БЕЗОПАСНОСТЬ СТРОИТЕЛЬНЫХ СИСТЕМ. ЭКОЛОГИЧЕСКИЕ ПРОБЛЕМЫ В СТРОИТЕЛЬСТВЕ. ГЕОЭКОЛОГИЯ

Геоэкологическая оценка накопителей шламов водного хозяйства и разработка технологий их ликвидации

Вестник МГСУ 2/2015
  • Чертес Константин Львович - Самарский государственный технический университет (ФГБОУ ВПО «СамГТУ») доктор технических наук, профессор кафедры химической технологии и промышленной экологии, Самарский государственный технический университет (ФГБОУ ВПО «СамГТУ»), 443100, г. Самара, ул. Молодогвардейская, д. 244; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Тупицына Ольга Владимировна - Самарский государственный технический университет (ФГБОУ ВПО «СамГТУ») кандидат технических наук, доцент, доцент кафедры химической технологии и промышленной экологии, Самарский государственный технический университет (ФГБОУ ВПО «СамГТУ»), 443100, г. Самара, ул. Молодогвардейская, д. 244; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Пыстин Виталий Николаевич - Самарский государственный технический университет (ФГБОУ ВПО «СамГТУ») аспирант кафедры химической технологии и промышленной экологии, Самарский государственный технический университет (ФГБОУ ВПО «СамГТУ»), 443100, г. Самара, ул. Молодогвардейская, д. 244; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 110-129

Представлены элементы системы комплексной оценки накопителей шламов водного хозяйства как источников сырья для производства грунтоподобных рекультивационных материалов с использованием поэтапного критериального отбора. Разработана комплексная технология обработки шламов перед утилизацией. Приведены результаты исследований основных стадий обработки: обезвоживания, минерализации и упрочнения. Предлагаемая технология позволит сократить затраты на закупку природных грунтов для рекультивации, а также сократить затраты, связанные с размещением отходов.

