Ударное нагружение системы свая - основание в осесимметричной постановке

Вестник МГСУ 8/2015
  • Васенкова Екатерина Викторовна - ФГБОУ ВО «Национальный исследовательский Московский государственный строительный университет» (НИУ МГСУ) старший преподаватель кафедры высшей математики, ФГБОУ ВО «Национальный исследовательский Московский государственный строительный университет» (НИУ МГСУ), 129337, г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Зуев Владимир Васильевич - Московский государственный университет информационных технологий, радиотехники и электроники (ФГБОУ ВПО «МГУИТРЭ») доктор физико-математических наук, профессор, заведующий кафедрой прикладной математики и информатики, Московский государственный университет информационных технологий, радиотехники и электроники (ФГБОУ ВПО «МГУИТРЭ»), 107996, г. Москва, ул. Стромынка, д. 20; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 101-108

Рассмотрена в осесимметричной постановке базовая задача строительной механики, а именно - задача об ударном нагружении сваи, заглубленной в основание. Задача рассмотрена в рамках предложенных ранее в пространстве деформаций определяющих соотношений для необратимых деформаций. В качестве модели теории пластичности принята обобщенная авторами модель Мизеса, с использованием которой решается нестационарная система девяти двумерных уравнений в частных производных с разнообразными начальными и граничными условиями. Предложенный подход позволяет дать полную картину напряженно-деформируемого состояния в любой момент времени в системе свая - основание, картину появления и развития зон пластичности и разрушения.

