Ударное нагружение системы свая - основание в осесимметричной постановке

Вестник МГСУ 8/2015
  • Васенкова Екатерина Викторовна - ФГБОУ ВО «Национальный исследовательский Московский государственный строительный университет» (НИУ МГСУ) старший преподаватель кафедры высшей математики, ФГБОУ ВО «Национальный исследовательский Московский государственный строительный университет» (НИУ МГСУ), 129337, г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Зуев Владимир Васильевич - Московский государственный университет информационных технологий, радиотехники и электроники (ФГБОУ ВПО «МГУИТРЭ») доктор физико-математических наук, профессор, заведующий кафедрой прикладной математики и информатики, Московский государственный университет информационных технологий, радиотехники и электроники (ФГБОУ ВПО «МГУИТРЭ»), 107996, г. Москва, ул. Стромынка, д. 20; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 101-108

Рассмотрена в осесимметричной постановке базовая задача строительной механики, а именно - задача об ударном нагружении сваи, заглубленной в основание. Задача рассмотрена в рамках предложенных ранее в пространстве деформаций определяющих соотношений для необратимых деформаций. В качестве модели теории пластичности принята обобщенная авторами модель Мизеса, с использованием которой решается нестационарная система девяти двумерных уравнений в частных производных с разнообразными начальными и граничными условиями. Предложенный подход позволяет дать полную картину напряженно-деформируемого состояния в любой момент времени в системе свая - основание, картину появления и развития зон пластичности и разрушения.

