СТРОИТЕЛЬНОЕ МАТЕРИАЛОВЕДЕНИЕ

ВЛИЯНИЕ КОНСТРУКЦИИ КОМБИНИРОВАННОЙ ПЛОТИНЫ НА ЕЕ НАПРЯЖЕННО-ДЕФОРМИРОВАННОЕ СОСТОЯНИЕ

Вестник МГСУ 1/2018 Том 13
  • Фомичев Алексей Александрович - АО «Акватик» инженер, АО «Акватик», 117587, г. Москва, Варшавское шоссе, д. 125Ж, корп. 5; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Саинов Михаил Петрович - Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ) кандидат технических наук, доцент, доцент кафедры гидравлики и гидротехнического строительства, начальник отдела учебно-методического объединения, Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ), 129337, г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 107-115

Предмет исследования: плотина комбинированной конструкции, в которой давление воды воспринимается совместно бетонной гравитационной плотиной и более высокой каменно-набросной плотиной с железобетонным экраном (ЖБЭ). Цели: исследовать напряженно-деформированное состояние (НДС) комбинированной плотины, выявить влияние на НДС плотины трех основных факторов: первый фактор - высота бетонного сооружения, второй фактор - высота соприкосновения (сопряжения) грунтовой насыпи и бетонного сооружения, третий фактор - деформируемость каменной наброски. На основе исследований дать рекомендации по выбору конструкции комбинированной плотины. Материалы и методы: исследования НДС проводились путем численного моделирования методом конечных элементов. Учитывался нелинейный характер деформирования грунтов и контактов бетонного сооружения с грунтами, основанием и ЖБЭ. Учитывалась последовательность возведения и загружения плотины. Модуль деформации каменной наброски варьировался от 70 до 270 МПа. Результаты: расчеты показали, что бетонное сооружение в составе комбинированной плотины почти самостоятельно воспринимает гидростатическую нагрузку, практически не передавая ее грунтовой насыпи. Выявлено, что наиболее уязвимым узлом конструкции комбинированной плотины является сопряжение грунтовой насыпи с бетонным сооружением. Эта зона характеризуется нарушениями прочности грунта. Следствием нарушений являются значительные смещения в шве между экраном и бетонным сооружением, а также изгибные деформации нижней части экрана. Изгиб экрана вызывает значительные растягивающие напряжения. Выводы: нежелательно выбирать высоту соприкосновения грунтового и бетонного сооружений больше 60…75 % от высоты бетонного сооружения, так как это ведет к повышению нагрузок, воспринимаемых бетонным сооружением, и может привести к нарушению прочности ее контакта с основанием. Не рекомендуется выбирать высоту соприкосновения грунтового и бетонного сооружений ниже 30 % от высоты последнего, так как это ведет к повышению деформаций изгиба ЖБЭ. Для надежности комбинированной плотины необходимо обеспечить модуль деформации каменной наброски не ниже 200 МПа.

DOI: 10.22227/1997-0935.2018.1.107-115

Библиографический список
  1. Reitter A.R. Design and construction of the New Exchequer dam - the world’s highest concrete faced rockfill dam // World Dams Today. 1970. pp. 4-10.
  2. Kearsey W.G. Recent developments of upstream membranes for rockfill dams: A thesis submitted to the faculty of graduate studies and research in partial fulfilment of the requirements for requirements for the degree of master of engineering in geotechnique. Edmonton, Alberta, July, 1983.
  3. Concrete face rockfill dam. Concepts for design and construction. International Commision on Large Dams, Bulletin 141, 2010.
  4. Garcia F.M., Maestro A.N., Dios R.L. et al. Spain´s new Yesa dam // The International Journal on Hydropower & Dams. 2006. Vol. 13 (3). Pp. 64-67.
  5. Dios R.L., Garcia F.M., Cea Azañedo J.C. et al. El Diseño del Recrecimiento del Embalse de Yesa // Revista de Obras Publicas. Marzo 2007. No. 3 (475). Pp. 129-148.
  6. Ляпичев Ю.П. Проектирование и строительство современных высоких плотин. М. : Изд-во РУДН, 2004. 275 с.
  7. Моисеев С.Н., Моисеев И.С. Каменно-земляные плотины. Основы проектирования и строительство. М. : Энергия, 1977. 281 с.
  8. Liberal O., Silva Matos A., Camelo D. et al. Observed behaviour and deterioration assessment of Pracana dam // Proceedings, 21st ICOLD Congress on Large Dams, MontrОal, 2003.
  9. Саинов М.П. Влияние деформируемости каменной насыпи на напряженно-деформированное состояние железобетонного экрана плотины // Вестник МГСУ. 2015. № 3. C. 69-78.
  10. Саинов М.П. Работа железобетонного экрана каменной плотины в пространственных условиях по результатам численного моделирования // Приволжский научный журнал. 2015. № 3 (35). C. 25-31.
  11. Brown H.M., Kneitz P.R. Repair of New Exchequer Dam // Water Power and Dam Construction. 1987. Vol. 39 (9). Pp. 25-29.
  12. McDonald J.E. Repair and rehabilitation of dams: case studies. Vicksburg, Miss. : U.S. Army Corps of Engineers, Engineer Research and Development Center, 1999. 265 p.
  13. Саинов М.П., Федотов А.А. Анализ напряженно-деформированного состояния комбинированной плотины Нью-Эксчекваер при статических нагрузках // Вестник МГСУ. 2015. № 2. C. 141-152.
  14. Саинов М.П., Федотов А.А. Анализ сейсмостойкости комбинированной плотины «New Exchequer» на основе численного моделирования // Приволжский научный журнал. 2015. № 4 (36). C. 26-32.
  15. Рассказов Л.Н., Джха Дж. Деформируемость и прочность грунта при расчете высоких грунтовых плотин // Гидротехническое строительство. 1997. № 7. C. 31-36.
  16. Саинов М.П. Вычислительная программа по расчету напряженно-деформированного состояния грунтовых плотин: опыт создания, методики и алгоритмы // International Journal for Computational Civil and Structural Engineering. 2013. № 9 (4). C. 208-225.
  17. Reitter A.R. Design and construction of the New Exchequer dam - the world’s highest concrete faced rockfill dam // World Dams Today. 1970. pp. 4-10.
  18. Kearsey W.G. Recent developments of upstream membranes for rockfill dams: A thesis submitted to the faculty of graduate studies and research in partial fulfilment of the requirements for requirements for the degree of master of engineering in geotechnique. Edmonton, Alberta, July, 1983.
  19. Concrete face rockfill dam. Concepts for design and construction. International Commision on Large Dams, Bulletin 141, 2010.
  20. Garcia F.M., Maestro A.N., Dios R.L. et al. Spain´s new Yesa dam // The International Journal on Hydropower & Dams. 2006. Vol. 13 (3). Pp. 64-67.
  21. Dios R.L., Garcia F.M., Cea Azañedo J.C. et al. El Diseño del Recrecimiento del Embalse de Yesa // Revista de Obras Publicas. Marzo 2007. No. 3 (475). Pp. 129-148.
  22. Ляпичев Ю.П. Проектирование и строительство современных высоких плотин. М. : Изд-во РУДН, 2004. 275 с.
  23. Моисеев С.Н., Моисеев И.С. Каменно-земляные плотины. Основы проектирования и строительство. М. : Энергия, 1977. 281 с.
  24. Liberal O., Silva Matos A., Camelo D. et al. Observed behaviour and deterioration assessment of Pracana dam // Proceedings, 21st ICOLD Congress on Large Dams, MontrОal, 2003.
  25. Саинов М.П. Влияние деформируемости каменной насыпи на напряженно-деформированное состояние железобетонного экрана плотины // Вестник МГСУ. 2015. № 3. C. 69-78.
  26. Саинов М.П. Работа железобетонного экрана каменной плотины в пространственных условиях по результатам численного моделирования // Приволжский научный журнал. 2015. № 3 (35). C. 25-31.
  27. Brown H.M., Kneitz P.R. Repair of New Exchequer Dam // Water Power and Dam Construction. 1987. Vol. 39 (9). Pp. 25-29.
  28. McDonald J.E. Repair and rehabilitation of dams: case studies. Vicksburg, Miss. : U.S. Army Corps of Engineers, Engineer Research and Development Center, 1999. 265 p.
  29. Саинов М.П., Федотов А.А. Анализ напряженно-деформированного состояния комбинированной плотины Нью-Эксчекваер при статических нагрузках // Вестник МГСУ. 2015. № 2. C. 141-152.
  30. Саинов М.П., Федотов А.А. Анализ сейсмостойкости комбинированной плотины «New Exchequer» на основе численного моделирования // Приволжский научный журнал. 2015. № 4 (36). C. 26-32.
  31. Рассказов Л.Н., Джха Дж. Деформируемость и прочность грунта при расчете высоких грунтовых плотин // Гидротехническое строительство. 1997. № 7. C. 31-36.
  32. Саинов М.П. Вычислительная программа по расчету напряженно-деформированного состояния грунтовых плотин: опыт создания, методики и алгоритмы // International Journal for Computational Civil and Structural Engineering. 2013. № 9 (4). C. 208-225.