DOI: 10.22227/1997-0935.2015.8.101-108

Библиографический список
  1. Тер-Мартиросян А.З. Остаточные деформации и напряжения в грунтовой среде при действии циклической нагрузки // Строительство - формирование среды жизнедеятельности : сб. науч. тр. XXIII Междунар. межвуз. науч.-практ. конф. молодых ученых, докторантов и аспирантов, 14-21.04.2010. М. : МГСУ, 2010. C. 815-819.
  2. Бурлаков В.Н., Тер-Мартиросян А.З. Дилатансия, влияние на деформируемость // Сб. тр. юб. конф., посв. 80-летию каф. мех. грунт., 110-летию Н.А. Цытовича, 100-летию С.С. Вялова, Москва, 2010. М. : МГСУ, 2010. C. 105-112.
  3. Тер-Мартиросян З.Г., Ала Саид Мухаммед Абдул Малек, Тер-Мартиросян А.З., Аинбетов И.К. Напряженно-деформированное состояние двухслойного основания с преобразованным верхним слоем // Вестник МГСУ. 2008. № 2. C. 81-95.
  4. Зуев В.В., Шмелева А.Г. Осесимметричное ударное нагружение упругопластической среды с разупрочнением и переменными упругими свойствами // Вестник Самарского государственного университета : Естественнонаучная серия. 2007. № 2 (52). C. 100-106.
  5. Зуев В.В., Шмелева А.Г. Моделирование поведения слоистых защитных преград при динамических нагрузках // Промышленные АСУ и контроллеры. 2009. № 12. C. 28-30.
  6. Зуев В.В., Шмелева А.Г. Некоторые актуальные задачи динамического нагружения упругопластических сред с усложненными свойствами // Вестник Нижегородского университета им. Н.И. Лобачевского. 2011. № 4 (5). C. 2189-2191.
  7. Шмелева А.Г. Ударное нагружение пластических сред. LAP Lambert Academic Publishing, 2012. 128 с.
  8. Mata M., Casals O., Alcal J. The plastic zone size in indentation experiments: the analogy with the expansion of a spherical cavity // Int. J. of Solids and Structures. 2006. Vol. 43. No. 20. Pp. 5994-6013.
  9. Khodakov S. Physicochemical mechanics of grinding of solids // Shuili Xuebao/Journal of Hydraulic Engineering. 1998. No. 9. Pp. 631-643.
  10. Demêmes D., Dechesne C.J., Venteo S., Gaven F., Raymond J. Development of the rat efferent vestibular system on the ground and in microgravity // Developmental Brain Research. 2001. Vol. 128. No. 1. Pp. 35-44.
  11. Feldgun V.R., Karinski Y.S., Yankelevsky D.Z., Kochetkov A.V. Internal blast loading in a buried lined tunnel // Int. J. of Impact Engineering. 2008. Vol. 35. No. 3. Pp. 172-183.
  12. Feldgun V.R., Karinski Y.S., Yankelevsky D.Z., Kochetkov A.V. Blast response of a lined cavity in a porous saturated soil // Int. J. of Impact Engineering. 2008. Vol. 35. No. 9. Pp. 953-966.
  13. Aptukov V.N. Expansion of a spherical cavity in a compressible elastoplastic medium. Report 1. Effect on mechanical characteristics, free surface, and lamination // Strength of Materials. 1991. Vol. 23. No. 12. Pp. 1262-1268.
  14. Anand L., Gu C. Granular materials: constitutive equations and strain localization // Journal of the Mechanics and Physics of Solids. 2000. Vol. 48. No. 8. Pp. 1701-1733.
  15. Zou J.-F., Li L., Zhang J.-H., Peng J.-G., Wu Y.-Z. Unified elastic plastic solution for cylindrical cavity expansion cosidering ladge strain and drainage condition // Gong Cheng Li Xue/Engineering Mechanics. 2010. Vol. 27. No. 6. Pp. 1-7.
  16. Фриштер Л.Ю. Расчетно-экспериментальный метод исследования напряженно-деформируемого состояния составных конструкций в зонах концентрации напряжений // Строительная механика инженерных конструкций сооружений. 2008. № 2. С. 20-27.
  17. Фриштер Л.Ю., Мозгалева М.Л. Сопоставление возможностей численного и экспериментального моделирования напряженно-деформируемого состояния конструкций с учетом их геометрической нелинейности // International Jornal for Computational Civil and Structural Engineering. 2010. Vol. 6. No. 1-2. Pp. 221-222.
  18. Антонов В.И. Начальные напряжения в анизотропном неоднородном цилиндре, образованном намоткой // Вестник МГСУ. 2010. № 4. Т. 1. С. 29-33.
  19. Антонов В.И. Метод определения начальных напряжений в рулоне при нелинейной зависимости между напряжениями и деформациями // Вестник МГСУ. 2010. № 4. Т. 3. С. 177-180.
  20. Антонов В.И. Напряжение в рулоне при дополнительном натяжении ленты // Вестник МГСУ. 2013. № 10. С. 24-29.
  21. Зуев В.В. Определяющие соотношения и динамические задачи для упругопластических сред с усложненными свойствами. М. : Физматлит, 2006. 176 с.
  22. Тер-Мартиросян А.З. Остаточные деформации и напряжения в грунтовой среде при действии циклической нагрузки // Строительство - формирование среды жизнедеятельности : сб. науч. тр. XXIII Междунар. межвуз. науч.-практ. конф. молодых ученых, докторантов и аспирантов, 14-21.04.2010. М. : МГСУ, 2010. C. 815-819.
  23. Бурлаков В.Н., Тер-Мартиросян А.З. Дилатансия, влияние на деформируемость // Сб. тр. юб. конф., посв. 80-летию каф. мех. грунт., 110-летию Н.А. Цытовича, 100-летию С.С. Вялова, Москва, 2010. М. : МГСУ, 2010. C. 105-112.
  24. Тер-Мартиросян З.Г., Ала Саид Мухаммед Абдул Малек, Тер-Мартиросян А.З., Аинбетов И.К. Напряженно-деформированное состояние двухслойного основания с преобразованным верхним слоем // Вестник МГСУ. 2008. № 2. C. 81-95.
  25. Зуев В.В., Шмелева А.Г. Осесимметричное ударное нагружение упругопластической среды с разупрочнением и переменными упругими свойствами // Вестник Самарского государственного университета : Естественнонаучная серия. 2007. № 2 (52). C. 100-106.
  26. Зуев В.В., Шмелева А.Г. Моделирование поведения слоистых защитных преград при динамических нагрузках // Промышленные АСУ и контроллеры. 2009. № 12. C. 28-30.
  27. Зуев В.В., Шмелева А.Г. Некоторые актуальные задачи динамического нагружения упругопластических сред с усложненными свойствами // Вестник Нижегородского университета им. Н.И. Лобачевского. 2011. № 4 (5). C. 2189-2191.
  28. Шмелева А.Г. Ударное нагружение пластических сред. LAP Lambert Academic Publishing, 2012. 128 с.
  29. Mata M., Casals O., Alcal J. The plastic zone size in indentation experiments: the analogy with the expansion of a spherical cavity // Int. J. of Solids and Structures. 2006. Vol. 43. No. 20. Pp. 5994-6013.
  30. Khodakov S. Physicochemical mechanics of grinding of solids // Shuili Xuebao/Journal of Hydraulic Engineering. 1998. No. 9. Pp. 631-643.
  31. Demêmes D., Dechesne C.J., Venteo S., Gaven F., Raymond J. Development of the rat efferent vestibular system on the ground and in microgravity // Developmental Brain Research. 2001. Vol. 128. No. 1. Pp. 35-44.
  32. Feldgun V.R., Karinski Y.S., Yankelevsky D.Z., Kochetkov A.V. Internal blast loading in a buried lined tunnel // Int. J. of Impact Engineering. 2008. Vol. 35. No. 3. Pp. 172-183.
  33. Feldgun V.R., Karinski Y.S., Yankelevsky D.Z., Kochetkov A.V. Blast response of a lined cavity in a porous saturated soil // Int. J. of Impact Engineering. 2008. Vol. 35. No. 9. Pp. 953-966.
  34. Aptukov V.N. Expansion of a spherical cavity in a compressible elastoplastic medium. Report 1. Effect on mechanical characteristics, free surface, and lamination // Strength of Materials. 1991. Vol. 23. No. 12. Pp. 1262-1268.
  35. Anand L., Gu C. Granular materials: constitutive equations and strain localization // Journal of the Mechanics and Physics of Solids. 2000. Vol. 48. No. 8. Pp. 1701-1733.
  36. Zou J.-F., Li L., Zhang J.-H., Peng J.-G., Wu Y.-Z. Unified elastic plastic solution for cylindrical cavity expansion cosidering ladge strain and drainage condition // Gong Cheng Li Xue/Engineering Mechanics. 2010. Vol. 27. No. 6. Pp. 1-7.
  37. Фриштер Л.Ю. Расчетно-экспериментальный метод исследования напряженно-деформируемого состояния составных конструкций в зонах концентрации напряжений // Строительная механика инженерных конструкций сооружений. 2008. № 2. С. 20-27.
  38. Фриштер Л.Ю., Мозгалева М.Л. Сопоставление возможностей численного и экспериментального моделирования напряженно-деформируемого состояния конструкций с учетом их геометрической нелинейности // International Jornal for Computational Civil and Structural Engineering. 2010. Vol. 6. No. 1-2. Pp. 221-222.
  39. Антонов В.И. Начальные напряжения в анизотропном неоднородном цилиндре, образованном намоткой // Вестник МГСУ. 2010. № 4. Т. 1. С. 29-33.
  40. Антонов В.И. Метод определения начальных напряжений в рулоне при нелинейной зависимости между напряжениями и деформациями // Вестник МГСУ. 2010. № 4. Т. 3. С. 177-180.
  41. Антонов В.И. Напряжение в рулоне при дополнительном натяжении ленты // Вестник МГСУ. 2013. № 10. С. 24-29.
  42. Зуев В.В. Определяющие соотношения и динамические задачи для упругопластических сред с усложненными свойствами. М. : Физматлит, 2006. 176 с.