DOI: 10.22227/1997-0935.2015.2.110-129

Библиографический список
  1. Вайсман Я.И., Калинина Е.В., Рудакова Л.В. Использование материального потенциала опасных промышленных отходов // Теоретическая и прикладная экология. 2013. № 1. С. 27-34.
  2. Гуляева И.С., Дьяков М.С., Глушанкова И.С., Беленький М.Б. Утилизация осадков сточных вод с получением продуктов, обладающих товарными свойствами // Защита окружающей среды в нефтегазовом комплексе. 2012. № 7. С. 43-49.
  3. Зубкова В.И., Коренькова С.Ф., Малявский Н.И. Природное и техногенное наносырье в производстве смешанных вяжущих // Научно-технический вестник Поволжья. 2013. № 1. С. 174-176.
  4. Коренькова С.Ф., Якушин И.В., Зимина В.Г. Фрактальное моделирование свойств шламовых отходов // Башкирский химический журнал. 2007. Т. 14. № 4. С. 114-119.
  5. Николаева Л.А., Хусаенова А.З. Энерго- и ресурсосберегающая технология утилизации шлама химводоочистки ТЭС // Теплоэнергетика. 2014. № 5. С. 69-74.
  6. Николаева Л.А., Голубчиков М.А., Захарова С.В. Изучение сорбционных свойств шлама осветлителей при очистке сточных вод ТЭС от нефтепродуктов // Известия высших учебных заведений. Проблемы энергетики. 2012. № 9-10. С. 86-91.
  7. Николаева Л.А., Недзвецкая Р.Я. Исследование утилизации шлама водоподготовки ТЭС в качестве сорбента при биологической очистке сточных вод промышленных предприятий // Вода: химия и экология. 2012. № 8 (50). С. 80-84.
  8. Николаева Л.А., Каляпина С.А. Использование шлама химводоочистки ТЭС в производстве полимерных композитов // Экология и промышленность России. 2011. № 11. С. 7-9.
  9. Николаева Л.А., Бородай Е.Н., Голубчиков М.А. Сорбционные свойства шлама осветлителей при очистке сточных вод электростанций от нефтепродуктов // Известия высших учебных заведений. Проблемы энергетики. 2011. № 1-2. С. 132-136.
  10. Лаптев А.Г., Бородай Е.Н., Николаева Л.А. Новые возможности утилизации шламов химической водоподготовки на ТЭС // Вода: химия и экология. 2009. № 3 (9). С. 2-5.
  11. Тараканов О.В., Пронина Т.В., Тараканов А.О. Применение минеральных шламов в производстве строительных растворов // Строительные материалы. 2008. № 4. С. 68-70.
  12. Чумаченко Н.Г., Коренькова Е.А. Промышленные отходы - перспективное сырье для производства строительных материалов // Промышленное и гражданское строительство. 2014. № 3. С. 20-24.
  13. Cerqueira M.B.R., Caldas S.S., Primel E.G. New sorbent in the dispersive solid phase extraction step of quick, easy, cheap, effective, rugged, and safe for the extraction of organic contaminants in drinking water treatment sludge // Journal of Chromatography A. Apr. 4. 2014. Vol. 1336. Рр. 10-22.
  14. Zhou Zhiwei, Yang Yanling, Li Xing, Wang Weiqiang, Wu Yan, Wang Changyu, Luo Jianliang. Coagulation performance and flocs characteristics of recycling pre-sonicated condensate sludge for low-turbidity surface water treatment // Separation and Purification Technology. 2014. Vol. 123. Pр. 1-8.
  15. Zhou Zhiwei, Yang Yanling, Li Xing, Gao Wei, Liang Heng, Li Guibai. Coagulation efficiency and flocs characteristics of recycling sludge during treatment of low temperature and micro-polluted water // Journal of Environmental Sciences. 2012. Vоl. 24. No. 6. Pр. 1014-1020.
  16. Verrelli D.I., Dixon D.R., Scales P.J. Effect of coagulation conditions on the dewatering properties of sludges produced in drinking water treatment // Colloids and Surfaces A: Physicochem. Eng. Aspects. 2009. Vol. 348. No. 1-2. Pр. 14-23.
  17. Palomo M., Penalver A., Aguilar C., Borrull F. Presence of Naturally Occurring Radioactive Materials in sludge samples from several Spanish water treatment plants // Journal of Hazardous Materials. 2010. Vol. 181. Pр. 716-721.
  18. Xu G.R., Yan Z.C., Wang Y.C., Wang N. Recycle of Alum recovered from water treatment sludge in chemically enhanced primary treatment // Journal of Hazardous Materials. 2009. Vol. 161. No. 1-2. Pр. 663-669.
  19. Sun J., Pikaar I., Sharma K.R., Keller J., Yuan Z. Feasibility of sulfide control in sewers by reuse of iron rich drinking water treatment sludge // Water research. 2015. Vol. 7. No. 1. Pр. 150-159.
  20. Keeley J., Smith A.D., Judd S.J., Jarvis P. Reuse of recovered coagulants in water treatment: An investigation on the effect coagulant purity has on treatment performance // Separation and Purification Technology. 2014. Vol. 131. Pр. 69-78.
  21. Huang C.-H., Wang S.-Y. Application of water treatment sludge in the manufacturing of lightweight aggregate // Construction and Building Materials. 2013. Vol. 43. Pр. 174-183.
  22. Kizinievic O., Zurauskiene R., Kizinievic V., Zurauskas R. Utilisation of sludge waste from water treatment for ceramic products // Construction and Building Materials. 2013. Vol. 41. Pр. 464-473.