DOI: 10.22227/1997-0935.2015.8.101-108

Библиографический список
  1. Тер-Мартиросян А.З. Остаточные деформации и напряжения в грунтовой среде при действии циклической нагрузки // Строительство - формирование среды жизнедеятельности : сб. науч. тр. XXIII Междунар. межвуз. науч.-практ. конф. молодых ученых, докторантов и аспирантов, 14-21.04.2010. М. : МГСУ, 2010. C. 815-819.
  2. Бурлаков В.Н., Тер-Мартиросян А.З. Дилатансия, влияние на деформируемость // Сб. тр. юб. конф., посв. 80-летию каф. мех. грунт., 110-летию Н.А. Цытовича, 100-летию С.С. Вялова, Москва, 2010. М. : МГСУ, 2010. C. 105-112.
  3. Тер-Мартиросян З.Г., Ала Саид Мухаммед Абдул Малек, Тер-Мартиросян А.З., Аинбетов И.К. Напряженно-деформированное состояние двухслойного основания с преобразованным верхним слоем // Вестник МГСУ. 2008. № 2. C. 81-95.
  4. Зуев В.В., Шмелева А.Г. Осесимметричное ударное нагружение упругопластической среды с разупрочнением и переменными упругими свойствами // Вестник Самарского государственного университета : Естественнонаучная серия. 2007. № 2 (52). C. 100-106.
  5. Зуев В.В., Шмелева А.Г. Моделирование поведения слоистых защитных преград при динамических нагрузках // Промышленные АСУ и контроллеры. 2009. № 12. C. 28-30.
  6. Зуев В.В., Шмелева А.Г. Некоторые актуальные задачи динамического нагружения упругопластических сред с усложненными свойствами // Вестник Нижегородского университета им. Н.И. Лобачевского. 2011. № 4 (5). C. 2189-2191.
  7. Шмелева А.Г. Ударное нагружение пластических сред. LAP Lambert Academic Publishing, 2012. 128 с.
  8. Mata M., Casals O., Alcal J. The plastic zone size in indentation experiments: the analogy with the expansion of a spherical cavity // Int. J. of Solids and Structures. 2006. Vol. 43. No. 20. Pp. 5994-6013.
  9. Khodakov S. Physicochemical mechanics of grinding of solids // Shuili Xuebao/Journal of Hydraulic Engineering. 1998. No. 9. Pp. 631-643.
  10. Demêmes D., Dechesne C.J., Venteo S., Gaven F., Raymond J. Development of the rat efferent vestibular system on the ground and in microgravity // Developmental Brain Research. 2001. Vol. 128. No. 1. Pp. 35-44.
  11. Feldgun V.R., Karinski Y.S., Yankelevsky D.Z., Kochetkov A.V. Internal blast loading in a buried lined tunnel // Int. J. of Impact Engineering. 2008. Vol. 35. No. 3. Pp. 172-183.
  12. Feldgun V.R., Karinski Y.S., Yankelevsky D.Z., Kochetkov A.V. Blast response of a lined cavity in a porous saturated soil // Int. J. of Impact Engineering. 2008. Vol. 35. No. 9. Pp. 953-966.
  13. Aptukov V.N. Expansion of a spherical cavity in a compressible elastoplastic medium. Report 1. Effect on mechanical characteristics, free surface, and lamination // Strength of Materials. 1991. Vol. 23. No. 12. Pp. 1262-1268.
  14. Anand L., Gu C. Granular materials: constitutive equations and strain localization // Journal of the Mechanics and Physics of Solids. 2000. Vol. 48. No. 8. Pp. 1701-1733.
  15. Zou J.-F., Li L., Zhang J.-H., Peng J.-G., Wu Y.-Z. Unified elastic plastic solution for cylindrical cavity expansion cosidering ladge strain and drainage condition // Gong Cheng Li Xue/Engineering Mechanics. 2010. Vol. 27. No. 6. Pp. 1-7.
  16. Фриштер Л.Ю. Расчетно-экспериментальный метод исследования напряженно-деформируемого состояния составных конструкций в зонах концентрации напряжений // Строительная механика инженерных конструкций сооружений. 2008. № 2. С. 20-27.
  17. Фриштер Л.Ю., Мозгалева М.Л. Сопоставление возможностей численного и экспериментального моделирования напряженно-деформируемого состояния конструкций с учетом их геометрической нелинейности // International Jornal for Computational Civil and Structural Engineering. 2010. Vol. 6. No. 1-2. Pp. 221-222.
  18. Антонов В.И. Начальные напряжения в анизотропном неоднородном цилиндре, образованном намоткой // Вестник МГСУ. 2010. № 4. Т. 1. С. 29-33.
  19. Антонов В.И. Метод определения начальных напряжений в рулоне при нелинейной зависимости между напряжениями и деформациями // Вестник МГСУ. 2010. № 4. Т. 3. С. 177-180.
  20. Антонов В.И. Напряжение в рулоне при дополнительном натяжении ленты // Вестник МГСУ. 2013. № 10. С. 24-29.
  21. Зуев В.В. Определяющие соотношения и динамические задачи для упругопластических сред с усложненными свойствами. М. : Физматлит, 2006. 176 с.
  22. Тер-Мартиросян А.З. Остаточные деформации и напряжения в грунтовой среде при действии циклической нагрузки // Строительство - формирование среды жизнедеятельности : сб. науч. тр. XXIII Междунар. межвуз. науч.-практ. конф. молодых ученых, докторантов и аспирантов, 14-21.04.2010. М. : МГСУ, 2010. C. 815-819.
  23. Бурлаков В.Н., Тер-Мартиросян А.З. Дилатансия, влияние на деформируемость // Сб. тр. юб. конф., посв. 80-летию каф. мех. грунт., 110-летию Н.А. Цытовича, 100-летию С.С. Вялова, Москва, 2010. М. : МГСУ, 2010. C. 105-112.
  24. Тер-Мартиросян З.Г., Ала Саид Мухаммед Абдул Малек, Тер-Мартиросян А.З., Аинбетов И.К. Напряженно-деформированное состояние двухслойного основания с преобразованным верхним слоем // Вестник МГСУ. 2008. № 2. C. 81-95.
  25. Зуев В.В., Шмелева А.Г. Осесимметричное ударное нагружение упругопластической среды с разупрочнением и переменными упругими свойствами // Вестник Самарского государственного университета : Естественнонаучная серия. 2007. № 2 (52). C. 100-106.
  26. Зуев В.В., Шмелева А.Г. Моделирование поведения слоистых защитных преград при динамических нагрузках // Промышленные АСУ и контроллеры. 2009. № 12. C. 28-30.
  27. Зуев В.В., Шмелева А.Г. Некоторые актуальные задачи динамического нагружения упругопластических сред с усложненными свойствами // Вестник Нижегородского университета им. Н.И. Лобачевского. 2011. № 4 (5). C. 2189-2191.
  28. Шмелева А.Г. Ударное нагружение пластических сред. LAP Lambert Academic Publishing, 2012. 128 с.
  29. Mata M., Casals O., Alcal J. The plastic zone size in indentation experiments: the analogy with the expansion of a spherical cavity // Int. J. of Solids and Structures. 2006. Vol. 43. No. 20. Pp. 5994-6013.
  30. Khodakov S. Physicochemical mechanics of grinding of solids // Shuili Xuebao/Journal of Hydraulic Engineering. 1998. No. 9. Pp. 631-643.
  31. Demêmes D., Dechesne C.J., Venteo S., Gaven F., Raymond J. Development of the rat efferent vestibular system on the ground and in microgravity // Developmental Brain Research. 2001. Vol. 128. No. 1. Pp. 35-44.
  32. Feldgun V.R., Karinski Y.S., Yankelevsky D.Z., Kochetkov A.V. Internal blast loading in a buried lined tunnel // Int. J. of Impact Engineering. 2008. Vol. 35. No. 3. Pp. 172-183.
  33. Feldgun V.R., Karinski Y.S., Yankelevsky D.Z., Kochetkov A.V. Blast response of a lined cavity in a porous saturated soil // Int. J. of Impact Engineering. 2008. Vol. 35. No. 9. Pp. 953-966.
  34. Aptukov V.N. Expansion of a spherical cavity in a compressible elastoplastic medium. Report 1. Effect on mechanical characteristics, free surface, and lamination // Strength of Materials. 1991. Vol. 23. No. 12. Pp. 1262-1268.
  35. Anand L., Gu C. Granular materials: constitutive equations and strain localization // Journal of the Mechanics and Physics of Solids. 2000. Vol. 48. No. 8. Pp. 1701-1733.
  36. Zou J.-F., Li L., Zhang J.-H., Peng J.-G., Wu Y.-Z. Unified elastic plastic solution for cylindrical cavity expansion cosidering ladge strain and drainage condition // Gong Cheng Li Xue/Engineering Mechanics. 2010. Vol. 27. No. 6. Pp. 1-7.
  37. Фриштер Л.Ю. Расчетно-экспериментальный метод исследования напряженно-деформируемого состояния составных конструкций в зонах концентрации напряжений // Строительная механика инженерных конструкций сооружений. 2008. № 2. С. 20-27.
  38. Фриштер Л.Ю., Мозгалева М.Л. Сопоставление возможностей численного и экспериментального моделирования напряженно-деформируемого состояния конструкций с учетом их геометрической нелинейности // International Jornal for Computational Civil and Structural Engineering. 2010. Vol. 6. No. 1-2. Pp. 221-222.
  39. Антонов В.И. Начальные напряжения в анизотропном неоднородном цилиндре, образованном намоткой // Вестник МГСУ. 2010. № 4. Т. 1. С. 29-33.
  40. Антонов В.И. Метод определения начальных напряжений в рулоне при нелинейной зависимости между напряжениями и деформациями // Вестник МГСУ. 2010. № 4. Т. 3. С. 177-180.
  41. Антонов В.И. Напряжение в рулоне при дополнительном натяжении ленты // Вестник МГСУ. 2013. № 10. С. 24-29.
  42. Зуев В.В. Определяющие соотношения и динамические задачи для упругопластических сред с усложненными свойствами. М. : Физматлит, 2006. 176 с.