Скачать статью

ВЗАИМОДЕЙСТВИЕ СВАЙ БОЛЬШОЙ ДЛИНЫ С МАССИВОМ ГРУНТА В СОСТАВЕ ПЛИТНО-СВАЙНОГО ФУНДАМЕНТА

Вестник МГСУ 3/2012
  • Тер-Мартиросян Завен Григорьевич - Московский государственный строительный университет (ФГБОУ ВПО «МГСУ») доктор технических наук, профессор, заведующий кафедрой механики грунтов, оснований и фундаментов, Московский государственный строительный университет (ФГБОУ ВПО «МГСУ»), 129337, Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 74 - 78

Рассмотрена постановка и решение задач о взаимодействии свай большой длины с массивом грунта в составе плитно-свайного фундамента с учетом шага, диаметра, длины свай и их соотношений, а также нелинейных свойств грунтов аналитическими и численными методамис помощью Plaxis-2d.
Показано, что эти параметры оказывают существенное влияние на НДС грунтов, взаимодействующих со сваей и ростверком, и что оно позволяет оценить приведенную жесткость плитно-свайного фундамента, необходимое для решения задач при большом количестве свай, а также распределения общей нагрузки между сваями и ростверком.

DOI: 10.22227/1997-0935.2012.3.74 - 78

Библиографический список
  1. Тер-Мартиросян З.Г. Механика грунтов. М. : Изд-во АСВ, 2009. 550 с.
  2. Тер-Мартиросян З.Г., НгуенЗанг Нам. Взаимодействие свай большой длины с неоднородным массивом с учетом нелинейных и реологических свойств грунтов // Вестник МГСУ. 2008. № 2. С. 3-14.
  3. Тер-Мартиросян З.Г., ЧиньТуан Вьет. Взаимодействие одиночной длиной сваи с основанием с учетом сжимаемости ствола сваи. Вестник МГСУ. № 8. 2011. С. 104-111.

Cкачать на языке оригинала

ВЛИЯНИЕ СТЕПЕНИ ВОДОНАСЫЩЕНИЯ ГЛИНИСТОГО ГРУНТА НА ЕГО НАПРЯЖЕННО-ДЕФОРМИРОВАННОЕ СОСТОЯНИЕ

Вестник МГСУ 8/2012
  • Тер-Мартиросян Завен Григорьевич - Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ) доктор технических наук, профессор кафедры механики грунтов и геотехники, главный научный сотрудник научно-образовательного центра «Геотехника», Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ), 129337, г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Нгуен Хуи Хиеп - Московский государственный строительный университет (ФГБОУ ВПО «МГСУ») аспирант кафедры механики грунтов, оснований и фундаментов, Московский государственный строительный университет (ФГБОУ ВПО «МГСУ»), 129337, г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 112 - 120