  23. Sales A., Rodrigues de Souza F. Concretes and mortars recycled with water treatment sludge and construction and demolition rubble // Construction and Building Materials. 2009. Vol. 23. No. 6. Pр. 2362-2370.
  24. Lebigue C.J., Andriantsiferana C., Krou N’G., Ayral C., Mohamed E., Wilhelm A.-M., Delmas H., Le Coq L., Gerente C., Smith K.M., Pullket S., Fowler G.D., Graham N.J.D. Application of sludge-based carbonaceous materials in a hybrid water treatment process based on adsorption and catalytic wet air oxidation // Journal of Environmental Management. 2010. Vol. 91 (12). Pр. 2432-2439.
  25. Siswoyo E., Mihara Y., Tanaka S. Determination of key components and adsorption capacity of a low cost adsorbent based on sludge of drinking water treatment plant to adsorb cadmium ion in water // Applied Clay Science. 2014. Vol. 97-98. Pр. 146-152.
  26. Sales A., De Souza F.R., Almeida F.D.C.R. Mechanical properties of concrete produced with a composite of water treatment sludge and sawdust // Construction and Building Materials. 2011. Vol. 25. Pр. 2793-2798.
  27. Ротермель М.В., Бучельников Д.Ю., Красненко Т.И., Сирина Т.П. Шламы химической водоподготовки: состав, свойства, перспективы рециклинга // Техносферная безопасность. 2014. № 1 (2). Режим доступа: http://uigps.ru/sites/ default/files/jyrnal/stat%20PB%202/12.pdf.
  28. Zinck J., Griffith W. Review of Mine Drainage Treatment and Sludge Manage- Operations // Project 603054, REPORT CANMET-MMSL 10-058(CR). Version - March 2013. 101 p.
  29. Sotero-Santos R.B., Rocha O., Povinelli J. Evaluation of water treatment sludges toxicity using the Daphnia bioassay // Water Research. 2005. Vol. 39. No. 16. Pр. 3909-3917.
  30. Тупицына О.В., Гладышев Н.Г., Кузнецова М.С., Пирожков Д.А., Чертес К.Л., Тарасова И.В., Быков Д.Е. Реабилитация территорий, деградированных в результате деятельности опасных производств // Экология и промышленность России. 2011. № 3. С. 30-32.
  31. Тупицына О.В. Комплексная геоэкологическая система исследования и восстановления техногенно нарушенных территорий // Экология и промышленность России. 2011. № 3. С. 35-38.
  32. Чертес К.Л., Быков Д.Е., Ендураева Н.Н., Тупицына О.В. Рекультивация отработанных карьеров // Экология и промышленность России. 2002. № 11. С. 18-22.
  33. Автомобильные дороги и мосты. Строительство конструктивных слоев дорожных одежд из грунтов, укрепленных вяжущими материалами : обзорная информация. М. : Информавтодор, 2007. Вып. 3.
  34. Тупицына О.В., Камбург В.Г., Чертес К.Л., Быков Д.Е. Критериальная оценка состояния нарушенных геосистем // Нефтегазовое дело. 2012. № 4. С. 231-241. Режим доступа: http://www.ogbus.ru/authors/Tupitsyna/Tupitsyna_2.pdf. Дата обращения: 20.12.2014.
  35. Ланис А.Л., Хан Гил Нам. Модификация модели геосреды для решения задач механики грунтов методом дискретных элементов // Вестник Томского государственного архитектурно-строительного университета. 2013. № 1 (38). С. 273-281.
  36. Аксенов В.И., Ладыгичев М.Г., Ничкова И.И., Никулин В.А., Кляйн С.Э., Аксенов Е.В. Водное хозяйство промышленных предприятий: Справочное издание : в 2 кн. М. : Теплотехник, 2005. Кн. 1. 640 с.
  37. Сафонова Н.А., Чертес К.Л., Тупицына О.В., Пыстин В.Н., Калинкина К.Д., Бурлака В.А., Быков Д.Е. Комплексная система обращения с буровыми шламами с использованием геоконтейнерной обработки // Нефтегазовое дело. 2012. № 4. С. 274-284. Режим доступа: http://ogbus.ru/authors/Safonova/Safonova_1.pdf. Дата обращения: 23.12.2014.
  38. Сафонова Н.А., Тупицына О.В., Чертес К.Л., Штеренберг А.М., Ярыгина А.А., Пыстин В.Н., Быков Д.Е. Комплексная система обработки и утилизации буровых шламов при помощи фильтрующих оболочек // Экология и промышленность России. 2013. № 7. С. 11-17.
  39. Быков Д.Е., Тупицына О.В., Гладышев Н.Г., Зеленцов Д.В., Гвоздева Н.В., Самарина О.А., Цимбалюк А.Е., Чертес К.Л. Комплекс биодеструкции нефтеотходов // Экология и промышленность России. 2011. № 3. С. 33-34.
  40. Андреев С.Ю. Математическое моделирование процесса аэрирования // Водоснабжение и санитарная техника. 2007. № 3. С. 34-37.
  41. Разработка системы утилизации шлама. Разработка комплексной технологии обезвоживания и конверсии шлама водоподготовки ТЭЦ в рекультивационно-строительный материал ОАО «КНПЗ» // Проект 50-10/10-0620-НИОКР-2. Самара : ООО «ЭнергоПроектСтройИзыскания», 2011. 175 с.
  42. ОЗХ НПЗ. Буферный пруд. Реконструкция // Проект 447/11//11-0711.157-П-101.510.001. ГОУ ВПО СамГТУ НЦПЭ. Самара, 2012. 138 с.
  43. Строительство площадки для проведения биодеструкции нефтесодержащих отходов в цехе № 11 ОАО «НкНПЗ» // Проект 3281214/0611Д/116/14, ФГБОУ ВПО «СамГТУ». Самара, 2014. 86 с.