Скачать статью

Поэтапность возведения каменно-набросной плотины - способ регулирования напряженно-деформированного состояния железобетонного экрана

Вестник МГСУ 11/2018 Том 13
  • Подвысоцкий Алексей Анатольевич - АО «Мособлгидропроект» кандидат технических наук, начальник гидротехнического отдела-2, АО «Мособлгидропроект», 143532, Московская область, г. Дедовск, ул. Энергетиков, д. 1.
  • Саинов Михаил Петрович - Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ) кандидат технических наук, доцент, начальник отдела учебно-методического объединения, доцент кафедры гидравлики и гидротехнического строительства, Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ), 129337, г. Москва, Ярославское шоссе, д. 26.
  • Сорока Владислав Борисович - Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ) аспирант кафедры гидравлики и гидротехнического строительства, Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ), 129337, г. Москва, Ярославское шоссе, д. 26.
  • Догонов Марк Леонидович - Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ) аспирант, Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ), 129337, г. Москва, Ярославское шоссе, д. 26.

Страницы 1395-1406

Введение. Представлен подход к исследованию влияния очередности возведения каменно-набросной плотины на напряженно-деформированное состояние (НДС) железобетонного экрана. Опыт применения каменно-набросных плотин с железобетонным экраном показывает, что при восприятии гидростатического давления целостность противофильтрационного элемента может быть нарушена. По результатам численного моделирования возникающие в бетоне экрана растягивающие напряжения могут превышать расчетное сопротивление бетона на растяжение. Причиной возникновения растягивающих напряжений являются деформации изгиба и продольного удлинения экрана. Актуальным вопросом является выбор способа улучшения НДС экрана для обеспечения его надежной работы как противофильтрационного элемента. Материалы и методы. Исследования проводились на примере плотины высотой 100 м с помощью численного моделирования методом конечных элементов. Рассматривались два случая - в одном плотина возводилась без очередей, в другом - в две очереди. Каменная наброска рассматривалась как линейно деформируемый материал, но расчеты проводились для широкого диапазона модуля линейной деформации грунта - от 60 до 480 МПа. Учитывалось наличие в экране стальной арматуры. Результаты. Проведено сравнение продольных напряжений в железобетонном экране для двух случаев очередности возведения плотины. Анализ проводился с определением продольной силы и изгибающего момента, возникающих в экране. Сравнивались максимальные значения растягивающих продольных напряжений, продольной силы и изгибающего момента в экране, полученные для двух случаев. Выводы. Выявлено, что возведение и нагружение плотины очередями в целом благоприятно сказывается на напряженном состоянии железобетонного экрана. От веса плотины второй очереди на экран первой очереди передается сжимающее продольное усилие, которое позволяет снизить растягивающие напряжения в нем. Изгибающие моменты в экране изменяются мало и могут даже несколько увеличиться по величине. Тем не менее при возведении плотины и наполнении водохранилища в две очереди максимальные значения растягивающих напряжений в бетоне экрана снижаются, поэтому такая схема последовательности строительства способствует повышению надежности противофильтрационного элемента плотины.