Приведены постановка и решение задачи по количественной оценке напряженно-
деформированного состояния (НДС) не полностью водонасыщенного глинистого грунта под
воздействием внешней нагрузки аналитическим и численным методами.
Показано, что в зависимости от степени водонасыщения в грунтовом полупространстве
под действием распределенной нагрузки p по полосе шириной b = 2a возникает сложное и
неоднородное НДС, в т.ч. неоднородное избыточное поровое давление, которое существенно
зависит от степени водонасыщения грунта. На промежуточном этапе в процессе отжатия
поровой воды в сторону дренирующих границ область с максимальным поровым давлением
в центре смещается вниз. Вследствие этого в слоях между дренирующими поверхностями
изменение избыточного порового давления во времени имеет экстремальный характер. Такой
результат получен аналитическим и численным методами решения поставленной задачи.
Отмечено также, что эпюры среднего напряжения ƒ = (ƒ1+ ƒ2+ ƒ3)/3 и ƒz по оси z под
полосой b = 2a затухают с глубиной с разной интенсивностью. Это обусловливает ограниченность
области под полосовой нагрузкой, в которой возникает избыточное поровое давленние. Кроме
того, показывается, что под воздействием нагрузки по полосе шириной b = 2a осадка поверхности
грунтового пространства обусловлена сдвиговыми и объемными деформациями грунта, т.е
S=+Sv, и что развитие осадки не зависит от избыточного порового давления и возникает с
момента нагружения. Показано, что начальная осадка основания при степени водонасыщения,
равной 1, обусловлена исключительно сдвиговыми деформациями скелета грунта.

DOI: 10.22227/1997-0935.2012.8.112 - 120

Библиографический список
  1. Тер-Мартиросян З.Г. Механика грунтов. М. : Изд-во АСВ, 2009. 550 с.
  2. Флорин В.А. Основы механики грунтов. Т. 1. М.-Л. : Стройиздат, 1959.
  3. Флорин В.А. Основы механики грунтов. Т. 2. М.-Л. : Стройиздат, 1961.
  4. Алла Сайд Мухамед Абдул Малек. Напряженно-деформированное состояние преобразованного основания фундаментов : дисс. … канд. техн. наук. М. : МГСУ, 2009.
  5. СНиП 2.02.01-83*. Основания зданий и сооружений. М., 1985.
  6. Тимошенко С.Н., Гудьер Д.Ж. Теория упругости. М. : Недра, 1975. 575 с.
  7. Иванов П.Л. Грунты и основания гидротехнических сооружений. М. : Высш. шк., 1985. 345 с.
  8. Цытович Н.А. Механика грунтов. М. : Стройиздат, 1963. 636 с.
  9. Цытович Н.А. Механика грунтов (краткий курс). М. : Высш. шк., 1979. 268 с.
  10. Тихонов А.Н., Самарский А.А. Уравнения математической физики. М. : Наука, 1996. 724 с.
  11. Тер-Мартиросян А.З. Взаимодействие фундаментов с основанием при циклических и вибрационных воздействиях с учетом реологических свойств грунтов : дисс. … канд. техн. наук. М. : МГСУ, 2010.
  12. Фадев А.Б. Метод конечных элементов в геомеханике. М. : Мир, 1989.

Cкачать на языке оригинала

ОСОБЕННОСТИ ИНЖЕНЕРНО-ГЕОЛОГИЧЕСКИХ ИЗЫСКАНИЙ ПРИ ЗАСТРОЙКЕ ГОРОДСКИХ КВАРТАЛОВ И КРУПНЫХ ЗАГОРОДНЫХ ТЕРРИТОРИЙ

Вестник МГСУ 2/2013
  • Кашперюк Александра Александровна - Московский государственный строительный университет (ФГБОУ ВПО «МГСУ») (499)129-18-72, Московский государственный строительный университет (ФГБОУ ВПО «МГСУ»), 129337, г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Кашперюк Павел Иванович - Московский государственный строительный университет (ФГБОУ ВПО «МГСУ») кандидат геолого-минералогических наук, доцент, профессор кафедры инженерной геологии и геоэкологии, Московский государственный строительный университет (ФГБОУ ВПО «МГСУ»), 129337, г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Коршунова Наталья Николаевна - ФГБОУ ВПО «Российский университет дружбы народов» (ФГБОУ ВПО «РУДН») кандидат архитектуры, старший преподаватель кафедры промышленной архитектуры, ФГБОУ ВПО «Российский университет дружбы народов» (ФГБОУ ВПО «РУДН»), 117198, г. Москва, ул. Миклухо-Маклая, д. 6; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 64-72

Рассмотрены некоторые особенности инженерно-геологических изысканий на крупных по площади городских территориях с возможным локальным развитием мощных толщ техногенных грунтов. Приведены примеры влияния объема и состава изысканий на надежность выявления геологического строения, состава, состояния и физико-механических свойств грунтов основания. Дана оценка деформационных свойств насыпных грунтов и возможность их использования в качестве непосредственного основания жилого дома в Марфино. Статья носит полемический характер и будет полезна для изыскателей в практическом отношении и при актуализации новых российских стандартов.