Скачать статью

Геоэкологическое обоснование освоения накопителей шламов ЖКХ методом обработки многомерных данных

Вестник МГСУ 6/2015
  • Чертес Константин Львович - Самарский государственный технический университет (ФГБОУ ВПО «СамГТУ») доктор технических наук, профессор кафедры химической технологии и промышленной экологии, Самарский государственный технический университет (ФГБОУ ВПО «СамГТУ»), 443100, г. Самара, ул. Молодогвардейская, д. 244; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Тупицына Ольга Владимировна - Самарский государственный технический университет (ФГБОУ ВПО «СамГТУ») кандидат технических наук, доцент, доцент кафедры химической технологии и промышленной экологии, Самарский государственный технический университет (ФГБОУ ВПО «СамГТУ»), 443100, г. Самара, ул. Молодогвардейская, д. 244; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Пыстин Виталий Николаевич - Самарский государственный технический университет (ФГБОУ ВПО «СамГТУ») аспирант кафедры химической технологии и промышленной экологии, Самарский государственный технический университет (ФГБОУ ВПО «СамГТУ»), 443100, г. Самара, ул. Молодогвардейская, д. 244; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Ермаков Василий Васильевич - Самарский государственный технический университет (ФГБОУ ВПО «СамГТУ») старший преподаватель кафедры химической технологии и промышленной экологии, Самарский государственный технический университет (ФГБОУ ВПО «СамГТУ»), 443100, г. Самара, ул. Молодогвардейская, д. 244; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Раменская Екатерина Вячеславовна - Самарский государственный технический университет (ФГБОУ ВПО «СамГТУ») аспирант кафедры химической технологии и промышленной экологии, Самарский государственный технический университет (ФГБОУ ВПО «СамГТУ»), 443100, г. Самара, ул. Молодогвардейская, д. 244; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Штеренберг Александр Моисеевич - Самарский государственный технический университет (ФГБОУ ВПО «СамГТУ») доктор физико-математических наук, профессор, заведующий кафедрой общей физики и физики нефтегазового производства, Самарский государственный технический университет (ФГБОУ ВПО «СамГТУ»), 443100, г. Самара, ул. Молодогвардейская, д. 244; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 88-102

Рассмотрены основные характеристики накопителей шламов жилищно-коммунального хозяйства с позиции их целевого освоения. Представлена система оценки состояния шламонакопителей при помощи анализа многомерных данных. Рассматриваемые объекты размещения отходов были классифицированы на три группы с позиции возможности и целесообразности их ликвидации. Приведен пример цифровых матриц состояния накопителей отходов. Представлено конструктивно-технологическое оформление комплекса производства рекультивационных материалов.

