БЕЗОПАСНОСТЬ СТРОИТЕЛЬНЫХ СИСТЕМ. ЭКОЛОГИЧЕСКИЕ ПРОБЛЕМЫ В СТРОИТЕЛЬСТВЕ. ГЕОЭКОЛОГИЯ

ГЕОЭКОЛОГИЧЕСКАЯ ОЦЕНКА ФОРМИРОВАНИЯ ПРОЧНОСТИ ПЕСЧАНЫХ ГРУНТОВ (В АСПЕКТЕ ФИЗИКО-ХИМИЧЕСКОЙ ТЕОРИИ ЭФФЕКТИВНЫХ НАПРЯЖЕНИЙ)

Вестник МГСУ 2/2013
  • Потапов Иван Александрович - НИИ скорой помощи им. Н.В. Склифосовского инженер, НИИ скорой помощи им. Н.В. Склифосовского, г. Москва, Сухаревская площадь, д. 3; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Потапов Александр Дмитриевич - Московский государственный строительный университет (ФГБОУ ВПО «МГСУ») доктор технических наук, профессор, за- ведующий кафедрой инженерной геологии и геоэкологии, Московский государственный строительный университет (ФГБОУ ВПО «МГСУ»), г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Шименкова Анастасия Анатольевна - Московский государственный строительный университет (ФГБОУ ВПО «МГСУ») инженер кафедры инженерной геологии и геоэкологии, Московский государственный строительный университет (ФГБОУ ВПО «МГСУ»), 129337, г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 166-180

Рассмотрены вопросы формирования прочности песчаных грунтов с позиций физико-химической теории эффективных напряжений, в частности, в оценке формирования различных типов энергетических контактов в песчаных грунтах. Материалы статьи основаны на результатах теоретического обобщения работ ряда специалистов, а также на данных экспериментального изучения песчаных грунтов различной структуры, как проведенных ранее, так и выполненных в последнее время. Показано, что прочность песчаных грунтов в значительной степени зависит от их морфологических особенностей, которые определяют их состояние в аспекте оценки состояния плотность — влажность. Прочностные параметры песков существенным образом зависят от их влажности, будь то максимальные касательные напряжения, полученные по сдвиговым испытаниям, или удельные сопротивления пенетрации, показатели пенетрации, а также значения угла внутреннего трения и сцепления. Зависимости прочностных параметров от влажности описываются графиками типичного криволинейного характера с двумя максимумами для сдвиговых испытаний и одним для пенетрации. Максимальные значения параметров прочности, по данным сдвиговых испытаний, достигаются для сухих песков и значений влажности, близких к «оптимальной». Для пенетрационных испытаний максимум удельного сопротивления пенетрации и показателя пенетрации также близок к «оптимальной» влажности. В результате экспериментального и теоретического исследования установлено, что степень влажности является важным фактором приобретения прочности песчаными грунтами с различными структурными характеристиками. Но при формировании структурных особенностей песков, прежде всего их морфологических параметров, а из них морфоскопических характеристик (особенностей характера поверхности песчаных зерен) заметную роль играет наличие различных пленок на частицах грунта. Изложенный материал представляет собой только предварительный анализ полученных теоретических и экспериментальных данных и, естественно, открыт для обсуждения.