DOI: 10.22227/1997-0935.2013.2.64-72

Библиографический список
  1. СП 11-105—97. Свод правил по инженерным изысканиям для строительства. Общие правила производства работ. М. : Госстрой России, 1997. 34 с.
  2. Бондарик Г.К. Теория геологического поля. М. : РИЦ ВИМС, 2002.
  3. Тимофеев В.Ю., Кашперюк П.И. Особенности инженерно-геологических изы- сканий на территориях многофункциональных торговых комплексов на примере ТРЦ «Мега» // Инженерные изыскания. 2010. № 10. С. 24—27.
  4. Гамсахурдиа Г.Р. Некоторые вопросы геотехники: статическое зондирование // Инженерные изыскания. 2009. № 8. С. 38—49.

Скачать статью

ВЗАИМОДЕЙСТВИЕ ДЛИННОЙ СВАИ КОНЕЧНОЙ ЖЕСТКОСТИ С ОКРУЖАЮЩИМ ГРУНТОМ И РОСТВЕРКОМ

Вестник МГСУ 9/2015
  • Тер-Мартиросян Армен Завенович - Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ) кандидат технических наук, доцент, доцент кафедры механики грунтов, оснований и фундаментов, Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ), 129337, г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Тер-Мартиросян Завен Григорьевич - Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ) доктор технических наук, профессор кафедры механики грунтов и геотехники, главный научный сотрудник научно-образовательного центра «Геотехника», Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ), 129337, г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Чинь Туан Вьет - Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ) аспирант кафедры механики грунтов, оснований и фундаментов, Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ), 129337, г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 72-83

Приведены постановка и аналитическое решение задачи по количественной оценке напряженно-деформированного состояния двухслойного грунтового цилиндра, вмещающего длинную сваю, взаимодействующего с ростверком. Решение задачи рассмотрено для двух случаев: без учета и с учетом осадки нижнего конца сваи в подстилающий слой грунта. В первом случае приведены формулы для определения напряжений в стволе сваи и окружающем грунте в зависимости от их жесткости и соотношения радиусов сваи и грунтового цилиндра, а также формула для определения приведенного модуля деформации систем ростверк - свая - окружающий грунт (далее - система). Отмечена необходимость оценки несущей способности грунта под пятой сваи. Во втором случае задача сводится к решению дифференциального уравнения второго порядка. В результате аналитического решения получена формула для определения напряжений в стволе сваи на уровне ее оголовки и пяты, а также изменения напряжения вдоль сваи. Приведены также формулы для определения осадки ростверка и приведенного модуля деформации для системы. Показано, что учет продавливания сваи в подстилающий слой приводит к снижению приведенного модуля системы.