DOI: 10.22227/1997-0935.2015.6.88-102

Библиографический список
  1. Гуляева И.С., Дьяков М.С., Глушанкова И.С., Беленький М.Б. Утилизация осадков сточных вод с получением продуктов, обладающих товарными свойствами // Защита окружающей среды в нефтегазовом комплексе. 2012. № 7. С. 43-49.
  2. Зубкова В.И., Коренькова С.Ф., Малявский Н.И. Природное и техногенное наносырье в производстве смешанных вяжущих // Научно-технический вестник Поволжья. 2013. № 1. С. 174-176.
  3. Николаева Л.А., Голубчиков М.А., Захарова С.В. Изучение сорбционных свойств шлама осветлителей при очистке сточных вод ТЭС от нефтепродуктов // Известия высших учебных заведений. Проблемы энергетики. 2012. № 9-10. С. 86-91.
  4. Николаева Л.А., Недзвецкая Р.Я. Исследование утилизации шлама водоподготовки ТЭС в качестве сорбента при биологической очистке сточных вод промышленных предприятий // Вода: химия и экология. 2012. № 8. С. 80-84.
  5. Тараканов О.В., Пронина Т.В., Тараканов А.О. Применение минеральных шламов в производстве строительных растворов // Строительные материалы. 2008. № 4. С. 68-70.
  6. Чумаченко Н.Г., Коренькова Е.А. Промышленные отходы перспективное сырье для производства строительных материалов // Промышленное и гражданское строительство. 2014. № 3. С. 20-24.
  7. Maristela B.R. Cerqueira, Sergiane S. Caldas, Ednei G. Primel. New sorbent in the dispersive solid phase extraction step of quick, easy, cheap, effective, rugged, and safe for the extraction of organiccontaminants in drinking water treatment sludge // Journal of Chromatography A. 2014. Vol. 1336. Рp. 10-22.
  8. Zhou Z., Yang Y., Li X., Wang W., Wu Y., Wang C., Luo J. Coagulation performance and flocs characteristics of recycling pre-sonicated condensate sludge for low-turbidity surface water treatment // Separation and Purification Technology. 2014. Vol. 123. Pр. 1-8.
  9. Zhou Z., Yang Y., Li X., Gao W., Liang H., Li G. Coagulation efficiency and flocs characteristics of recycling sludge during treatment of low temperature and micro-polluted water // Journal of Environmental Sciences. 2012. 24 (6). Pр. 1014-1020.
  10. David I. Verrelli, David R. Dixon, Peter J. Scales. Effect of coagulation conditions on the dewatering properties of sludges produced in drinking water treatment // Colloids and Surfaces A: Physicochem. Eng. Aspects. 2009. Vol. 348. No. 1-3. Pр. 14-23.
  11. Palomo M., Penalver A., Aguilar C., Borrull F. Presence of naturally occurring radioactive materials in sludge samples from several Spanish water treatment plants // Journal of Hazardous Materials. 2010. No. 181 (1-3). Pр. 716-721.
  12. Xu G.R., Yan Z.C., Wang Y.C., Wang N. Recycle of Alum recovered from water treatment sludge in chemically enhanced primary treatment // Journal of Hazardous Materials. 2009. Vol. 161. No. 2-3. Pр. 663-669.
  13. Jing Sun, Ilje Pikaar, Keshab Raj Sharma, Jurg Keller, Zhiguo Yuan. Feasibility of sulfide control in sewers by reuse of iron rich drinking water treatment sludge // Water Research. 2015. Vol. 71. Pр. 150-159.
  14. Keeley James, Smith Andrea D., Judd Simon J., Jarvis Peter. Reuse of recovered coagulants in water treatment: An investigation on the effect coagulant purity has on treatment performance // Separation and Purification Technology. 2014. No. 131. Pр. 69-78.
  15. Chung-Ho Huang, Shun-Yuan Wang. Application of water treatment sludge in the manufacturing of lightweight aggregate. Construction and Building Materials. 2013. Vol. 43. Pр. 174-183.
  16. Olga Kizinievic, Ramune Zurauskiene, Viktor Kizinievic, Rimvydas Zurauskas. Utilisation of sludge waste from water treatment for ceramic products // Construction and Building Materials. 2013. Vol. 41. Pр. 464-473.
  17. Almir Sales, Francis Rodrigues de Souza. Concretes and mortars recycled with water treatment sludge and construction and demolition rubble // Construction and Building Materials. 2009. Vol. 23. No. 6. Pр. 2362-2370.
  18. Carine Julcour Lebigue, Caroline Andriantsiferana, N’Guessan Krou, Catherine Ayral, Elham Mohamed, Anne-Marie Wilhelm, Henri Delmas, Laurence Le Coq, Claire Gerente, Karl M. Smith, Suangusa Pullket, Geoffrey D. Fowler, Nigel J.D. Graham. Application of sludge-based carbonaceous materials in a hybrid water treatment process based on adsorption and catalytic wet air oxidation // Journal of Environmental Management. 2010. No. 91 (12). Pр. 2432-2439.
  19. Siswoyo E., Mihara Y., Tanaka S. Determination of key components and adsorption capacity of a low cost adsorbent based on sludge of drinking water treatment plant to adsorb cadmium ion in water // Applied Clay Science. 2014. Vol. 97-98. Pр. 146-152.
  20. Almir Sales, Francis Rodrigues de Souza, Fernando do Couto Rosa Almeida. Mechanical properties of concrete produced with a composite of water treatment sludge and sawdust // Construction and Building Materials. 2011. Vol. 25. No. 6. Pр. 2793-2798.
  21. Ротермель М.В., Бучельников Д.Ю., Красненко Т.И., Сирина Т.П. Шламы химической водоподготовки: состав, свойства, перспективы рециклинга // Техносферная безопасность. 2014. № 1 (2). Режим доступа: http://uigps.ru/sites/default/files/jyrnal/ stat%20PB%202/12.pdf. Дата обращения: 20.12.2014.
  22. Review of Mine Drainage Treatment and Sludge Management Operations Project 603054, REPORT CANMET-MMSL 10-058(CR). Version-March 2013.
  23. Кривень А.П. Выбор оборудования для обезвоживания осадков сточных вод и производственных шламов // Водоснабжение и санитарная техника. 2012. № 5. С. 67-74.
  24. Boizonella D., Cavinato C., Fatone F., et al. High rate mesophilic, thermophilic, and temperature phased anaerobic digestion of waste activated sludge. A pilot scale study // Waste Management. 2012. Vol. 32. No. 6. Pp. 1196-1201.
  25. Дмитриев В.В. Определение интегрального показателя состояния природного объекта как сложной системы // Общество. Среда. Развитие. 2009. № 4. С. 146-165.
  26. Пряхин С.И. Методика геоэкологического анализа природно-технических геосистем юга Приволжской возвышенности (в пределах Волгоградской области) // Вестник Воронежского государственного университета. Серия: География. Геоэкология. 2007. № 2. С. 78-86.
  27. Lied T.T., Geladi P., Esbensen K.H. Multivariate image regression (MIR): implementation of image PLSR - first forays // Chemometrics. 2000. Vol. 14. No. 5-6. Pp. 585-599.
  28. Быков Д.Е., Тупицына О.В., Гладышев Н.Г., Зеленцов Д.В., Гвоздева Н.В., Самарина О.А., Цимбалюк А.Е., Чертес К.Л. Комплекс биодеструкции нефтеотходов // Экология и промышленность России. 2011. № 3. С. 33-34.