DOI: 10.22227/1997-0935.2013.2.166-180

Библиографический список
  1. Астахов С.М. Мировой опыт и перспективы использования возобновляемых источников энергии в системе электроснабжения сельских поселений // Вестник ОрелГАУ. 2009. № 5. С. 29—31.
  2. Шуйский В.П. Мировые рынки возобновляемых источников энергии в первой половине ХХI века // Российский внешнеэкономический вестник. 2010. № 1. С. 21—29.
  3. Попель О.С. Туманов В.Л. Возобновляемые источники энергии: Состояние и перспективы развития // Альтернативная энергетика и экономика. 2007. № 2(46). С. 135—148.
  4. Duffy M.J. Small wind turbines mounted to existing structures. Thesis for the Degree of Master of Science in Aerospace Engineering. Georgia Institute of Technology. Atlanta. USA. 2010. 105 p.
  5. Алексеев Ю.В., Дуничкин И.В. Аэродинамические особенности пятиэтажной застройки // Жилищное строительство. 2004. № 12. С. 5—8.
  6. Gandemer J., Guy A. Integration du phenonene vent dans la conception du milieu bati. Ministere et de L’eqipement. Paris. 1976, 130 p.
  7. Валитов Ш.М. Стратегические приоритеты развития возобновляемых источников энергии // Вестник КГФЭИ. 2010. № 3(20). С. 52—56.
  8. Поддаева О.И., Дуничкин И.В., Кочанов О.А. Основные подходы к исследованию возобновляемых источников энергии как энергетического потенциала территорий и застройки // Вестник МГСУ. 2012. № 10. С. 221—228.
  9. Потапов А.Д. Научно-методологические основы геоэкологической безопасности строительства : дисс. … д-ра техн. наук. М. : МГСУ, 2002. 312 с.
  10. Ананьев В.П., Потапов А.Д. Инженерная геология. М. : Высш. шк., 2008. 346 с.
  11. Потапов А.Д. Экология. М. : Высш. шк., 2005. 328 с.
  12. Платов Н.А., Потапов А.Д., Лебедева М.Д. Песчаные грунты. М. : Изд-во АСВ, 2008. 186 с.
  13. Потапов А.Д., Потапов И.А., Шименкова А.А. Некоторые аспекты применимости к песчаным грунтам положений физико-химической теории эффективных напряжений // Вестник МГСУ. 2012. № 10. С. 229—239.
  14. Потапов И.А., Потапов А.Д., Шименкова А.А. Формирование разных типов энергетических контактов в песчаных грунтах в аспекте физико-химической теории эффективных напряжений // Вестник МГСУ. 2012. № 11. С. 210—218.
  15. Потапов И.А., Шименкова А.А., Потапов А.Д. Зависимость суффозионной устойчивости песчаных грунтов различного генезиса от типа фильтрата // Вестник МГСУ. 2012. № 5. С. 79—86.
  16. Потапов А.Д., Потапов И.А., Шименкова А.А. Роль плотности-влажности песчаных грунтов в формировании эффективных напряжений с позиций физико-химической теории // Вестник МГСУ. 2012. № 12. С. 104—110.
  17. Сенющенкова И.М. Теория формирования и методы развития урболандшафтов на овражно-балочном рельефе : дисс. … д-ра техн. наук. М. : МГСУ, 2011. Рукопись 376 с.
  18. Осипов В.И. Физико-химическая теория эффективных напряжений в грунтах / ИГЭ РАН. М. : ИФЗ РАН, 2012. 74 с.
  19. Осипов В.И. Структурные связи как основа оценки физико-механических свойств глинистых пород // Совершенствование методов лабораторных исследований грунтов при инженерных изысканиях для строительства : тезисы докладов 2 Республиканского совещания. М. : Стройизыскания, 1977. С. 29—40.
  20. Грунтоведение. 6-е изд. / Колл. авт. под ред. В.Т. Трофимова. М. : Изд-во Московского университета, Наука, 2005. 1024 с.
  21. Гольдштейн М.Н. Механические свойства грунтов. Основные компоненты грунта и их взаимодействие. М. : Стройиздат, 1973. 375 с.
  22. Цытович Н.А. Механика грунтов. М. : Госстройиздат, 1963.
  23. Сергеев Е.М. Гранулометрическая классификация песков // Вестн. МГУ. Сер. биол. и почв. 1953. № 12. С. 49—56.
  24. Потапов А.Д. Морфологическое изучение песков в инженерно-геологических целях : дисс.. канд. геол.-минер. наук. М. : ПНИИИС, 1981. 243 с.
  25. Ребиндер П.А. Структурно-механические свойства глинистых пород и современные представления физико-химии коллоидов // Труды Совещания по инженерногеологическим свойствам горных пород и методам их изучения. М. : Изд-во АН СССР, 1956. Т. 1. С. 31—44.
  26. Михайлов Н.В., Ребиндер П.А. О структурно-механических свойствах дисперсных и высокомолекулярных систем // Коллоидный журнал. 1955. Т. 17. Вып. 2. С. 112—119.
  27. Тер-Степанян Г.И. О влиянии формы и расположения частиц на процесс сдвига в грунтах // Изв. АН АрмССР. 1948. Т. 1. № 2. С. 167—185.
  28. Горькова И.М. Структурные и деформационные особенности осадочных пород различной степени уплотнения и литификации. М. : Наука, 1966. 128 с.
  29. Дуранте В.А. Опыт исследования плотности песков методом глубинного зондирования // Труды Совещания по инженерно-геологическим свойствам горных пород и методам их изучения. М. : Изд-во АН СССР, 1956. Т. 1. С. 249—258.
  30. Лысенко М.П. Состав и физико-механические свойства грунтов. М. : Недра, 1972.
  31. Дудлер И.В. Значение понятия «плотность — влажность» для изучения и оценки физико-механических свойств песчаных грунтов // Вопросы инженерной геологии. М. : МИСИ, 1977. 7 с.
  32. Платов Н.А., Горькова И.М. Структурно-механические особенности мелкозернистых и пылеватых песков // Докл. АН СССР. Сер. геол., 1972. Т. 206. № 5. С. 1204—1206.
  33. Ребиндер П.А., Сегалова Е.Е. Новые проблемы коллоидной химии минеральных вяжущих материалов // Природа. 1952. № 12. С. 22—28.
  34. Горькова И.М. Теоретические основы оценки осадочных пород в инженерногеологических целях. М. : Наука, 1966. 136 с.
  35. Горькова И.M. Физико-химические исследования дисперсных осадочных пород в строительных целях. М. : Стройиздат, 1975. 151 с.
  36. Платов Н.А., Горькова И.М. О природе прочности мелко- и среднезернистых песчаных пород различного генетического типа // Коллоидный журнал. 1973. Т. 35. № 1. С. 57—62.
  37. Платов Н.А., Горькова И.М. Типы деформационного и реологического поведения песчаных пород // Докл. АН СССР. 1975. Т. 222. № 2. С. 456—458.
  38. Цехомский A.M. О строении и составе пленки на зернах кварцевых песков // Кора выветривания. Вып. 3. М. : Изд. АН СССР, 1959. С. 293—312.
  39. Леммлейн Г.Г., Князев В.С. Опыт изучения обломочного кварца // Изд. АН СССР. Сер. геол. 1951. № 4. С. 99—101.
  40. Зиангиров Р.С. Объемная деформируемость глинистых грунтов. М. : Наука, 1979. с. 164.
  41. Фадеев П.И. Пески СССР. М. : Изд-во МГУ, 1951. Ч. 1. 290 с.
  42. Deer W.A., Howie R.A., Zussman I. Rock-forming minerals. 4. Framework silicftes., New York, Wiley. 1963.
  43. Барон Л.И. Характеристика трения горных пород. М. : Наука, 1967.
  44. Маслов Н.Н., Котов М.Ф. Инженерная геология. М. : Стройиздат, 1971. 340 с.
  45. Kabai J. The compatibility of sands and sandy gravels. Techn.University Budapest. T. 63. 1968.