DOI: 10.22227/1997-0935.2015.9.72-83

Библиографический список
  1. 1. Надаи А. Пластичность и разрушение твердых тел : в 2-х т. / пер. с англ. ; под ред. Г.С. Шапиро. М. : Мир, 1969. Т. 2. 863 с.
  2. 2. Флорин В.А. Основы механических грунтов. В 2-х т. Л. : Госстройиздат, 1959. Т. 1. 541 с.
  3. 3. Теличенко В.И., Тер-Мартиросян З.Г. Взаимодействие сваи большой длины с нелинейно-деформируемым массивом грунта // Вестник МГСУ. 2012. № 4. С. 22-27.
  4. 4. Тер-Мартиросян З.Г., Нгуен Занг Нам. Взаимодействие свай большой длины с неоднородным массивом с учетом нелинейных и реологических свойств грунтов // Вестник МГСУ. 2008. № 2. С. 3-14.
  5. 5. Тер-Мартиросян З.Г., Чинь Туан Вьет. Взаимодействие одиночной сваи с основанием с учетом сжимаемости ствола сваи // Вестник МГСУ. 2011. № 8. С. 104-110.
  6. 6. Mattes N.S., Poulos H.G. Settlement of single compressible pile // Journal SoilMech. Foundation ASCE. 1969. Vol. 95. No. 1. Pp. 189-208.
  7. 7. Тер-Мартиросян З.Г. Механика грунтов. М. : Изд-во АСВ, 2009. 550 с.
  8. 8. Тер-Мартиросян А.З., Тер-Мартиросян З.Г., Чинь Туан Вьет, Лузин И.Н. Осадка и несущая способность длинной сваи // Вестник МГСУ. 2015. № 5. С. 52-60.
  9. 9. Coyle H.M., Reese L.C. Load transfer for axially loaded piles in clay // Journal Soil Mechanics and Foundation Division, ASCE. March 1996. Vol. 92. No. 2. Pp. 1-26.
  10. 10. Бартоломей А.А., Омельчак И.М., Юшков Б.С. Прогноз осадок свайных фундаментов / под ред. А.А. Бартоломея. М. : Стройиздат, 1994. 384 с.
  11. 11. Randolph M.F., Wroth C.P. Analysis of deformation of vertically loaded piles // Journal of the Geotechnical Engineering Division, American Society of Civil Engineers. 1978. Vol. 104. No. 12. Pp. 1465-1488.
  12. 12. Van Impe W.F. Deformations of deep foundations // Proc. 10th Eur. Conf. SM & Found. Eng., Florence. 1991. Vol. 3. Pp. 1031-1062.
  13. 13. Prakash S., Sharma H.D. Pile foundation in engineering practice. John Wiley & Sons, 1990. 768 p.
  14. 14. Малышев М.В., Никитина Н.С. Расчет осадок фундаментов при нелинейной зависимости между напряжениями и деформациями в грунтах // Основания, фундаменты и механика грунтов. 1982. № 2. С. 21-25.
  15. 15. Hansen J.B. Revised and extended formula for bearing capacity // Bulletin 28. Copenhagen : Danish Geotechnical Institute. 1970. Рp. 5-11.
  16. 16. Joseph E.B. Foundation analysis and design. McGraw-Hill, Inc, 1997. 1240 p.
  17. 17. Тер-Мартиросян З.Г., Струнин П.В.,Чинь Туан Вьет. Сжимаемость материала сваи при определении осадки в свайном фундаменте // Жилищное строительство. 2012. № 10. С. 13-15.
  18. 18. Vijayvergiya V.N. Load-Movement characteristics of piles // Proc. Port 77 conference, American Society of Civil Engineers, Long Beach, CA, March 1977. Pp. 269-284.
  19. 19. Seed H.B., Reese L.C. The action of soft clay along friction piles // Trans., ASCE. 1957. Vol. 122. No. 1. Pp. 731-754.
  20. 20. Booker J., Poulos H.G. Analysis of creep settlement of pile foundation // Journal Geotechnical Engineering division. ASCE. 1968. Vol. 102. No. 1. Pp. 1-14.
  21. 21. Poulos H.G., Davis E.H. Pile foundation analysis and design. New York : John Wiley and Sons, 1980. 397 p.

Скачать статью

Осадка и несущая способность длинной сваи

Вестник МГСУ 5/2015
  • Тер-Мартиросян Армен Завенович - Московский государственный строительный университет (ФГБОУ ВПО «МГСУ») кандидат технических наук, доцент, доцент кафедры механики грунтов и геотехники, Московский государственный строительный университет (ФГБОУ ВПО «МГСУ»), 129337, г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Тер-Мартиросян Завен Григорьевич - Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ) доктор технических наук, профессор кафедры механики грунтов и геотехники, главный научный сотрудник научно-образовательного центра «Геотехника», Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ), 129337, г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Чинь Туан Вьет - Московский государственный строительный университет (ФГБОУ ВПО «МГСУ») аспирант кафедры механики грунтов и геотехники, Московский государственный строительный университет (ФГБОУ ВПО «МГСУ»), 129337, г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Лузин Иван Николаевич - Московский государственный строительный университет (ФГБОУ ВПО «МГСУ») аспирант кафедры механики грунтов и геотехни- ки, Московский государственный строительный университет (ФГБОУ ВПО «МГСУ»), 129337, г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 52-61

Приведены постановка и аналитическое решение задачи для количественной оценки осадки круглого фундамента с учетом его глубины заложения на основе развития задачи Миндлина, а также взаимодействия длинной жесткой сваи с окружающим грунтом, в т.ч. под пятой сваи. Предложено расчетное значение давления под пятой сваи сравнивать с начальной критической нагрузкой для круглого фундамента для проверки условия, что расчетное значение меньше начального критического.

