СТРОИТЕЛЬНОЕ МАТЕРИАЛОВЕДЕНИЕ

ОЦЕНКА ГИДРОФИЗИЧЕСКИХ И МЕХАНИЧЕСКИХ ХАРАКТЕРИСТИК НОВОГО ГИДРОИЗОЛЯЦИОННОГО ОБМАЗОЧНОГО СОСТАВА НА МИНЕРАЛЬНОЙ ОСНОВЕ

Вестник МГСУ 2/2013
  • Ляпидевская Ольга Борисовна - Московский государственный строительный университет (ФГБОУ ВПО «МГСУ») кандидат технических наук, профессор кафедры строительных материалов, Московский государственный строительный университет (ФГБОУ ВПО «МГСУ»), 129337, г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Безуглова Екатерина Александровна - Московский государственный строительный университет (ФГБОУ ВПО «МГСУ») аспирант кафедры строительных материалов, Московский государственный строительный университет (ФГБОУ ВПО «МГСУ»), 129337, г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 108-113

Рассмотрен вопрос обеспечения гидроизоляционной защиты подземных зданий и сооружений. Предложен новый эффективный обмазочный гидроизоляционный материал на минеральной основе. Приведены результаты сравнительных испытаний по определению основных гидрофизических и механических характеристик разработанного состава и аналогов, применяемых в строительной индустрии, с целью оценки эффективности применения представленного гидроизоляционного материала.

DOI: 10.22227/1997-0935.2013.2.108-113

Библиографический список
  1. Шилин А.А. Ремонт железобетонных конструкций. М. : Горная книга, 2010. 519 с.
  2. Козлов В.В., Чумаченко А.А. Гидроизоляция в современном строительстве. М. : Изд-во АСВ, 2003. 118 с.
  3. Гидроизоляция подземных и заглубленных сооружений при строительстве и ремонте / А.А. Шилин, М.В. Зайцев, И.А. Золотарев, О.Б. Ляпидевская. Киев : Оптима, 2005. 396 с.
  4. Falikman V.R. New high performance polycarboxilate superplasticizers based on derivative copolymers of maleinic acid // 6thInternational Congress “GLOBAL CONSTRUCTION” Advances in Admixture Technology. Dundee. 2005. Pp. 41—46.
  5. Батраков В.Г. Модифицированные бетоны. М. : Астра семь, 1998. 697 с.
  6. Fennis S.A.A.M., Walraven J.C. Design of ecological concrete by particle packing optimization // Delft Technical University. 2010. Pp. 115—144.

Скачать статью

МЕЛКОЗЕРНИСТЫЙ БЕТОН ДЛЯ ГИДРОТЕХНИЧЕСКОГО СТРОИТЕЛЬСТВА, МОДИФИЦИРОВАННЫЙ КОМПЛЕКСНОЙ ОРГАНОМИНЕРАЛЬНОЙ ДОБАВКОЙ

Вестник МГСУ 8/2013
  • Алексашин Сергей Владимирович - Московский государственный строительный университет (ФГБОУ ВПО «МГСУ») аспирант кафедры технологии вяжущих веществ и бетонов, Московский государственный строительный университет (ФГБОУ ВПО «МГСУ»), 129337, г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Булгаков Борис Игоревич - Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ) кандидат технических наук, доцент, доцент кафедры Технологии вяжущих веществ и бетонов, Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ), 129337, г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 97-103

Рассмотрен вопрос разработки новой комплексной органоминеральной добавки, изучено ее влияние на свойства мелкозернистых бетонов. Приведены факты из проведенных ранее исследований по сравнению влияния отечественных суперпластификаторов на сохраняемость подвижности мелкозернистых бетонных смесей и динамику набора прочности пластифицированными песчаными бетонами. Приведены результаты экспериментального подбора оптимального состава мелкозернистого гидротехнического бетона с заданными свойствами.

