ПРОЕКТИРОВАНИЕ И КОНСТРУИРОВАНИЕ СТРОИТЕЛЬНЫХ СИСТЕМ. ПРОБЛЕМЫ МЕХАНИКИ В СТРОИТЕЛЬСТВЕ

ИСПОЛЬЗОВАНИЕ ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННЫХ ОБОЛОЧЕК ПРИ УСИЛЕНИИ ЛЕНТОЧНЫХ ФУНДАМЕНТОВ

Вестник МГСУ 2/2012
  • Тер-Мартиросян Завен Григорьевич - Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ) доктор технических наук, профессор кафедры механики грунтов и геотехники, главный научный сотрудник научно-образовательного центра «Геотехника», Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ), 129337, г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Пронозин Яков Александрович - ФГБОУ ВПО «Тюменский государственный архитектурно-строительный университет» кандидат технических наук, доцент, заведующий кафедрой строительного производства, оснований и фундаментов 8 (3452) 43-39-26, ФГБОУ ВПО «Тюменский государственный архитектурно-строительный университет», 625000, Тюмень, Луначарского, 2; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Наумкина Юлия Владимировна - ФГБОУ ВПО «Тюменский государственный архитектурно-строительный университет» аспирантка, ассистент кафедры строительных конструкций 8 (3452) 43-49-92, ФГБОУ ВПО «Тюменский государственный архитектурно-строительный университет», 625000, Тюмень, Луначарского, 2; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 30 - 34

Рассмотрен способ эффективного усиления фундаментов существующих зданий предварительно напряженными оболочками. Приведены достоинства данного метода усиления, технология устройства, расчетные предпосылки.

DOI: 10.22227/1997-0935.2012.2.30 - 34

Библиографический список
  1. Мангушев Р.А. Современные свайные технологии. М. : Изд.-во АСВ, 2007.
  2. Пат. 2380483 Российская Федерация, МПК Е 02 D 27/00. Фундамент/ Я.А. Пронозин, Р.В. Мельников. № 2008124706/03; 2008, Бюл. № 3.

Cкачать на языке оригинала

ВЗАИМОДЕЙСТВИЕ СВАЙ БОЛЬШОЙ ДЛИНЫ С МАССИВОМ ГРУНТА В СОСТАВЕ ПЛИТНО-СВАЙНОГО ФУНДАМЕНТА

Вестник МГСУ 3/2012
  • Тер-Мартиросян Завен Григорьевич - Московский государственный строительный университет (ФГБОУ ВПО «МГСУ») доктор технических наук, профессор, заведующий кафедрой механики грунтов, оснований и фундаментов, Московский государственный строительный университет (ФГБОУ ВПО «МГСУ»), 129337, Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 74 - 78

Рассмотрена постановка и решение задач о взаимодействии свай большой длины с массивом грунта в составе плитно-свайного фундамента с учетом шага, диаметра, длины свай и их соотношений, а также нелинейных свойств грунтов аналитическими и численными методамис помощью Plaxis-2d.
Показано, что эти параметры оказывают существенное влияние на НДС грунтов, взаимодействующих со сваей и ростверком, и что оно позволяет оценить приведенную жесткость плитно-свайного фундамента, необходимое для решения задач при большом количестве свай, а также распределения общей нагрузки между сваями и ростверком.

DOI: 10.22227/1997-0935.2012.3.74 - 78

Библиографический список
  1. Тер-Мартиросян З.Г. Механика грунтов. М. : Изд-во АСВ, 2009. 550 с.
  2. Тер-Мартиросян З.Г., НгуенЗанг Нам. Взаимодействие свай большой длины с неоднородным массивом с учетом нелинейных и реологических свойств грунтов // Вестник МГСУ. 2008. № 2. С. 3-14.
  3. Тер-Мартиросян З.Г., ЧиньТуан Вьет. Взаимодействие одиночной длиной сваи с основанием с учетом сжимаемости ствола сваи. Вестник МГСУ. № 8. 2011. С. 104-111.