DOI: 10.22227/1997-0935.2018.11.1395-1406

Библиографический список
  1. Marques Filho P., De Pinto N.L.S. CFRD dam characteristics learned from experience // International Journal on Hydropower and Dams. 2005. No. 12 (1). Pp. 72-76.
  2. Freitas M.S.Jr. Concepts on CFRDs leakage control - Cases and current experiences // ISSMGE Bulletin. 2009. Vol. 3. Issue 4. Pp. 11-18.
  3. Johannesson P., Tohlang S.L. Lessons learned from Mohale // The International Water Power & Dam Construction. 2007. Vol. 59. Issue 8. Pp.16-18, 20-22, 24, 25.
  4. Ma H., Fudong Chi F. Technical progress on researches for the safety of high concrete-faced rockfill dams // Engineering. 2016. Vol. 2. Pp. 332-339. DOI: 10.1016/j.eng.2016.03.010
  5. Pinto N.L., Marques P.L. Estimating the maximum face slab deflection in CFRDs // The International Journal on Hydropower & Dams. 1998. Vol. 5. Issue 6. Pp. 28-30.
  6. Silva da A.F., Assis de A.P., Farias de M.M., Neto M.P.C. Three-dimensional analyses of concrete face rockfill dams: Barra Grande case study // Electronic Journal of Geotechnical Engineering. 2015. Vol. 20 (14). Pp. 6407-6426.
  7. Scuero A.M., Vaschetti G.L. Underwater repair of a 113 m high CFRD with a PVC geomembrane: turimiquire managing dams: Challenges in a time of change // Proceedings of the 16th Conference of the British Dam Society. 2010. Pp. 474-486.
  8. Xavier L.V., Albertoni S.C., Pereira R.F., Antunes J. Campos Novos dam during second impounding // The International Journal on Hydropower & Dams. 2008. No. 15. Pp. 53-58.
  9. Song W.J., Sun Y., Li L., Wang Y. Cause analysis and treatment of 1st phase slab cracking of Shuibuya CFRD // Journal of Hydroelectric Engineering. 2008. Vol. 27. No. 3. Pp. 33-37.
  10. Yifeng Chen, Ran Hu, Wenbo Lu, Dianqing Li, Chuangbing Zhou. Modeling coupled processes of non-steady seepage flow and non-linear deformation for a concrete-faced rockfill dam // Computers and Structures. 2011. Vol. 89. Issue 13-14. Pp. 1333-1351. DOI: 10.1016/j.compstruc.2011.03.012
  11. Mokhtar Pour E., Freitas Jr. M.S. Rehabilitation for high concrete faced rockfill dam (CFRD): Availability and vulnerability // Dam Maintenance and Rehabilitation II - Proceedings of the 2nd International Congress on Dam Maintenance and Rehabilitation. 2011. Pp. 881-887
  12. Li N., Wang J., Mi Z., Li D. Deformation safety of high concrete face rockfill dams // Challenges and Innovations in Geotechnics : 18th International Conference on Soil Mechanics and Geotechnical Engineering (ICSMGE). 2013. No. 4. Pp. 3301-3304.
  13. Hu K., Chen J., Wang D. Shear stress analysis and crack prevention measures for a concrete-face rockfill dam, advanced construction of a first-stage face slab, and a first-stage face slab in advanced reservoir water storage // Advances in Civil Engineering. 2018. Vol. 2018. Pp. 1-10. DOI: 10.1155/2018/2951962
  14. Arici Y. Investigation of the cracking of CFRD face plates // Computers and Geotechnics. 2011. Vol. 38. Issue 7. Pp. 905-916. DOI: 10.1016/j.compgeo.2011.06.004
  15. Dakoulas P., Thanopoulos Y., Anastasopoulos K. Non-linear 3D simulation of the construction and impounding of a CFRD // The International Journal on Hydropower and Dams. 2008. Vol. 15. Issue 2. Pp. 95-101.
  16. Aleman-Velasquez J.D., Marengo-Mogollon H., Rivera-Constantino R., Pantoja-Sanchez A., Diaz-Barriga A.F. Relevant aspects of the geotechnical design for ‘La Yesca’ hydroelectric project and of its behavior during the construction stage: The Mexican experience in concrete face rockfill dams. URL: https://ru.scribd.com/document/125483416/Relevant-Aspects-of-the-Geotechnical-Design-and-Behavior-of-La-Yesca-Dam
  17. Саинов М.П. Влияние деформируемости каменной насыпи на напряженно-деформированное состояние железобетонного экрана плотины // Вестник МГСУ. 2015. № 3. С. 69-78. DOI: 10.22227/1997-0935.2015.3.69-78
  18. Саинов М.П. Работа железобетонного экрана каменной плотины в пространственных условиях по результатам численного моделирования // Приволжский научный журнал. 2015. № 3 (35). С. 25-31.
  19. Саинов М.П. Влияние формы створа на напряженное состояние железобетонного экрана каменно-насыпной плотины // Инженерно-строительный журнал. 2016. Т. 63. № 3. С. 16-39. DOI: 10.5862/MCE.63.2
  20. Li N.-H., Sun D.-W., Li D.-H., Deng Y.-G., Yang J. Deformation behavior of 300 m high-concrete face rockfill dams // Yantu Gongcheng Xuebao (Chinese Journal of Geotechnical Engineering). 2009. No. 31 (2). Pp. 155-160
  21. Wang L.-B., Yan Q. Analyze on development prospects of 300m level ultra-high CFRD from Shuibuya high CFRD // Asia-Pacific Power and Energy Engineering Conference, APPEEC. 2010. DOI: 10.1109/appeec.2010.5448667
  22. Zhou W., Hua J., Chang X., Zhou C. Settlement analysis of the Shuibuya concrete-face rockfill dam // Computers and Geotechnics. 2011. Vol. 38. Issue 2. Pp. 269-280. DOI: 10.1016/j.compgeo.2010.10.004
  23. Xu B., Zou D., Liu H. Three-dimensional simulation of the construction process of the Zipingpu concrete face rockfill dam based on a generalized plasticity model // Computers and Geotechnics. 2012. Vol. 43. Pp. 143-154. DOI: 10.1016/j.compgeo.2012.03.002
  24. Pinto de N.L.S., Filho M.P.L., Maurer E. Foz do Areia dam - design, construction, and behaviour // Proceedings of the Symposium on Concrete Face Rockfill Dams - Design, Construction and Performance. 1985. Pp.173-191.
  25. Zhang B., Wang J.G., Shi R. Time-dependent deformation in high concrete-faced rockfill dam and separation between concrete face slab and cushion layer // Computers and Geotechnics. 2004. Vol. 31. Issue 7. Pp. 559-573. DOI: 10.1016/j.compgeo.2004.07.004
  26. Park H.G., Kim Y.-S., Seo M.-W., Lim H.-D. Settlement behavior characteristics of CFRD in construction period. Case of Daegok dam // Journal of the KGS. 2005. Vol. 21. Issue 7. Pp. 91-105.
  27. Wen L., Chai J., Xu Z., Qin Y., Li Y. Junrui C. A statistical review of the behaviour of concrete-face rockfill dams based on case histories // Géotechnique. 2018. Vol. 68. Issue 9. Pp. 749-771. DOI: 10.1680/jgeot.17.p.095
  28. Саинов М.П. Вычислительная программа по расчету напряженно-деформированного состояния грунтовых плотин: опыт создания, методики и алгоритмы // International Journal for Computational Civil and Structural Engineering. 2013. Vol. 9. Issue 4. Pp. 208-225.
  29. ICOLD. Concrete Face Rockfill dam: Concepts for design and construction, International Commision on Large Dams. 2011. Bulletin 141.
  30. Kearsey W.G. Recent developments of upstream membranes for rockfill dams. A thesis submitted to the faculty of graduate studies and research in partial fulfilment of the requirements for requirements for the degree of master of engineering in geotechnique. Edmonton. Alberta. 1983. 122 p.
  31. Ляпичев Ю.П. Проектирование и строительство современных высоких плотин : уч. пос. М. : Изд-во РУДН, 2004. 275 с.
  32. СП 41.13330-2012. Бетонные и железобетонные конструкции гидротехнических сооружений. Актуализированная редакция СНиП 2.06.08-87. М., 2012. 86 c.