DOI: 10.22227/1997-0935.2013.8.97-103

Библиографический список
  1. Алексашин С.В., Булгаков Б.И. Получение мелкозернистых бетонов с высокими эксплуатационными показателями // Сборник научных трудов Института строительства и архитектуры. М. : КЮГ, 2012. С. 12—13.
  2. Лукутцова Н.П., Пыкин А.А., Чудакова О.А. Модифицирование мелкозернистого бетона микрои наноразмерными частицами шунгита и диоксида титана // Вестник БГТУ им. В.Г. Шухова. 2010. № 2. С. 67—70.
  3. Falikman V.R. New high performance polycarboxilate superplasticizers based on derivative copolymers of maleinic acid // 6th International Congress “GLOBAL CONSTRUCTION” Advances in Admixture Technology. Dundee, 2005, pp. 41—46.
  4. Лукутцова Н.П. Наномодифицирующие добавки в бетон // Строительные материалы. 2010. № 9. С. 101—104.
  5. Баженов Ю.М., Лукутцова Н.П., Матвеева Е.Г. Исследование наномодифицированного мелкозернистого бетона // Вестник МГСУ. 2010. № 4. Т. 2. С. 415—418.
  6. Shah S.P., Ahmad S.H. High performance concrete: Properties and applications // McGraw-Hill, Inc. 1994. 403 p.
  7. Рамачандран В.С. Добавки в бетон : справочное пособие. М. : Стройиздат, 1988. 291 с.
  8. Commission 42-CEA. Properties set concrete at early ages state of-the-art-report // Materiaux et Constractions. 1981, vol. 14, № 84. p. 15.
  9. Fennis S.A.A.M., Walraven J.C. Design of ecological concrete by particle packing optimization // Delft Technical University. 2010. pp. 115—144.
  10. Батраков В.Г. Модифицированные бетоны. Теория и практика. М. : Технопроект, 1998. 560 с.

Скачать статью

ВЛИЯНИЕ ЗОЛЫ РИСОВОЙ ШЕЛУХИ НА СВОЙСТВА ГИДРОТЕХНИЧЕСКИХ БЕТОНОВ

Вестник МГСУ 6/2018 Том 13
  • Нго Суан Хунг - Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ) аспирант кафедры технологии вяжущих веществ и бетонов, Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ), 129337, г. Москва, Ярославское шоссе, д. 26.
  • Танг Ван Лам - Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ) аспирант кафедры технологии вяжущих веществ и бетонов, Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ), 129337, г. Москва, Ярославское шоссе, д. 26.
  • Булгаков Борис Игоревич - Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ) кандидат технических наук, доцент, доцент кафедры технологии вяжущих веществ и бетонов, Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ), 129337, г. Москва, Ярославское шоссе, д. 26.
  • Александрова Ольга Владимировна - Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ) кандидат технических наук, доцент, доцент кафедры технологии вяжущих веществ и бетонов, Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ), 129337, г. Москва, Ярославское шоссе, д. 26.
  • Ларсен Оксана Александровна - Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ) кандидат технических наук, доцент, доцент кафедры технологии вяжущих веществ и бетонов, Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ), 129337, г. Москва, Ярославское шоссе, д. 26.
  • Ха Хоа Ки - Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ) студентка кафедры строительство уникальных зданий и сооружений, Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ), 129337, г. Москва, Ярославское шоссе, д. 26.
  • Мельникова А.И. - Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ) студентка Института строительства и архитектуры, Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ), 129337, г. Москва, Ярославское шоссе, д. 26.