Cкачать на языке оригинала

ВЛИЯНИЕ СТЕПЕНИ ВОДОНАСЫЩЕНИЯ ГЛИНИСТОГО ГРУНТА НА ЕГО НАПРЯЖЕННО-ДЕФОРМИРОВАННОЕ СОСТОЯНИЕ

Вестник МГСУ 8/2012
  • Тер-Мартиросян Завен Григорьевич - Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ) доктор технических наук, профессор кафедры механики грунтов и геотехники, главный научный сотрудник научно-образовательного центра «Геотехника», Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ), 129337, г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Нгуен Хуи Хиеп - Московский государственный строительный университет (ФГБОУ ВПО «МГСУ») аспирант кафедры механики грунтов, оснований и фундаментов, Московский государственный строительный университет (ФГБОУ ВПО «МГСУ»), 129337, г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 112 - 120

Приведены постановка и решение задачи по количественной оценке напряженно-
деформированного состояния (НДС) не полностью водонасыщенного глинистого грунта под
воздействием внешней нагрузки аналитическим и численным методами.
Показано, что в зависимости от степени водонасыщения в грунтовом полупространстве
под действием распределенной нагрузки p по полосе шириной b = 2a возникает сложное и
неоднородное НДС, в т.ч. неоднородное избыточное поровое давление, которое существенно
зависит от степени водонасыщения грунта. На промежуточном этапе в процессе отжатия
поровой воды в сторону дренирующих границ область с максимальным поровым давлением
в центре смещается вниз. Вследствие этого в слоях между дренирующими поверхностями
изменение избыточного порового давления во времени имеет экстремальный характер. Такой
результат получен аналитическим и численным методами решения поставленной задачи.
Отмечено также, что эпюры среднего напряжения ƒ = (ƒ1+ ƒ2+ ƒ3)/3 и ƒz по оси z под
полосой b = 2a затухают с глубиной с разной интенсивностью. Это обусловливает ограниченность
области под полосовой нагрузкой, в которой возникает избыточное поровое давленние. Кроме
того, показывается, что под воздействием нагрузки по полосе шириной b = 2a осадка поверхности
грунтового пространства обусловлена сдвиговыми и объемными деформациями грунта, т.е
S=+Sv, и что развитие осадки не зависит от избыточного порового давления и возникает с
момента нагружения. Показано, что начальная осадка основания при степени водонасыщения,
равной 1, обусловлена исключительно сдвиговыми деформациями скелета грунта.

DOI: 10.22227/1997-0935.2012.8.112 - 120

Библиографический список
  1. Тер-Мартиросян З.Г. Механика грунтов. М. : Изд-во АСВ, 2009. 550 с.
  2. Флорин В.А. Основы механики грунтов. Т. 1. М.-Л. : Стройиздат, 1959.
  3. Флорин В.А. Основы механики грунтов. Т. 2. М.-Л. : Стройиздат, 1961.
  4. Алла Сайд Мухамед Абдул Малек. Напряженно-деформированное состояние преобразованного основания фундаментов : дисс. … канд. техн. наук. М. : МГСУ, 2009.
  5. СНиП 2.02.01-83*. Основания зданий и сооружений. М., 1985.
  6. Тимошенко С.Н., Гудьер Д.Ж. Теория упругости. М. : Недра, 1975. 575 с.
  7. Иванов П.Л. Грунты и основания гидротехнических сооружений. М. : Высш. шк., 1985. 345 с.
  8. Цытович Н.А. Механика грунтов. М. : Стройиздат, 1963. 636 с.
  9. Цытович Н.А. Механика грунтов (краткий курс). М. : Высш. шк., 1979. 268 с.
  10. Тихонов А.Н., Самарский А.А. Уравнения математической физики. М. : Наука, 1996. 724 с.
  11. Тер-Мартиросян А.З. Взаимодействие фундаментов с основанием при циклических и вибрационных воздействиях с учетом реологических свойств грунтов : дисс. … канд. техн. наук. М. : МГСУ, 2010.
  12. Фадев А.Б. Метод конечных элементов в геомеханике. М. : Мир, 1989.

Cкачать на языке оригинала

ЭКСПЕРИМЕНТАЛЬНЫЕ ПОЛЕВЫЕ ИССЛЕДОВАНИЯ ДЕФОРМИРУЕМОСТИ АРГИЛЛИТОПОДОБНЫХ ГЛИН И ПЕСЧАНИКОВ

Вестник МГСУ 6/2018 Том 13
  • Пономарев А.Б. - Пермский национальный исследовательский политехнический университет (ПНИПУ) , Пермский национальный исследовательский политехнический университет (ПНИПУ), 614990, г. Пермь, Комсомольский пр-т, д. 29.
  • Сычкина Е.Н. - Пермский национальный исследовательский политехнический университет (ПНИПУ) , Пермский национальный исследовательский политехнический университет (ПНИПУ), 614990, г. Пермь, Комсомольский пр-т, д. 29.

