings made of aerated concrete // Proceedings of the International Symposium on Mechanical Engineering and Material Science. 2016. Vol. 93. Pp. 165-169. DOI: 10.2991/ismems-16.2016.29
- Loganina V.I., Kislitsyna S.N., Frolov M.V. Addition on the basis of mix of the synthesized hydrosilicates of calcium and aluminosilikates for dry building mixtures // Procedia Engineering. 2016. Vol. 150. Pp. 1627-1630. DOI: 10.1016/j.proeng.2016.07.141
- Nizovtsev M.I., Sterlyagov A.N., Terekhov V.I. Effect of material humidity on heat and moisture-transfer processes in gas-concrete // Concrete Materials: Properties, Performance and Applications. Nova Science Publishers, New York, USA, 2009. Pp. 397-429.
- Rosario F., Antonio T., Nuno S. Influence of a period of wet weather on the heat transfer across a wall covered with uncoated medium density expanded cork // Energy and Buildings. 2018. Vol. 165. Pp. 118-131. DOI: 10.1016/j.enbuild.2018.01.020
- Timea B., Amandine P., Arnaud J., Laetita B. Study of two hemp concrete walls in real weather conditions // Energy Procedia. 2015. Vol. 78. Pp. 1605-1610. DOI: 10.1016/j.egypro.2015.11.221
- Гринфельд Г.И. Инженерные решения обеспечения энергоэффективности зданий. Отделка кладки из автоклавного газобетона. СПб. : Изд-во Политехнического университета. 2011. 130 с.
- Ronzino A., Corrado V. Measuring the hygroscopic properties of porous media in transient regime. From the material level to the whole building ham simulation of a coated room // Energy Procedia. 2015. Vol. 78. Pp. 1501-1506. DOI: 10.1016/j.egypro.2015.11.177
- Craig S., Grinham J. Breathing walls: The design of porous materials for heat exchange and decentralized ventilation // Energy and Buildings. 2017. Vol. 149. Pp. 246-259. DOI: 10.1016/j.enbuild.2017.05.036
- Cheng C.Y., Cheung Ken K.S., Chu L.M. Thermal performance of a vegetated cladding system on facade walls // Building and Environment. 2010. Vol. 45. Issue 8. Pp. 1779-1787. DOI: 10.1016/j.buildenv.2010.02.005
- ГОСТ 11118-2009. Панели из автоклавных ячеистых бетонов для наружных стен зданий. Технические условия. М. : МНТКС, 2010. 49
- Руководство по наружной отделке стен из ячеистобетонных блоков автоклавного твердения. 1 редакция. Белгород : Национальная ассоциация производителей автоклавного газобетона, 2010. 9 с.
- СТО 501-52-01-2007. Проектирование и возведение ограждающих конструкций жилых и общественных зданий с применением ячеистых бетонов в Российской Федерации. Часть 1. Введ. 25.01.2007. М. : Ассоциация строителей России, 2007. 30 с.
- Штукатурка цементная теплоизоляционная фасадная КНАУФ-Грюнбанд. URL: http://www.knauf.ru/catalog/find-products-and-systems/knauf-grjunband.html#showtab-tab_1054_1
- СП 50.13330.2012. Тепловая защита зданий. Актуализированная редакция СНиП 23-02-2003. М. : Минрегион России, 2012.