Страницы 768-777

Предмет исследования: эксплуатация бетонных и железобетонных гидротехнических сооружений на речных системах и в прибрежной зоне Вьетнама проходит в условиях воздействия агрессивных сред, что существенно ограничивает сроки их службы. Ранее проведенными исследованиями была установлена возможность повышения эксплуатационных показателей гидротехнических бетонов (ГБ) путем модификации их структуры комплексными добавками, сочетающими водоредуцирующий и уплотняющий эффекты действия. Сформулирована возможность улучшения качества гидротехнических бетонов за счет использования золы рисовой шелухи (ЗРШ) в качестве тонкодисперсной минеральной добавки, обладающей высокой пуццолановой активностью. Цели: определить влияние органо-минерального модификатора, состоящего из ЗРШ в сочетании с суперпластификатором, на водонепроницаемость, хлоридно-ионную проницаемость и прочность гидротехнических бетонов. Материалы: для получения бетонной смеси было использовано тонкодисперсное вяжущее, состоящее из портландцемента с добавлением золы рисовой шелухи и суперпластификатора. В качестве заполнителей применялись речной кварцевый песок и известняковый щебень. Все использованные сырьевые компоненты за исключением суперпластификатора - местного для Вьетнама происхождения. Методы: состав бетонной смеси, прочность бетонов на сжатие, водонепроницаемость проницаемость структуры бетона для ионов хлора рассчитывали по методикам российских и международных стандартов. Результаты: применение органо-минерального модификатора, состоящего из водоредуцирующего суперпластификатора Ace 388 и тонкодисперсной золы рисовой шелухи, приводит к уплотнению структуры ГБ, что способствует повышению их водонепроницаемости и снижению проницаемости для ионов хлора. Выводы: установлено, что введение в бетонную смесь разработанной органо-минеральной добавки приводит к уплотнению структуры бетона, способствует не только росту прочности на сжатие в возрасте 28 сут на 32 % - для ГБ-10, на 23 % - для ГБ-20 и на 9 % - для ГБ-30, но и повышению его водонепроницаемости на одну-две марку. Кроме того, наблюдается значительное уменьшение проницаемости образцов разработанных гидротехнических бетонов для ионов хлора, поскольку среднее значение электрического заряда, прошедшего сквозь образцы из ГБ-10, ГБ-20 и ГБ-30, составило соответственно 305, 367,5 и 382,7 К против 2562 К для случая контрольных образцов из немодифицированного бетона.