Скачать статью

Роль поперечных швов в регулировании напряженно-деформированного состояния железобетонного экрана каменно-набросной плотины

Вестник МГСУ 12/2018 Том 13
  • Подвысоцкий лексей Анатольевич - Мособлгидропроект кандидат технических наук, начальник гидротехнического отдела-2, Мособлгидропроект, 143532, Московская область, г. Дедовск, ул. Энергетиков, д. 1; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Саинов Михаил Петрович - Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ) кандидат технических наук, доцент, доцент кафедры гидравлики и гидротехнического строительства, начальник отдела учебно-методического объединения, Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ), 129337, г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Сорока Владислав Борисович - СпецНовострой инженер, СпецНовострой, 143405, г. Красногорск, квартал Коммунальный, д. 20; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Лукичев Роман Валерьевич - Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ) бакалавр кафедры гидравлики и гидротехнического строительства, Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ), 129337, г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 1533-1545

Введение. Рассмотрены результаты исследований устройства в экране поперечных швов как способа регулирования его напряженно-деформированного состояния. В настоящее время железобетонные экраны выполняются неразрезными по высоте, поперечные швы устраиваются только на границах этапов возведения плотины. Причина в том, что предыдущий опыт строительства гибких (разрезных) экранов не позволил обеспечить необходимый уровень надежности противофильтрационного элемента. Однако и современные конструкции плотины не гарантируют сохранение целостности экрана - целостность экрана ряда высоких плотин была нарушена. Образование трещин следует связывать с наличием растягивающих напряжений, величина которых превосходит расчетное сопротивление бетона на растяжение. Для недопущения нарушения герметичности противофильтрационного экрана целесообразно предусматривать устройство поперечного шва на том участке экрана, на котором можно ожидать появление растягивающих напряжений. Материалы и методы. Исследования проводились на примере плотины высотой 100 м с помощью метода конечных элементов. Каменная наброска рассматривалась как линейно деформируемый материал, но расчеты проводились для широкого диапазона модуля линейной деформации грунта - от 60 до 480 МПа. Учитывалось наличие в экране стальной арматуры. Моделирование поперечных швов осуществлялось с помощью контактных конечных элементов. Результаты. По результатам численного моделирования в неразрезном экране из-за деформаций изгиба и деформаций продольного удлинения возникают растягивающие напряжения. Наиболее опасным является нижний участок экрана. На этом участке в экране действуют продольная растягивающая сила и значительный изгибающий момент. Поперечные швы целесообразно устраивать именно в нижнем участке экрана. Выводы. Выявлено, что основное положительное влияние устройства поперечного шва заключается в снятии растягивающей продольной силы. Влияние поперечного шва на изгибающие моменты имеет локальный эффект и распространяется на ограниченный по длине участок. При устройстве швов изгибающие моменты могут увеличиться. Можно рекомендовать устройство в экране поперечного шва, параллельного периметральному, только в нижней части экрана, которая испытывает деформации удлинения.