Страницы 756-767

Предмет исследования: зависимость «нагрузка - деформация» и фазы напряженно-деформированного состояния аргиллитоподобных глин и песчаников. Цели: выполнить штамповые и прессиометрические испытания, проанализировать результаты полевых испытаний и разработать рекомендации по проектированию и расчету фундаментов на аргиллитоподобных глинах и песчаниках. Материалы и методы: получены зависимости «нагрузка - осадка» и выделены фазы напряженного состояния для аргиллитоподобной глины и песчаника, определено расчетное сопротивление грунта для буровой сваи-стойки, заглубленной в аргиллитоподобные глины и песчаники более чем на 0,5 м. Результаты полевых испытаний обработаны методами математической статистики. Результаты: в 58 % штамповых опытов наблюдалась потеря несущей способности основания, сложенного аргиллитоподобными глинами и песчаниками, только после достижения давлений 3,0 МПа. В 19 % штамповых опытов деформации резко возрастали уже при значении давлений 0,6…2,2 МПа, что характерно для менее прочных разновидностей аргиллитоподобных глин и песчаников. В 23 % опытов вертикальные деформации песчаников и аргиллитопобных глин имели линейный характер на всем протяжении графика «нагрузка - осадка» и фаза потери несущей способности грунта не была достигнута. Аналогичная картина наблюдалась при выполнении прессиометрических испытаний: для аргиллитоподобной глины при максимальном горизонтальном давлении 0,85 МПа и песчаника при максимальном горизонтальном давлении 1,0 МПа фаза потери несущей способности не была достигнута, а деформации грунта имели преимущественно линейный характер, что характерно для фазы уплотнения и фазы местных сдвигов. Выводы: аргиллитоподобная глина и песчаник могут являться надежными малосжимаемыми основаниями для зданий и сооружений с нагрузками от 0,2 до 0,3 МПа, а при проектировании фундаментов зданий и сооружений на аргиллитоподобных глинах и песчаниках можно применять расчеты с использованием теории линейно-деформируемой среды. Но аргиллитоподобная глина и песчаник имеют остаточные деформации, связанные с нарушением цементационных связей между частицами грунта. Рациональным является использование в расчетах фундаментов на аргиллитоподобных глинах и песчаниках значений прочностных параметров грунта, полученных при лабораторных или полевых испытаниях с замачиванием, учитывающим возможное ухудшение свойств данных грунтов.