DOI: 10.22227/1997-0935.2015.5.52-61

Библиографический список
  1. Надаи А. Пластичность и разрушение твердых тел. Т. 2 / пер. с англ. М. : Мир, 1969. 853 с.
  2. Флорин В.А. Основы механических грунтов. Т. 1. М. : Госстройиздат, 1959. 356 с.
  3. Теличенко В.И., Тер-Мартиросян З.Г. Взаимодействие сваи большой длины с нелинейно-деформируемым массивом грунта // Вестник МГСУ. 2012. № 4. С. 22-27.
  4. Тер-Мартиросян З.Г., Нгуен Занг Нам. Взаимодействие свай большой длины с неоднородным массивом с учетом нелинейных и реологических свойств грунтов // Вестник МГСУ. 2008. № 2. С. 3-14.
  5. Тер-Мартиросян З.Г., Чинь Туан Вьет. Взаимодействие одиночной длинной сваи с основанием с учетом сжимаемости ствола сваи // Вестник МГСУ. 2011. № 8. С. 104-110.
  6. Mattes N.S., Poulos H.G. Settlement of single compressible pile // Journal SoilMech. Foundation ASCE. 1969. Vol. 95, No. 1. Pp. 189-208.
  7. Тер-Мартиросян З.Г., Тер-Мартиросян А.З., Сидоров В.В. Начальное критическое давление под подошвой круглого фундамента и под пятой буронабивной сваи круглого сечения // Естественные и технические науки. 2014. № 11-12 (78). С. 372-376.
  8. Бартоломей А.А., Омельчак И.М., Юшков Б.С. Прогноз осадок свайных фундаментов / под ред. А.А. Бартоломея. М. : Стройиздат, 1994. 384 с.
  9. Coyle H.M., Reese L.C. Load transfer for axially loaded piles in clay // Journal Soil Mechanics and Foundation Division, ASCE. March1996. Vol. 92. No. 2. Pp. 1-26.
  10. Randolph M.F., Wroth C.P. Analysis of deformation of vertically loaded piles // Journal of the Geotechnical Engineering Division, American Society of Civil Engineers. 1978. Vol. 104. No. 12. Pp. 1465-1488.
  11. Van Impe W.F. Deformations of deep foundations // Proc. 10th Eur. Conf. SM & Found. Eng., Florence. 1991. Vol. 3. Pp. 1031-1062.
  12. Тер-Мартиросян З.Г. Механика грунтов. М. : Изд-во АСВ, 2009. 550 с.
  13. Prakash S., Sharma H.D. Pile foundation in engineering practice. John Wiley & Sons, 1990. 768 p.
  14. Малышев М.В., Никитина Н.С. Расчет осадок фундаментов при нелинейной зависимости между напряжениями и деформациями в грунтах // Основания, фундаменты и механика грунтов. 1982. № 2. С. 21-25.
  15. Joseph E.B. Foundation analysis and design. McGraw-Hill, Inc, 1997. 1240 p.
  16. Тер-Мартиросян З.Г., Струнин П.В., Чинь Туан Вьет. Сжимаемость материала сваи при определении осадки в свайном фундаменте // Жилищное строительство. 2012. № 10. С. 13-15.
  17. Hansen J.B. Revised and extended formula for bearing capacity // Bulletin 28. Danish Geotechnical Institute. Copenhagen, 1970. Рp. 5-11.
  18. Vijayvergiya V.N. Load-Movement characteristics of piles // Proc. Port 77 conference, American Society of Civil Engineers, Long Beach, CA, March 1977. Pp. 269-284.
  19. Booker J., Poulos H.G. Analysis of creep settlement of pile foundation // Journal Geotechnical Engineering division. ASCE. 1976. Vol. 102. No. 1. Pp. 1-14.
  20. Poulos H.G., Davis E.H. Pile foundation analysis and design. New York : John Wiley and Sons, 1980. 397 p.
  21. Seed H.B., Reese L.C. The action of soft clay along friction piles // Trans., ASCE. 1957. Vol. 122. No. 1. Pp. 731-754.

Скачать статью

КОНСОЛИДАЦИЯ И ПОЛЗУЧЕСТЬ ОСНОВАНИЙ ФУНДАМЕНТОВ КОНЕЧНОЙ ШИРИНЫ

Вестник МГСУ 4/2013
  • Тер-Мартиросян Завен Григорьевич - Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ) доктор технических наук, профессор кафедры механики грунтов и геотехники, главный научный сотрудник научно-образовательного центра «Геотехника», Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ), 129337, г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Тер-Мартиросян Армен Завенович - Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ) доктор технических наук, профессор кафедры механики грунтов и геотехники, руководитель научно-образовательного центра «Геотехника», Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ), 129337, г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Нгуен Хуи Хиеп - Московский государственный строительный университет (ФГБОУ ВПО «МГСУ») аспирант кафедры механики грунтов, оснований и фундамен- тов, Московский государственный строительный университет (ФГБОУ ВПО «МГСУ»), 129337, г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 38-52

Приведены постановка и решения задач консолидации и ползучести водонасыщенных оснований из глинистых грунтов под воздействием местной нагрузки (плоская задача). Показано, что в условиях плоской задачи избыточное поровое давление в начальный момент нагружения локализуется непосредственно под местной нагрузкой на глубину 1/2 от мощности сжимаемой толщи и затем смещается вниз во времени и что осадка основания обусловлена как сдвиговыми, так и объемными деформациями грунта. Кроме того, соотношение сдвиговых и объемных частей достигает 10. Поэтому предложено осадку основания определить в виде суммы от объемных и сдвиговых деформаций в отдельности.Для решения дифференциального уравнения фильтрационной консолидации в условиях двухмерный задачи используется программный комплекс Mathcad. Это позволило производить расчеты по определению изолиний избыточного порового давления для любого момента времени от начала приложения нагрузки. Для определения степени консолидации осадки предложена новая зависимость в виде отношений изменяющейся площади эпюры среднего эффективного напряжения к площади эпюры среднего напряжения в стабилизированном состоянии.В заключительном разделе статьи приведено решение задачи по прогнозированию осадки водонасыщенного основания с учетом сдвиговой ползучести скелета грунта. В качестве расчетной принята упруго-вязкая модель Бингама с изменяющимися во времени коэффициентами вязкости. Показано, что в этом случае сдвиговая часть осадки с момента приложения внешней нагрузки будет развиваться пропорционально логарифму времени независимо от процесса фильтрационной консолидации.