DOI: 10.22227/1997-0935.2018.12.1533-1545

Библиографический список
  1. Радченко В.Г., Глаговский В.Б., Кассирова Н.А., Курнева Е.В., Дружинин М.А. Современное научное обоснование строительства каменнонабросных плотин с железобетонными экранами // Гидротехническое строительство. 2004. № 3. С. 2-8.
  2. Радченко В.Г., Курнева Е.В., Ротченко Ю.Г. Современные технологии строительства каменнонабросных плотин с железобетонными экранами // Гидротехническое строительство. 2007. № 10. С. 25-32.
  3. Моисеев С.Н. Каменно-земляные и каменно-набросные плотины : Основы проектирования и строительства. М. : Энергия, 1970. 224 с.
  4. Проектирование и строительство плотин из местных материалов : по материалам VII и VIII Междунар. конгрессов по большим плотинам / сост. А.А. Ничипорович; под общ. ред. А.А. Борового. М. : Энергия, 1967. С. 90-99. (Проектирование и строительство больших плотин. Вып. 3).
  5. Айрапетян Р. Проектирование каменно-земляных и каменно-набросных плотин. 2-е изд., перераб. и доп. М. : Энергия, 1975. 328 с.
  6. Larson E., Kelly R., Dreese T., Fleming G., Wilkes J. A permanent solution at Salt Springs dam // International Water Power & Dam Construction. 2006. URL: http://www.waterpowermagazine.com/features/featurea-permanent-solution-at-salt-springs-dam/ (дата обращения: 01.07.2017).
  7. ICOLD. Rockfill dams with concrete facing-state of the art // International Commision on Large Dams. 1989. Bulletin 70.
  8. ICOLD. Concrete face rockfill dam: Concepts for design and construction // International Commision on Large Dams. 2010. Bulletin 141.
  9. Song W., Sun Y., Li L., Wang Y. Reason analysis and treatment for the 1st phase slab cracking of Shuibuya CFRD // Journal of Hydroelectric Engineering. 2008. Vol. 3. Issue 27. Pp. 33-37.
  10. Li N.-H., Sun D.-W., Li D.-H., Deng Y.-G., Yang J. Deformation behavior of 300 m high-concrete face rockfill dams // Yantu Gongcheng Xuebao (Chinese Journal of Geotechnical Engineering). 2009. No. 31 (2). Pp. 155-160.
  11. Wang L.-B., Yan Q. Analyze on development prospects of 300m level ultra-high CFRD from Shuibuya high CFRD // Asia-Pacific Power and Energy Engineering Conference. 2010. DOI: 10.1109/appeec.2010.5448667
  12. Marques Filho P., De Pinto N.L.S. CFRD dam characteristics learned from experience // International Journal on Hydropower and Dams. 2005. No. 12 (1). Pp. 72-76.
  13. Johannesson P., Tohlang S.L. Lessons learned from Mohale // International Water Power & Dam Construction. 2007. Vol. 59. Issue 8. Pp.16-25.
  14. Xavier L.V., Albertoni S.C., Pereira R.F., Antunes J. Campos Novos dam during second impounding // International Journal on Hydropower & Dams. 2008. No. 15. Pp. 53-58.
  15. Freitas M.S.Jr. Concepts on CFRDs Leakage Control - Cases and Current Experiences // ISSMGE Bulletin. 2009. Vol. 3. Issue 4. Pp. 11-18.
  16. Scuero A.M., Vaschetti G.L. Underwater repair of a 113 m high CFRD with a PVC geomembrane: Turimiquire // Managing Dams. Challenges in a time of change : Proceedings of the 16th Conference of the British Dam Society. 2010. Pp. 474-486.
  17. Mokhtar P.E., Freitas Jr.M.S. Rehabilitation for high concrete faced rockfill dam (CFRD): Availability and vulnerability Dam Maintenance and Rehabilitation II // Proceedings of the 2nd International Congress on Dam Maintenance and Rehabilitation. 2011. Pp. 881-887.
  18. Silva da A.F., Assis de A.P., Farias de M.M., Neto M.P.C. Three-dimensional analyses of concrete face rockfill dams: barra grande case study // Electronic Journal Geotechnical Engineering. 2015. Vol. 20. Bund 14. Pp. 6407-6426.
  19. Ma H., Fudong Chi F. Technical progress on researches for the safety of high concrete-faced rockfill dams // Engineering. 2016. Vol. 2. Issue 3. Pp. 332-339. DOI: 10.1016/j.eng.2016.03.010
  20. Arici Y. Investigation of the cracking of CFRD face plates // Computers and Geotechnics. 2011. Vol. 38. Issue 7. Pp. 905-916. DOI: 10.1016/j.compgeo.2011.06.004
  21. Cheng S., Zhang G., Zhang,J., Wan L. Effect of foundation topography on the stress-displacement response of concrete faced rockfill dam // Shuili Fadian Xuebao (Journal of Hydroelectric Engineering). 2008. No. 27 (5). Pp. 53-58.
  22. Dakoulas P., Thanopoulos Y., Anastasopoulos K. Non-linear 3D simulation of the construction and impounding of a CFRD // The International Journal on Hydropower and Dams. 2008. No. 15 (2). Pp. 95-101.
  23. Dang F.N., Wang X.W., Tian W., Xu S.J. Deformation and stress characteristics of high asymmetric CFRD and for measures // Shuili Xuebao (Journal of Hydraulic Engineering). 2012. No. 43 (5). Pp. 602-608.
  24. Dang F.N., Yang C., Xue H.B., Fang J.Y. The effect of valley topography on deformation properties of CFRD // Journal of Hydraulic Engineering. 2014. No. 45 (4). Pp. 435-442.
  25. Song W., Wang P. Influence of valley topography on the safety of CFRD anti-seepage systems // Shuili Fadian Xuebao (Journal of Hydroelectric Engineering). 2008. 27 (4). Pp. 94-100.
  26. Саинов М.П. Влияние деформируемости каменной насыпи на напряженно-деформированное состояние железобетонного экрана плотины // Вестник МГСУ. 2015. № 3. С. 69-78. DOI: 10.22227/1997-0935.2015.3.69-78
  27. Саинов М.П. Оценка влияния формы створа на напряженно-деформированное состояние железобетонного экрана каменной плотины // Приволжский научный журнал. 2016. № 2 (38). С. 104-109.
  28. Саинов М.П. Влияние формы створа на напряженное состояние железобетонного экрана каменно-насыпной плотины // Инженерно-строительный журнал. 2016. № 3. С. 16-39. DOI: 10.5862/MCE63.2
  29. Ляпичев Ю.П. Проектирование и строительство современных высоких плотин. М. : Изд-во РУДН, 2004. 275 с.
  30. Pinto N.L., Marques P.L. Estimating the maximum face slab deflection in CFRDs // International Journal on Hydropower & Dams. 1998. Vol. 5. Issue 6. Pp. 28-30.
  31. Park H.G., Kim Y.S., Seo M.W., Lim H.D. Settlement behavior characteristics of CFRD in construction period. Case of Daegok dam // Journal of the KGS. 2005. Vol. 21. No. 7. Pp. 91-105.
  32. Саинов М.П. Полуэмпирическая формула для оценки осадок однородных грунтовых плотин // Приволжский научный журнал. 2014. № 4 (32). С. 108-115.
  33. Wen L., Chai J., Xu Z., Qin Y., Li Y. A statistical review of the behaviour of concrete-face rockfill dams based on case histories // Géotechnique. 2018. Vol. 68. Issue 9. Pp. 749-771. DOI: 10.1680/jgeot.17.p.095
  34. ICOLD. Concrete face rockfill dam: Concepts for design and construction // International Commision on Large Dams. 2010. Bulletin 141.
  35. Подвысоцкий А.А., Долгих А.П. К вопросу назначения критериев безопасности по устойчивости откосов подпорных сооружений из грунтовых материалов // Гидротехническое строительство. 2010. № 8. С. 20-22.
  36. СП 41.13330-2012. Бетонные и железобетонные конструкции гидротехнических сооружений. Актуализированная редакция СНиП 2.06.08-87. М.: 2012. - 86 c.

Скачать статью

Каменно-набросные плотины с железобетонным экраном: опыт исследований напряженно-деформированного состояния

Вестник МГСУ 2/2019 Том 14
  • Сорока Владислав Борисович - СпецНовострой инженер, СпецНовострой, 143405, г. Красногорск, квартал Коммунальный, д. 20; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Саинов Михаил Петрович - Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ) кандидат технических наук, доцент, начальник отдела учебно-методического объединения, доцент кафедры гидравлики и гидротехнического строительства, Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ), 129337, г. Москва, Ярославское шоссе, д. 26.
  • Королев Денис Викторович - Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ) студент, Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ), 129337, г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 207-224