DOI: 10.22227/1997-0935.2018.6.756-767

Библиографический список
  1. Suxin Z., Yuanqiao P., Jianxin Y. et al. Characteristics of claystones across the terrestrial Permian-Triassic boundary: Evidence from the Chahe section, western Guizhou, South China // Journal of Asian Earth Sciences. 2006. Vol. 27. Issue 3. Pp. 358-370.
  2. Ponomaryov A., Sychkina E. Analysis of strain anisotropy and hydroscopic property of clay and claystone // Applied Clay Science. 2015. Vol. 114. Pp. 61-169.
  3. Manica M., Gens A., Vaunat J., Ruiz D.F. A time-dependent anisotropic model for argillaceous rocks. Application to an underground excavation in Callovo-Oxfordian claystone // Computer and geotechnics. 2017. Vol. 85. Pp. 341-350.
  4. Кузнецова С.В., Махова С.И. Инженерно-геологические условия строительства на майкопских глинах Волгограда // Вестник ПНИПУ. Строительство и архитектура. 2017. Т. 8. № 1. С. 134-147.
  5. Тер-Мартиросян З.Г., Сидоров В.В., Нгуен Х.Х. Расчетное сопротивление грунтов оснований фундаментов в зависимости от степени их водонасыщения // Инженерная геология. 2012. № 5. С. 48-53.
  6. Armand G., Conil N., Talandier J., Seyedi D.M. Fundamental aspects of the hydromechanical behavior of Callovo-Oxfordian claystone: From experimental studies to model calibration and validation // Computer and geotechnics. 2017. Vol. 85. Pp. 277-286.
  7. Zhang F., Xie S.Y., Hu D.W. et al. Effect of water content and structural anisotropy on mechanical property of claystone // Applied Clay Science. 2012. No. 69. Pp. 79-86.
  8. Лушников В.В., Солдатов Б.А., Пивоваров Л.А. Основные предложения к проекту норматива по испытаниям скальных грунтов в полевых условиях // Вестник ПНИПУ. Строительство и архитектура. 2015. № 4. С. 36-49.
  9. Пономарев А.Б., Захаров А.В., Сурсанов Д.Н. К вопросу использования верхнепермских отложений в качестве грунтовых оснований // Вестник ПНИПУ. Урбанистика. 2011. № 1. С. 74-80.
  10. Сурсанов Д.Н., Байдак М.А. Определение расчетного сопротивления под нижним концом сваи при опирании на сильновыветрелые песчаники // Вестник гражданских инженеров. 2015. № 6 (53). С. 115-120.
  11. Ponomaryov A.B., Sychkina E.N. Analysis of pile foundation behavior on modern and ancient clay bases // Challenges and Innovations in Geotechnics : Proceedings of the 8th Asian Young Geotechnical Engineers Conference. 2016. Pp. 111-114.
  12. Бартоломей А.А., Омельчак И.М., Юшков Б.С. Прогноз осадок свайных фундаментов. М. : Изд-во ГУП «НИАЦ» Москомархитектуры. М. : 1994. 384 с.
  13. Ильичев В.А., Мариупольский Л.Г., Вахолдин В.В. Рекомендации по расчету, проектированию и устройству свайных фундаментов нового типа в г. Москва. М. : Изд-во ГУП «НИАЦ» Москомархитектуры. 1997. № 1. 93 с.
  14. Ter-Martirosyan Z.G. Forecasting foundation settlement // Hydrotechnical Construction. 2000. Vol. 34. No 11. Pp. 585-590.
  15. Тер-Мартиросян А.З., Лузин И.Н., Тер-Мартиросян З.Г. Напряженно-деформированное состояние оснований фундаментов глубокого заложения конечной ширины // Геотехника. 2016. № 6. С. 26-33.
  16. Шулятьев О.А. Фундаменты высотных зданий // Вестник ПНИПУ. Строительство и архитектура. 2014. № 4. С. 202-244.
  17. Шулятьев О.А. Геотехнические особенности проектирования высотных зданий в Москве // Промышленное и гражданское строительство. 2016. № 10. С. 17-25.
  18. Готман А.Л. Расчет комбинированных свайных фундаментов на действие горизонтальной нагрузки и изгибающего момента // Основания, фундаменты и механика грунтов. 2015. № 4. С. 23-27.
  19. Ладыженский И.Г., Сергиенко А.В. Опыт проектирования свайных и свайно-плитных фундаментов на участке ММДЦ «МОСКВА-СИТИ» // Промышленное и гражданское строительство. 2016. № 10. С. 46-54.
  20. Петрухин В.П., Шулятьев ОА., Ибраев Р.Р. Экспериментальные исследования осадок свайных фундаментов // Сб. науч. тр. НИИОСП им. Н.М. Герсеванова. 2006. С. 126-134.
  21. Травуш В.И., Шулятьев О.А. История развития высотного фундаментостроения в России // Промышленное и гражданское строительство. 2016. № 10. С. 8-16.
  22. Randolph M.F., Carter J.P., Wroth C.P. Driven piles in clay - the effects of installation and subsequent consolidation // Geotechnique. 1979. No. 29. Pp. 361-393.
  23. Sheil B.B., McCabe B.A. An analytical approach for the prediction of single pile and pile group behaviour in clay // Computers and Geotechnics. 2016. No. 75. Pp. 145-158.
  24. Zhang Q., Liu S., Zhang S. et al. Simplified non-linear approaches for response of a single pile and pile groups considering progressive deformation of pile-soil system // Soils and foundations. 2016. Vol. 56. Issue 3. Pp. 473-484.
  25. Сычкина Е.Н., Тимшина А.А. К вопросу обеспечения устойчивости склонов, сложенных аргиллитоподобными глинами // Master’s journal. 2016. № 1. С. 296-305.
  26. Пономарев А.Б., Сычкина Е.Н., Волгарева Н.Л. К вопросу прогноза осадки сваи на аргиллитоподобной глине численными и аналитическими методами // Вестник МГСУ. 2016. № 6. С. 34-45. DOI: 10.22227/1997-0935.2016.6.34-45