DOI: 10.22227/1997-0935.2018.6.768-777

Библиографический список
  1. Popielski P., Zaczek-Peplinska J., Bartnik E. et al. Contemporary techniques of data acquisition for preparation of numerical models of hydrotechnical structures // Czasopismo Techniczne. 2015. No. 2. Pp. 114-128.
  2. Ашрабова М.А. Особенности формирования структуры и свойств гидротехнических бетонов на заполнителях из дробленого бетона // Пути повышения эффективности орошаемого земледелия. 2017. № 2 (66). С. 157-160.
  3. Рыбьев И.А. Строительное материаловедение. М. : Юрайт, 2012. 701 с.
  4. Дворкин Л.И., Дворкин О.Л. Специальные бетоны. М. : Инфра-Инженерия, 2013. 368 c.
  5. Lebedeva R., Skripkiūnas G., Vasiljeva L. The effects of seawater on the durability of hydrotechnical concrete structures in the port of Klaipeda // Engineering structures and technologies. 2012. No. 4. Pp. 111-118.
  6. Иванков С.В., Гришин В.П., Эсаулов С.Л. Оценка минерально-сырьевых запасов в районе города Певека для промышленного производства гидротехнических бетонов// Проектирование, строительство, эксплуатация ГТС. 2015. № 4 (41). С. 30-34.
  7. Khatib J.M. Performance of self-compacting concrete containing fly ash // Construction and Building Materials. 2008. No. 22. Pp. 1963-1971.
  8. Naik T.R., Ramme B.W. High early strength concrete containing large quantities of fly ash // ACI Materials Journal. 1989. No. 86. Pp. 111-116.
  9. Lebedeva R. Analysis of the properties of hydrotechnical concrete employed in the marine environment // Statyba Civil Engineering. 2013. No. 5 (5). Pp. 481-486.
  10. Донг Ким Хань. Использование фибробетона при восстановлении гидротехнических сооружений Вьетнама // Вестник гражданских инженеров. 2008. № 4 (17). С. 67-68.
  11. Hoang Minh Duc, Nguyen Tuan Nam. Reducing the permeability of concrete and the possibility of protecting steel reinforcement in the marine environment with the help of microsilica // 50th Scientific Conference of the Institute of Science and Technology of Construction. Hanoi, 11-2013. Pp. 100-109.
  12. Tran Duc Ha, Nguyen Quoc Hoa. Assessment of water quality in the estuaries of rivers and coastal marine areas, and the technology of its processing for water supply purposes // Journal of Science and Technology of Construction. 2011. No. 10. Pp. 89-98.
  13. Танг Ван Лам, Булгаков Б.И. Применение метода проницаемости ионов хлора для исследования плотности структуры высококачественных мелкозернистых бетонов по стандарту ASTMC1202-97 // Промышленное и гражданское строительство. 2016. № 8. C. 45-49.
  14. Pham Huu Hanh, Nguyen Van Tuan. Research and production of high-quality concrete suitable for offshore construction // Joint International Scientific Symposium “Scientific achievements in research on new modern building materials”. Hanoi, 2006. Pp. 46-63.
  15. Вураско А.В., Минакова А.Р., Гулемина Н.Н., Дрикер Б.Н. Физико-химические свойства целлюлозы, полученной окислительно-органосольвентным способом из растительного сырья // Леса России в XXI веке : мат. I Междунар. науч.-практ. интернет-конф. июнь 2009 г. СПб., 2009. С. 127-131.
  16. Bui Danh Dai. Influence of ash of rice husk on the properties of mortar and concrete // Joint International Scientific Symposium “Scientific achievements in research on new modern building materials”. Hanoi. 2006. Pp. 32-38.
  17. Монсеф Шокри Р., Хрипунов А.К., Баклагина Ю.Г. и др. Исследование компонентного состава рисовой соломы ИРИ и свойств получаемой из нее целлюлозы // Новые достижения в химии и химической технологии растительного сырья: мат. III Всеросс. конф. 23-27 апреля 2007 г.: в 3-х кн. Барнаул: Изд-во АлтГУ, 2007. Кн. 1. С. 53-55.
  18. Вураско А.В., Дрикер Б.Н., Мозырева Е.А. и др. Ресурсосберегающая технология получения целлюлозных материалов при переработке отходов сельскохозяйственных культур // Химия растительного сырья. 2006. № 4. С. 5-10.
  19. Земнухова Л.А., Федорищева Г.А., Егоров А.Г., Сергиенко В.И. Исследование условий получения, состава примесей и свойств аморфного диоксида кремния из отходов производства риса // Журнал прикладной химии. 2005. Т. 78. Вып. 2. С. 324-328.
  20. Mehta P.K., Malhotra V.M. Rice husk ash-a unique supplementary cementing material // Advances in Concrete Technology. Canada Centre for Mineral and Energy Technology. Ottawa, 1994. Pp. 419-444.
  21. Tang Van Lam, Bulgakov B., Aleksandrova O. et al. Effect of rice husk ash and fly ash on the compressive strength of high performance concrete // E3S Web of Conferences 33. 2018. 02030. 10.1051/e3sconf/20183302030.
  22. Горбунов Г.И., Расулов О.Р. Использование рисовой соломы в производстве керамического кирпича // Вестник МГСУ. 2014. № 11. С. 128-136. DOI: 10.22227/1997-0935.2014.11.128-136
  23. Sathawane S.H., Vairagade V.S., Kene K.S. Combine effect of rice husk ash and fly ash on concrete by 30 % cement replacement // Procedia Engineering. 2013. 51. Pp. 35-44.
  24. Tang Van Lam, Bulgakov B., Bazhenova S. et al. Effect of rice husk ash and fly ash on the workability of concrete mixture in the high-rise construction // E3S Web of Conferences 33 : High-Rise Construction 2017 (HRC 2017), 2018. 02029. 10.1051/e3sconf/20183302029.
  25. Thuy Ninh Nguyen, Hoang Quoc Vu A simple approach to modeling chloride diffusion into cracked reinforced concrete structures // Journal of Civil Engineering Research. 2015. No. 5. Pp. 97-105.
  26. Mien T.V., Stitmannaithum B., Nawa T. Chloride penetration into concrete using various cement types under flexural cyclical load and tidal environment // The IES Journal Part A: Civil & Structural Engineering. 2009. no. 2 (3). Pp. 13.

Скачать статью

Результаты 1 - 3 из 3