Введение. В настоящее время актуальной научной проблемой гидротехнического строительства является установление причин образования трещин в противофильтрационных железобетонных экранах ряда каменно-набросных плотин. На решение этой задачи направлены исследования напряженно-деформированного состояния (НДС) каменно-набросных плотин с железобетонным экраном, которые проводятся различными методами. Материалы и методы. Проведен обзор и анализ результатов исследований напряженно-деформированного состояния каменно-набросных плотин с железобетонным экраном, выполненных разными авторами за последние 15 лет. Рассмотрены результаты аналитических, экспериментальных и численных исследований. Описаны модели, использованные для воспроизведения нелинейного характера деформируемости каменной наброски при численном моделировании НДС плотин. Результаты. Анализ показал, что решение задачи о НДС каменно-набросных плотин с железобетонным экраном вызывает целый ряд методологических трудностей. На данный момент единственным методом, который позволяет изучать НДС каменно-набросных плотин с железобетонным экраном, является численное моделирование. Остальные методы не позволяют учесть влияние на НДС экрана важных факторов. Большие затруднения вызывает слабая изученность деформативных свойств каменной наброски в реальных плотинах. Выводы. Выявлено, что НДС железобетонных экранов изучено недостаточно. Результаты проведенных исследований не дают полного и адекватного представления об условиях работы железобетонных экранов. Не изучено влияние различных факторов на НДС экрана. Существуют противоречия в результатах исследований, полученных разными авторами. Различия в результатах имеют в своей основе объективные и субъективные причины. Значительным препятствием для численных исследований является сложность моделирования поведения жесткого тонкостенного железобетонного экрана при больших деформациях, присущих каменной наброске. Получаемые результаты исследований часто не позволяют провести полноценный анализ НДС железобетонных экранов каменно-набросных плотин.

DOI: 10.22227/1997-0935.2019.2.207-224

Библиографический список
  1. Радченко В.Г., Глаговский В.Б., Кассирова Н.А., Курнева Е.В., Дружинин М.А. Современное научное обоснование строительства каменнонабросных плотин с железобетонными экранами // Гидротехническое строительство. 2004. № 3. С. 2-8.
  2. Pinto N.L.S., Marques F.P. Estimating the maximum face deflection in CFRDs // International Journal on Hydropower and Dams. 1998. Vol. 5. No. 6. Pp. 28-31.
  3. Xavier L.V., Albertoni S.C., Pereira R.F., Antunes J. Campos Novos dam during second impounding // The International Journal on Hydropower & Dams. 2008. No. 15 (4). Pp. 53-58.
  4. Johannesson P., Tohlang S.L. Lessons learned from Mohale // The International Water Power & Dam Construction. 2007. Vol. 59. Issue 8. Pp. 16-18, 20-22, 24-25.
  5. Ma H.Q., Cao K.M. Key technical problems of extra-high concrete faced rock-fill dam // Science in China. Series E: Technological Sciences. 2007. Vol. 50. Issue S1. Pp. 20-33. DOI: 10.1007/s11431-007-6007-5
  6. Freitas M.S.Jr. Concepts on CFRDs leakage control - cases and current experiences // ISSMGE Bulletin. 2009. Vol. 3. Issue 4. Pp. 11-18.
  7. Wen L., Chai J., Xu Z., Qin Y., Li Y. A statistical review of the behaviour of concrete-face rockfill dams based on case histories // Géotechnique. 2018. Vol. 68. Issue 9. Pp. 749-771. DOI: 10.1680/jgeot.17.p.095
  8. Seo M.-W., Ha I.S., Kim Y.-S., Olson S.M. Behavior of concrete-faced rockfill dams during initial impoundment // Journal of Geotechnical and Geoenvironmental Engineering. 2009. Vol. 135. Issue 8. Pp. 1070-1081. DOI: 10.1061/(ASCE)GT.1943-5606.0000021
  9. Hunter G., Fell R. Rockfill modulus and settlement of concrete face rockfill dams // Journal of Geotechnical and Geoenvironmental Engineering. 2003. Vol. 129. Issue 10. Pp. 909-917. DOI: 10.1061/(asce)1090-0241(2003)129:10(909)
  10. Park H.G., Kim Y.-S., Seo M.-W., Lim H.-D. Settlement behavior characteristics of CFRD in construction period. Case of Daegok dam // Journal of the Korean Geotechnical Society. 2005. Vol. 21. No. 7. Pp. 91-105.
  11. Won M.S., Kim Y.S. A case study on the post construction deformation of concrete face rockfill dams // Canadian Geotechnical Journal. 2008. Vol. 45. Issue 6. Pp. 845-852. DOI: 10.1139/t08-020
  12. Саинов М.П. Полуэмпирическая формула для оценки осадок однородных грунтовых плотин // Приволжский научный журнал. 2014. № 4. С. 108-115.
  13. Саинов М.П. Приближенная расчетная схема работы железобетонного экрана каменно-набросной плотины // Научное обозрение. 2016. № 18. С. 18-22.
  14. Hou Y.J., Xu Z.P., Liang J.H. Centrifuge modeling of cutoff wall for CFRD built in deep overburden // Proceedings of International Conference of Hydropower. 2004. Pp. 86-92.
  15. Arici Y. Investigation of the cracking of CFRD face plates // Computers and Geotechnics. 2011. Vol. 38. Issue 7. Pp. 905-916. DOI: 10.1016/j.compgeo.2011.06.004
  16. Arici Y., Özel H.F. Comparison of 2D versus 3D modeling approaches for the analysis of the concrete faced rock-fill Cokal dam // Earthquake Engineering & Structural Dynamics. 2013. Vol. 42. Issue 15. Pp. 2277-2295. DOI: 10.1002/eqe.2325
  17. Velásquez J.D.A., Sánchez A.P., Lesso S.V. Geotechnical studies and design of La Yesca Dam // 14th PanAmerican Conference on Soil Mechanics and Geotechnical Engineering. 2011. URL: http://geoserver.ing.puc.cl/info/conferences/PanAm2011/panam2011/pdfs/EO11Paper813.pdf
  18. Bin Xu, Degao Zou, Huabei Liu. Three-dimensional simulation of the construction process of the Zipingpu concrete face rockfill dam based on a generalized plasticity model // Computers and Geotechnics. 2012. Vol. 43. Pp. 143-154. DOI: 10.1016/j.compgeo.2012.03.002
  19. Dakoulas P., Thanopoulos Y., Anastasopoulos K. Non-linear 3D simulation of the construction and impounding of a CFRD // The International Journal on Hydropower and Dams. 2008. No. 15 (2). Pp. 95-101.
  20. He Yu, Shouju Li, Yingxi Liu, Jun Zhang. Non-linear analysis of stress and strain of concrete-faced rockfill dam for sequential impoundment process // Mathematical and Computational Applications. 2010. Vol. 15. Issue 5. Pp. 796-801. DOI: 10.3390/mca15050796
  21. Hu K., Chen J., Wang D. Shear stress analysis and crack prevention measures for a concrete-face rockfill dam, advanced construction of a first-stage face slab, and a first-stage face slab in advanced reservoir water storage // Advances in Civil Engineering. 2018. Vol. 2018. Pp. 1-10. DOI: 10.1155/2018/2951962
  22. Kim Y.-S., Seo M.-W., Lee C.-W., Kang G.-C. Deformation characteristics during construction and after impoundment of the CFRD-type Daegok Dam, Korea // Engineering Geology. 2014. Vol. 178. Pp. 1-14. DOI: 10.1016/j.enggeo.2014.06.009
  23. Özkuzukiran S., Özkan M.Y., Özyazicioğlu M., Yildiz G.S. Settlement behaviour of a concrete faced rock-fill dam // Geotechnical and Geological Engineering. 2006. Vol. 24. Issue 6. Pp. 1665-1678. DOI: 10.1007/s10706-005-5180-1
  24. Silva da A.F., Assis de A.P., Farias de M.M., Neto M.P.C. Three-dimensional analyses of concrete face rockfill dams: barra grande case study // Electronic Journal of Geotechnical Engineering. 2015. Vol. 20. Bund 14. Pp. 6407-6426.
  25. Ghadrdan M., Sadrnejad S.A., Shaghaghi T., Ghasimi K. Numerical evaluation of concrete-faced rockfill dam upon multiplane damage model // ROMAI Journal. 2015. Vol. 11. No. 1. Pp. 47-67.
  26. Escobar C.M., Posada A.M. Recent experience on design, construction and performance of CFRD dams // 6th International Conference on Case Histories in Geotechnical Engineering. 2008. Pp. 1-9.
  27. Sukkarak R., Pramthawee P., Jongpradist P., Kongkitkul W., Jamsawang P. Deformation analysis of high CFRD considering the scaling effects // Geomechanics and Engineering. 2018. Vol. 14. Issue 3. Pp. 211-224. DOI: 10.12989/gae.2018.14.3.211
  28. Li S., Shangguan Z., Wang J. Computer simulation of sequential impoundment process of concrete-faced rockfill dam // Journal of Computers. 2012. Vol. 7. Issue 8. Pp. 1801-1808. DOI: 10.4304/jcp.7.8.1801-1808
  29. Wu Y., Zhang J.W., Wang C. Time-dependent deformation and stress analyses of Xibeikou concrete face rockfill dam // Electronic Journal of Geotechnical Engineering. 2014. Vol. 19. Bund R. Pp. 6739-6747.
  30. Ye Zhu, Lu Lu. Nonlinear static analysis of Shuibuya dam in China - World’s Highest CFRD // Electronic Journal of Geotechnical Engineering. 2016. Vol. 21. Bund 04. Pp. 1527-1537.
  31. Zhang B., Wang J.G., Shi R. Time-dependent deformation in high concrete-faced rockfill dam and separation between concrete face slab and cushion layer // Computers and Geotechnics. 2004. Vol. 31. Issue 7. Pp. 559-573. DOI: 10.1016/j.compgeo.2004.07.004
  32. Zhou W., Hua J., Chang X., Zhou C. Settlement analysis of the Shuibuya concrete-face rockfill dam // Computers and Geotechnics. 2011. Vol. 38. Issue 2. Pp. 269-280. DOI: 10.1016/j.compgeo.2010.10.004
  33. Zhou M.-Z., Zhang B., Jie Y. Numerical simulation of soft longitudinal joints in concrete-faced rockfill dam // Soils and Foundations. 2016. Vol. 56. Issue 3. Pp. 379-390. DOI: 10.1016/j.sandf.2016.04.005
  34. Zhu Y., Chi S. The application of MsPSO in the rockfill parameter inversion of CFRD // Mathematical Problems in Engineering. 2016. Vol. 2016. Pp. 1-11. DOI: 10.1155/2016/1096967
  35. Jia Y., Xu B., Chi S., Xiang B., Zhou Y. Research on the particle breakage of rockfill materials during triaxial tests // International Journal of Geomechanics. 2017. Vol. 17. Issue 10. P. 04017085. DOI: 10.1061/(ASCE)GM.1943-5622.0000977