Скачать статью

ОЦЕНКА ОШИБОК МОДЕЛЕЙ СОПРОТИВЛЕНИЯ СДВИГУ, ПРИНЯТЫХ В EN 1993-1-5 И СНИП II-23

Вестник МГСУ 5/2013
  • Надольский Виталий Валерьевич - Белорусский национальный технический университет магистр, ассистент кафедры металлических и деревянных конструкций, Белорусский национальный технический университет, 220013, г. Минск, проспект Независимости, д. 65; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Мартынов Юрий Семенович - Белорусский национальный технический университет (БНТУ) кандидат технических наук, профессор, кафедры металлических и деревянных конструкций, Белорусский национальный технический университет (БНТУ), Республика Беларусь, 220013, г. Минск, проспект Независимости, д. 65; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 7-20

Приведена общая характеристика моделей сопротивления сдвигу, принятых в EN 1993–1–5 и СНиП II–23, и их область применения. Составлен банк экспериментальных данных испытаний стальных элементов на сдвиг. Описана процедура их отбора и сопоставления с теоретическими значениями. Выполнена оценка ошибок моделей сопротивления сдвигу, учитывающих потерю местной устойчивости стенки для элементов с поперечными ребрами жесткости. Определены статистические параметры распределения ошибки моделей сопротивления сдвигу стального элемента.