Скачать статью

ПОЛЗУЧЕСТЬ И ДЛИТЕЛЬНАЯ НЕСУЩАЯ СПОСОБНОСТЬ ДЛИННОЙ СВАИ, ПОГРУЖЕННОЙ В МАССИВ ИЗ ГЛИНИСТОГО ГРУНТА

Вестник МГСУ 1/2013
  • Тер-Мартиросян Завен Григорьевич - Московский государственный строительный университет (ФГБОУ ВПО «МГСУ») доктор технических наук, профессор, заведующий кафедрой механики грунтов оснований и фундаментов, Московский государственный строительный университет (ФГБОУ ВПО «МГСУ»), 129337, г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Сидоров Виталий Валентинович - Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ) кандидат технических наук, доцент кафедры механики грунтов и геотехники, научный сотрудник научно-образовательного центра «Геотехника», Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ), 129337, г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Тер-Мартиросян Карен Завенович - Московский государственный строительный университет (ФГБОУ ВПО «МГСУ») аспирант, Московский государственный строительный университет (ФГБОУ ВПО «МГСУ»), 129337, г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 109-115

Изложена постановка и решение задачи о взаимодействии длинной сваи с окружающим грунтом, обладающим ярко выраженными реологическими свойствами, в т.ч. вязкостью, упрочнением, разупрочнением, описываемыми модифицированной моделью Максвелла. Показывается, что в этом случае осадка сваи при действии постоянной нагрузки может развиваться с затухающей, постоянной и знакопеременной (прогрессирующей) скоростью в зависимости от интенсивности приложенной нагрузки и реологических свойств грунта.Полученное решение можно использовать для прогнозирования осадки одиночной сваи или группы свай в составе плитного фундамента при шаге более шести диаметров сваи, а также для определения предела длительной несущей способности одиночной сваи.

DOI: 10.22227/1997-0935.2013.1.109-115

Библиографический список
  1. Вялов С.С. Реологические основы механики грунтов. М. : Высш. шк.,1978. 442 с.
  2. Месчян С.Р. Экспериментальные основы реологии глинистых грунтов. М., 2008. 805 с.
  3. Тер-Мартиросян З.Г. Механика грунтов. М. : Изд-во АСВ, 2009. 550 с.
  4. Тер-Мартиросян З.Г., Нгуен Занг Нам. Взаимодействие свай большой длины с неоднородным массивом с учетом нелинейных и реологических свойств грунтов // Вестник МГСУ. 2008. № 2. С. 3—14.

Скачать статью

Результаты 1 - 2 из 2