Скачать статью

Влияние армирования на напряженно-деформированное состояние железобетонного экрана каменно-набросной плотины

Вестник МГСУ 3/2019 Том 14
  • Саинов Михаил Петрович - Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ) кандидат технических наук, доцент, доцент кафедры гидравлики и гидротехнического строительства, начальник отдела учебно-методического объединения, Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ), 129337, г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Шигаров Андрей Юрьевич - Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ) студент, Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ), 129337, г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Ясафова Софья Андреевна - Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ) студентка, Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ), 129337, г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 347-355

Введение. Рассмотрены результаты исследования напряженно-деформированного состояния (НДС) железобетонного экрана с учетом наличия арматуры. На некоторых сверхвысоких каменно-набросных плотинах с железобетонным экраном происходило образование поперечных (горизонтальных) трещин в противофильтрационном элементе. Предполагается, что причина трещинообразования в экране - высокие по величине растягивающие напряжения. В связи с этим высказываются мнения о необходимости усиления армирования экрана. Однако в реальных плотинах, в соответствии с опытом, арматура, как правило, устраивается в один ряд с процентом армирования 0,35…0,5 %. Актуальным вопросом исследований каменно-набросных плотин с железобетонным экраном является оценка влияния усиленного армирования железобетонного экрана на повышение их надежности. Материалы и методы. Исследование осуществлялось для различных вариантов деформативных свойств каменной наброски тела плотины на примере каменно-набросной плотины высотой 100 м. Железобетонный экран был принят широким (толщиной 1 м). Армирование принималось двухрядным, процент армирования - 1,5 %. Использовался метод конечных элементов. Арматура моделировалась с помощью стержневых конечных элементов. Результаты. Для выявления роли арматуры расчеты НДС проводились для двух случаев. В одном из них принималось, что арматура отсутствует, а в другом - учитывалось наличие в экране стальной арматуры. Анализировались величины напряжений, возникающих в бетоне и стальной арматуре. Рассматривались напряжения, действующие в направлении вдоль верхового откоса. Выводы. Выявлено, что за счет армирования железобетонного экрана стержневой стальной арматуры невозможно обеспечить снижение растягивающих напряжений в бетоне экрана до допустимого уровня. Существенную роль в формировании НДС экрана арматура может играть только в момент образования в бетоне экрана поперечных трещин, однако такой случай является недопустимым.