DOI: 10.22227/1997-0935.2013.5.7-20

Библиографический список
  1. СНиП II-23—81*. Стальные конструкции. М., 1991.
  2. EN 1993-1-5-2006. Eurocodes 3 — Design of steel structures — Part 1.5: Plated structural elements. Brussells: European Committee for Standardization, 2006. 53 pp.
  3. Мартынов Ю.С., Лагун Ю.И., Надольский В.В. Модели сопротивления сдвигу стальных элементов, учитывающие потерю местной устойчивости стенки // Металлические конструкции. 2012. Т. 18. № 2. С. 111—122.
  4. AISC-360-05. Specification for Structural Steel Buildings. Chicago, Illinois: American Institute of Steel Construction, 2005. 256 pp.
  5. CSA-S16-01. Limit States Design of Steel Structures, Includes Update No. 1 (2010), Update No. 2 (2001). Mississauga, Ontario: Canadian Standards Association, 2009. 198 pp.
  6. Höglund T. Strength of Steel and Aluminium Plate Girders: Shear Buckling and Overall Web Buckling of Plane and Trapezoidal Webs – Comparison with Tests. Tech. Report No. 4. Stockholm: Royal Institute of Technology, Department of Structural Engineering. 1995.
  7. Пособие по проектированию стальных конструкций (к СНиП II-23—81* Стальные конструкции) / ЦНИИСК им. Кучеренко Госстрой СССР. М. : ЦИТП Госстрой СССР, 1989. 148 с.
  8. Металлические конструкции : в 3 т. Т. 1. Общая часть. (Справочник проектировщика) / под общ. ред. заслуж. строителя РФ, лауреата госуд. премии СССР В.В. Кузнецова (ЦНИИпроектстальконструкция им. Н.П. Мельникова). М. : Изд-во АСВ, 1998. 576 с.
  9. Basler K. Strength of Plate Girders in Shear. Proc. ASCE, Journal Structural Division, Vol. 87(2), No. ST 7. 1961. pp. 181—197.
  10. Höglund T. Design of Thin Plate I-Girders in Shear and Bending with Special Reference to Web Buckling. Royal Institute of Technology, Department of Building Statics and Structural Engineering. Stockholm, Sweden. 1973.
  11. Commentary and worked examples to EN 1993-1-5 “Plated structural elements” / JRC Reports (Eurocodes related) by B. Johansson, R. Maquoi, G. Sedlacek, C. Müller, D. Beg. Luxemburg: Office for Official Publication of the European Communities, 2007. 226 pp.
  12. Guide to Stability Design Criteria for Metal Structures, Sixth Edition / Edited by Ronald D. Ziemian – Hoboken, New Jersey: John Wiley & Sons, Inc., 2010. 1117 pp.
  13. Designers’ Guide to EN 1993-1-1. Eurocode 3: Design of Steel Structures. General Rules and Rules for Buildings. / L.Gardner and D.Nethercot – London, Thomas Telford Ltd,
  14. Basler K., Mueller J.A., Thurlimann B. and Yen B.T. Web Buckling Tests on Welded Plate Girders. Welding Research Council Bulletin No.64, (September 1960), Reprint No. 165 (60-5). Fritz Laboratory Reports. 1960.
  15. Benjamin Braun. Stability of Steel Plates under Combined Loading. Zugl.: Stuttgart, Univ., Diss. Inst. f. Konstruktion u. Entwurf, 2010. 226 p.
  16. Charlier R. and Maquoi R. Etude experimentale de la capacité portante en cisaillement de poutres a ame pleine raidies longitudinalement par des profiles a section fermé. CRIF, Bruxelles, MT 169, 1986.
  17. Cooper P.B., Lew H.S. and Yen B.T. Welded Constructional Alloy Steel Plate Girders. Journal Structural Division, ASCE, Vol. 90, No. ST1. 1964. p. 36.
  18. Cooke N., Moss P.J., Walpole W.R., Langdon D.W. and Mervyn H.H. Strength and Serviceability of Steel Girder Webs. Journal ASCE, No. 109. 1983. pp. 785—807.
  19. D’Apice M.A., Fielding D.J. and Cooper P.B. Static Tests on Longitudinally Stiffened Plate Girders. Welding Research Council, New York, Bulletin No. 117, 1966.