DOI: 10.22227/1997-0935.2013.4.38-52

Библиографический список
  1. Кошляков Н.С., Глинер Э.Б., Смирнов М.М. Основные дифференциальные уравнения математической физики. М. : Физмат, 1962. 765 с.
  2. Флорин В.А. Основы механики грунтов. Т. 1. М. : Стройиздат, 1959.
  3. Цытович Н.А. Механика грунтов. М. : Стройиздат, 1963. 636 с.
  4. Зарецкий Ю.К. Вязко-пластичность грунтов и расчеты сооружений. М. : Стройиздат, 1988. 350 с. СП 22.13330.2011. Основания зданий и сооружений. М., 2011. 85 с.
  5. Тихонов А.Н., Самарский А.А. Уравнения математической физики. М. : Наука, 1996. 724 с.
  6. Тер-Мартиросян З.Г. Механика грунтов. М. : Изд.-во АСВ, 2009. 550 с.
  7. Тер-Мартиросян А.З. Взаимодействие фундаментов с основанием при циклических и вибрационных воздействиях с учетом реологических свойств грунтов : дисс. … канд. техн. наук. М. : МГСУ, 2010.
  8. Вялов С.С. Реологические основы механики грунтов. М. : Высш. шк., 1978. 447 с.
  9. Галин Л.А. Контактные задачи теории упругости и вязко-упругости. М. : Наука, 1980. 296 с.
  10. Справочник Plaxis V 8.2 / пер. М.Ф. Астафьева. 2006. 182 с.
  11. Флорин В.А. Основы механики грунтов. Т. 2. М. : Стройиздат, 1959.
  12. Арутюнян Н.Х., Колмановский В.Б. Теория ползучести неоднородных тел. М.

Скачать статью

ВЗАИМОДЕЙСТВИЕ ОДИНОЧНОЙ ДЛИННОЙ СВАИ С ДВУХСЛОЙНЫМ ОСНОВАНИЕМ С УЧЕТОМ СЖИМАЕМОСТИ СТВОЛА СВАИ

Вестник МГСУ 4/2012
  • Тер-Мартиросян Завен Григорьевич - Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ) доктор технических наук, профессор кафедры механики грунтов и геотехники, главный научный сотрудник научно-образовательного центра «Геотехника», Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ), 129337, г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Чинь Туан Вьет - Московский государственный строительный университет (ФГБОУ ВПО «МГСУ») аспирант кафедры механики грунтов, оснований и фундаментов, Московский государственный строительный университет (ФГБОУ ВПО «МГСУ»), 129337, г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 28 - 34

С УЧЕТОМ СЖИМАЕМОСТИ СТВОЛА СВАИ
Изложены решения задачи о взаимодействии длинной сжимаемой сваи с двухслойным линейно-деформируемым основанием. Показано, что учет сжимаемости материала сваи приводит к качественно новому распределению касательных напряжений вдоль поверхности цилиндрических свай. Отмечено, что с ростом длины сваи и жесткости верхней части основания увеличивается доля нагрузки воспринимаемая боковой поверхностью сваи, и что при определенных условиях окружающей грунтовой среды нагрузка, воспринимаемая нижней частью основания, может составить 20…30 % от общей нагрузки.

DOI: 10.22227/1997-0935.2012.4.28 - 34

Библиографический список
  1. Тер-Мартиросян З.Г. Механика грунтов. М. : Изд-во АСВ, 2009. 550 с.
  2. Тер-Мартиросян З.Г., Нгуен Занг Нам. Взаимодействие свай большой длины с неоднородным массивом с учетом нелинейных и реологических свойств грунтов // Вестник МГСУ. 2008. № 2. С. 3-14.
  3. Механика грунтов, основания и фундаменты / С.Б. Ухов, В.В. Семенов, В.В. Знаменский, З.Г. Тер-Мартиросян, С.Н. Чернышев. М. : Изд-во АСВ, 2004. 566 с.
  4. Тер-Мартиросян З.Г., Чинь Туан Вьет. Взаимодействие одиночной длинной сваи с основанием с учетом сжимаемости ствола сваи // Вестник МГСУ. 2011. № 8. С. 104-111.
  5. Нгуен Занг Нам. Определение осадки круглого штампа с учетом его заглубления // Сб. тр. 4-й междунар. науч.-практ. конф. молодых ученых, аспирантов и докторантов «Строительство-формирование среды жизнедеятельности». МГСУ. М., 2006.

Cкачать на языке оригинала

Результаты 1 - 8 из 8