DOI: 10.22227/1997-0935.2019.3.347-355

Библиографический список
  1. Радченко В.Г., Глаговский В.Б., Кассирова Н.А., Курнева Е.В., Дружинин М.А. Современное научное обоснование строительства каменнонабросных плотин с железобетонными экранами // Гидротехническое строительство. 2004. № 3. C. 2-8.
  2. Chartrand C., Claisse M., Beauséjour N., Briand M.-H., Bouzaiene H., Boisjoly C. et al. Toulnustouc Dam // Canadian Consulting Engineer. 2006. Vol. 47. Issue 6. P. 51.
  3. Song W., Sun Y., Li L., Wang Y. Reason analysis and treatment for the 1st phase slab cracking of Shuibuya CFRD // Journal of Hydroelectric Engineering. 2008. No. 3 (27). Pp. 33-37.
  4. Sobrinho J.A., Xavier L.V., Albertoni S.C., Pereira R.F. Performance and concrete face repair at Campos Novos // The International Journal on Hydropower & Dams. 2007. Issue 14 (2). Pp. 39-42.
  5. Pinto N.L., Marques P.L. Estimating the maximum face slab deflection in CFRDs // The International Journal on Hydropower & Dams. 1998. Vol. 5. Issue 6. Pp. 28-30.
  6. Freitas M.S.Jr. Concepts on CFRDs leakage control - cases and current experiences // ISSMGE Bulletin. 2009. Vol. 3. Issue 4. Pp. 11-18.
  7. Johannesson P., Tohlang S.L. Lessons learned from Mohale // The International Water Power & Dam Construction. 2007. Vol. 59. Issue 8. Pp. 16-18, 20-22, 24-25.
  8. Саинов М.П. Влияние деформируемости каменной насыпи на напряженно-деформированное состояние железобетонного экрана плотины // Вестник МГСУ. 2015. № 3. С. 69-78. DOI: 10.22227/1997-0935.2015.3.69-78
  9. Саинов М.П. Работа железобетонного экрана каменной плотины в пространственных условиях по результатам численного моделирования // Приволжский научный журнал. 2015. № 3 (35). С. 25-31.
  10. Bin Xu, Degao Zou, Huabei Liu. Three-dimensional simulation of the construction process of the Zipingpu concrete face rockfill dam based on a generalized plasticity model // Computers and Geotechnics. 2012. Vol. 43. Pp. 143-154. DOI: 10.1016/j.compgeo.2012.03.002
  11. Сорока В.Б., Саинов М.П., Королев Д.В. Каменно-набросные плотины с железобетонным экраном: опыт исследований напряженно-деформированного состояния // Вестник МГСУ. 2019. Т. 14. Вып. 2. С. 207-224. DOI: 10.22227/1997-0935.2019.2.p1-p2
  12. Arici Y. Investigation of the cracking of CFRD face plates // Computers and Geotechnics. 2011. Vol. 38. Issue 7. Pp. 905-916. DOI: 10.1016/j.compgeo.2011.06.004
  13. Arici Y., Özel H.F. Comparison of 2D versus 3D modeling approaches for the analysis of the concrete faced rock-fill Cokal Dam // Earthquake Engineering & Structural Dynamics. 2013. Vol. 42. Issue 15. Pp. 2277-2295. DOI: 10.1002/eqe.2325
  14. Alemán Velásquez J.D., Pantoja Sánchez A., Villegas Lesso S. Geotechnical studies and design of La Yesca Dam // 14th PanAmerican Conference on Soil Mechanics and Geotechnical Engineering. 2011. URL: http://geoserver.ing.puc.cl/info/conferences/PanAm2011/panam2011/pdfs/EO11Paper813.pdf
  15. Hu K., Chen J., Wang D. Shear stress analysis and crack prevention measures for a concrete-face rockfill dam, advanced construction of a first-stage face slab, and a first-stage face slab in advanced reservoir water storage // Advances in Civil Engineering. 2018. Vol. 2018. Pp. 1-10. DOI: 10.1155/2018/2951962
  16. Silva da A.F., Assis de A.P., Farias de M.M., Neto M.P.C. Three-dimensional analyses of concrete face rockfill dams: Barra Grande Case Study // Electronic Journal of Geotechnical Engineering. 2015. Vol. 20. Bund 14. Pp. 6407-6426.
  17. Mohsen Ghadrdan, Seyed Amirodin Sadrnejad, Tahereh Shaghaghi, Kazem Ghasimi. Numerical evaluation of concrete-faced rockfill dam upon multiplane damage model // ROMAI Journal. 2015. Vol. 11. No. 1. Pp. 47-67.
  18. Sukkarak R., Pramthawee P., Jongpradist P., Kongkitkul W., Jamsawang P. Deformation analysis of high CFRD considering the scaling effects // Geomechanics and Engineering. 2018. Vol. 14. Issue 3. Pp. 211-224. DOI: 10.12989/gae.2018.14.3.211
  19. Li S., Shangguan Z., Wang J. Computer simulation of sequential impoundment process of concrete-faced rockfill dam // Journal of Computers. 2012. Vol. 7. Issue 8. Pp. 1801-1808. DOI: 10.4304/jcp.7.8.1801-1808
  20. Ye Zhu, Lu Lu. Nonlinear static analysis of Shuibuya dam in China - World’s Highest CFRD // Electronic Journal of Geotechnical Engineering. 2016. Vol. 21. Bund 04. Pp. 1527-1537.
  21. Zhang B., Wang J.G., Shi R. Time-dependent deformation in high concrete-faced rockfill dam and separation between concrete face slab and cushion layer // Computers and Geotechnics. 2004. Vol. 31. Issue 7. Pp. 559-573. DOI: 10.1016/j.compgeo.2004.07.004
  22. Zhou M.-Z., Zhang B., Jie Y. Numerical simulation of soft longitudinal joints in concrete-faced rockfill dam // Soils and Foundations. 2016. Vol. 56. Issue 3. Pp. 379-390. DOI: 10.1016/j.sandf.2016.04.005
  23. Zhu Y., Chi S. The application of MsPSO in the rockfill parameter inversion of CFRD // Mathematical Problems in Engineering. 2016. Vol. 2016. Pp. 1-11. DOI: 10.1155/2016/1096967
  24. Park H.G., Kim Y.-S., Seo M.-W., Lim H.-D. Settlement behavior characteristics of CFRD in construction period. Case of Daegok dam // Journal of the Korean Geotechnical Society. 2005. Vol. 21. Issue 7. Pp. 91-105.
  25. Саинов М.П. Полуэмпирическая формула для оценки осадок однородных грунтовых плотин // Приволжский научный журнал. 2014. № 4 (31). С. 108-115.
  26. 14 декабря 2018 г.

Скачать статью

Результаты 1 - 5 из 5