  20. Evans H.R. An Approach by Full-Scale Testing of New Design Procedures for Steel Girders Subjected to Shear and Bending. Proceedings of the Institute of Civil Engineers, No. 81. 1986.
  21. Fielding D.J. and Cooper P.B. Static Shear Tests on Longitudinally Stiffened Plate Girders. 1965.
  22. Fujii T. Minimum Weight Design Of Structures Based On Buckling Strength And Plastic Collapse. Institute of shipbuilding, No.122, Japan. 1967.
  23. Fujii T. Comparison Between the Theoretical Shear Strength of Plate Girders and the Experimental Results. Contribution to the prepared discussion. In IABSE Colloquium, Vol. 11, IABSE, London. 1971. pp. 161—172.
  24. Hachirho Takeda. A Fundamental Study on Simplified Analysis of Buckling, Load- Carrying Capacity and Deformability of Girders. (Thesis of Dissertation) Kyoto University. 2004. 197 p.
  25. Lew H.S., Natarajan M. and Toprac A.A. Static Tests on Hybrid Plate Girders. Welding Research Council, Supplement Vol. 75, PART II. 1969. 86 p.
  26. Longbottom E. and Heyman J. Experimental Verification of the Strength of Plate Girders Designed in accordance with the Revised British Standard 153: tests on full-scale and on model plate girders. Proceedings of Inst. Civ. Engrs., Part III. 1956. pp. 462—486.
  27. Lyse I. and Godfrey H.J. Investigation of Web Buckling in Steel Beams. Trans. ASCE, 100. 1935. pp. 675—695.
  28. Okumura T. and Nishino F. Failure Tests of Plate Girders using Large-Sized Models. Structural Engineering Laboratory Report, Department of Civil Engineering, University of Tokyo, 1966.
  29. Okumura T., Fujii T., Fukumoto Y., Nishino F. Failure tests on plate girders. Structural Engineering Laboratory Report, Department of Civil Engineering, University of Tokyo, 1967.
  30. Nishino F. and Okumura T. Experimental Investigation of Strength of Plate Girders in Shear. IABSE, Proc. 8th Congr, Final Report. 1968. pp. 451—463.
  31. Rockey K. and Skaloud M. Influence of the Flexural Rigidity of Flanges upon the Load-Carrying Capacity and Failure Mechanism in Shear. Acta Technica CSA V, 1969, 3.
  32. Rockey K. and Skaloud M. The Ultimate Behavior of Plate Girders Loaded in Shear. IABSE Colloquium. 1971. pp. 1—19.
  33. Rockey K., Vanltinat G. and Tang K.H. The Design of Transverse Stiffeners on Webs Loaded in Shear-an Ultimate Load Approach. Proceedings I.C.E., Part 2,71, Dec. 1981. pp. l069—1099.
  34. Rockey K., Evans H.R. and Porter D.M. Test on Longitudinally Reinforced Plate Girder Subjected to Shear. Stability of Steel Structures, Liege, Preliminary Report, April. 1977.
  35. Sakai F., Doi K., Nishino F. and Okumura T. Failure Tests of Plate Girders Using Large Sized Models. Structural Engineering Laboratory Report, University of Tokyo. 1967.
  36. Sakai F., Fujii T. and Fukuchi Y. Review of Experiments on Plate Girders. TSSC, Vol. 4, No. 27. 1968.
  37. Skaloud M. Ultimate Load and Failure Mechanism of Thin Webs in Shear. In IABSE Colloquium, Vol.11, IABSE, London, 1971. pp. 115—127.
  38. Tang K.H., and Evans H.R. Transverse Stiffeners for Plate Girder Webs and Experimental Study. Journal of Constructional Steel Research, Vol. 4, 1984. Pp. 253—280.
  39. Thomas Hansen. Theory of Plasticity for Steel Structures - Solutions for Fillet Welds, Plate Girders and Thin Plates. Department of Civil Engineering, Technical University of Denmark, Report No.: R-146, 2006, p. 239.
  40. JCSS Probabilistic Model Code, Joint Committee of Structural Safety, 2001.

Скачать статью

Результаты 1 - 2 из 2