Скачать статью

ПОЛЗУЧЕСТЬ И ДЛИТЕЛЬНАЯ НЕСУЩАЯ СПОСОБНОСТЬ ДЛИННОЙ СВАИ, ПОГРУЖЕННОЙ В МАССИВ ИЗ ГЛИНИСТОГО ГРУНТА

Вестник МГСУ 1/2013
  • Тер-Мартиросян Завен Григорьевич - Московский государственный строительный университет (ФГБОУ ВПО «МГСУ») доктор технических наук, профессор, заведующий кафедрой механики грунтов оснований и фундаментов, Московский государственный строительный университет (ФГБОУ ВПО «МГСУ»), 129337, г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Сидоров Виталий Валентинович - Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ) кандидат технических наук, доцент кафедры механики грунтов и геотехники, научный сотрудник научно-образовательного центра «Геотехника», Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ), 129337, г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Тер-Мартиросян Карен Завенович - Московский государственный строительный университет (ФГБОУ ВПО «МГСУ») аспирант, Московский государственный строительный университет (ФГБОУ ВПО «МГСУ»), 129337, г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 109-115

Изложена постановка и решение задачи о взаимодействии длинной сваи с окружающим грунтом, обладающим ярко выраженными реологическими свойствами, в т.ч. вязкостью, упрочнением, разупрочнением, описываемыми модифицированной моделью Максвелла. Показывается, что в этом случае осадка сваи при действии постоянной нагрузки может развиваться с затухающей, постоянной и знакопеременной (прогрессирующей) скоростью в зависимости от интенсивности приложенной нагрузки и реологических свойств грунта.Полученное решение можно использовать для прогнозирования осадки одиночной сваи или группы свай в составе плитного фундамента при шаге более шести диаметров сваи, а также для определения предела длительной несущей способности одиночной сваи.

DOI: 10.22227/1997-0935.2013.1.109-115

Библиографический список
  1. Вялов С.С. Реологические основы механики грунтов. М. : Высш. шк.,1978. 442 с.
  2. Месчян С.Р. Экспериментальные основы реологии глинистых грунтов. М., 2008. 805 с.
  3. Тер-Мартиросян З.Г. Механика грунтов. М. : Изд-во АСВ, 2009. 550 с.
  4. Тер-Мартиросян З.Г., Нгуен Занг Нам. Взаимодействие свай большой длины с неоднородным массивом с учетом нелинейных и реологических свойств грунтов // Вестник МГСУ. 2008. № 2. С. 3—14.

Скачать статью

Микротопографические показатели поверхностей трения строительных машин и оборудования

Вестник МГСУ 9/2012
  • Густов Юрий Иванович - ФГБОУ ВПО «Московский государственный строительный университет» (ФГБОУ ВПО «МГСУ») доктор технических наук, профессор кафедры механического оборудования, деталей машин и технологии металлов 8 (499) 183-94-95, ФГБОУ ВПО «Московский государственный строительный университет» (ФГБОУ ВПО «МГСУ»), г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Любушкин Кирилл Александрович - Московский государственный строительный университет (ФГБОУ ВПО «МГСУ») аспирант кафедры механического оборудования, деталей машин и технологии металлов 8 (499) 183-94-95, Московский государственный строительный университет (ФГБОУ ВПО «МГСУ»), г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Орехов Алексей Александрович - Московский государственный строительный университет (ФГБОУ ВПО «МГСУ») аспирант кафедры механического оборудования, деталей машин и технологии металлов 8 (499) 183-94-95, Московский государственный строительный университет (ФГБОУ ВПО «МГСУ»), г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 179 - 184

Приведены понятия, определения и соотношения микротопографических показателей
изношенных поверхностей в координатной системе относительных давлений и сближений
трущихся деталей строительной техники.
Представлены результаты исследований микротопографических и триботехнических показателей шарниров черпаков строительных драг, а также наплавленных дробящих
плит щековых дробилок. Применительно к шарнирам драг рекомендуется пара трения
сталь 110Г13Л - наплавка Х-5, обладающая относительно абразива большой твердостью
(Kt = 1,04) и меньшей температурой фрикционного нагрева (?Ts = 90 °C). Для подвижных плит
щековых дробилок рекомендуется наплавка электродами ВСН-9 и ЦН-16, имеющими наибольшие значения фрикционной усталости (t = 2,76 и 2,62 соответственно) и незначительные
температуры нагрева поверхностей трения (9,4 и 4,9 °C). Для неподвижных плит рекомендованы электроды ЦН-16, Т-590 и КБХ-45.
Микротопографические показатели изношенных поверхностей трения позволяют рассчитать основные триботехнические характеристики рабочих органов и сопряжений строительных машин и оборудования.

DOI: 10.22227/1997-0935.2012.9.179 - 184

Библиографический список
  1. Густов Ю.И. Повышение износостойкости рабочих органов и сопряжений строительных машин : дисс. … д-ра техн. наук. М. : МГСУ, 1994. 529 с.
  2. Коробко В.И. Золотое сечение и проблемы гармонии систем. М. : Изд-во АСВ стран СНГ, 1998. 373 с.
  3. Чихос Х. Системный анализ в трибонике. М. : МИР, 1982. 351 с.
  4. Густов Ю.И. Триботехника строительных машин и оборудования : монография. М. : МГСУ, 2011. 192 с.
  5. Hebda M., Wachal A. Trybologja // Wydawnictwa Naukowo-Techniczne. Warszawa, 1980. 611 p.
  6. Petrescu Florin Nicolae. Trjbologie // Institutul de Constructii Bucuresti. 1986. 275 p.
  7. Густов Ю.И., Густов Д.Ю., Воронина И.В. Методология определения триботехнических показателей металлических материалов // Сб. докладов XVI Словацко-российско-польского семинара «теоретические основы строительства». Жилина, Словацкая республика. 2007. С. 339-342.
  8. Физические величины / А.П. Бабичев, Н.А. Бабушкина, А.М. Братковский и др. М. : Энергоатомиздат, 1991. С. 1232.
  9. Густов Ю.И., Воронина И.В. Модернизация и ремонт самоходных машин // Интерстроймех - 2007: материалы Междунар. науч.-техн. конф. Самара : СГАСУ, 2007. С. 238-242.

Cкачать на языке оригинала

Результаты 1 - 4 из 4