Скачать статью

ВЗАИМОДЕЙСТВИЕ ДЛИННОЙ СВАИ КОНЕЧНОЙ ЖЕСТКОСТИ С ОКРУЖАЮЩИМ ГРУНТОМ И РОСТВЕРКОМ

Вестник МГСУ 9/2015
  • Тер-Мартиросян Армен Завенович - Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ) кандидат технических наук, доцент, доцент кафедры механики грунтов, оснований и фундаментов, Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ), 129337, г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Тер-Мартиросян Завен Григорьевич - Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ) доктор технических наук, профессор кафедры механики грунтов и геотехники, главный научный сотрудник научно-образовательного центра «Геотехника», Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ), 129337, г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Чинь Туан Вьет - Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ) аспирант кафедры механики грунтов, оснований и фундаментов, Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ), 129337, г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 72-83

Приведены постановка и аналитическое решение задачи по количественной оценке напряженно-деформированного состояния двухслойного грунтового цилиндра, вмещающего длинную сваю, взаимодействующего с ростверком. Решение задачи рассмотрено для двух случаев: без учета и с учетом осадки нижнего конца сваи в подстилающий слой грунта. В первом случае приведены формулы для определения напряжений в стволе сваи и окружающем грунте в зависимости от их жесткости и соотношения радиусов сваи и грунтового цилиндра, а также формула для определения приведенного модуля деформации систем ростверк - свая - окружающий грунт (далее - система). Отмечена необходимость оценки несущей способности грунта под пятой сваи. Во втором случае задача сводится к решению дифференциального уравнения второго порядка. В результате аналитического решения получена формула для определения напряжений в стволе сваи на уровне ее оголовки и пяты, а также изменения напряжения вдоль сваи. Приведены также формулы для определения осадки ростверка и приведенного модуля деформации для системы. Показано, что учет продавливания сваи в подстилающий слой приводит к снижению приведенного модуля системы.

DOI: 10.22227/1997-0935.2015.9.72-83

Библиографический список
  1. 1. Надаи А. Пластичность и разрушение твердых тел : в 2-х т. / пер. с англ. ; под ред. Г.С. Шапиро. М. : Мир, 1969. Т. 2. 863 с.
  2. 2. Флорин В.А. Основы механических грунтов. В 2-х т. Л. : Госстройиздат, 1959. Т. 1. 541 с.
  3. 3. Теличенко В.И., Тер-Мартиросян З.Г. Взаимодействие сваи большой длины с нелинейно-деформируемым массивом грунта // Вестник МГСУ. 2012. № 4. С. 22-27.
  4. 4. Тер-Мартиросян З.Г., Нгуен Занг Нам. Взаимодействие свай большой длины с неоднородным массивом с учетом нелинейных и реологических свойств грунтов // Вестник МГСУ. 2008. № 2. С. 3-14.
  5. 5. Тер-Мартиросян З.Г., Чинь Туан Вьет. Взаимодействие одиночной сваи с основанием с учетом сжимаемости ствола сваи // Вестник МГСУ. 2011. № 8. С. 104-110.
  6. 6. Mattes N.S., Poulos H.G. Settlement of single compressible pile // Journal SoilMech. Foundation ASCE. 1969. Vol. 95. No. 1. Pp. 189-208.
  7. 7. Тер-Мартиросян З.Г. Механика грунтов. М. : Изд-во АСВ, 2009. 550 с.
  8. 8. Тер-Мартиросян А.З., Тер-Мартиросян З.Г., Чинь Туан Вьет, Лузин И.Н. Осадка и несущая способность длинной сваи // Вестник МГСУ. 2015. № 5. С. 52-60.
  9. 9. Coyle H.M., Reese L.C. Load transfer for axially loaded piles in clay // Journal Soil Mechanics and Foundation Division, ASCE. March 1996. Vol. 92. No. 2. Pp. 1-26.
  10. 10. Бартоломей А.А., Омельчак И.М., Юшков Б.С. Прогноз осадок свайных фундаментов / под ред. А.А. Бартоломея. М. : Стройиздат, 1994. 384 с.
  11. 11. Randolph M.F., Wroth C.P. Analysis of deformation of vertically loaded piles // Journal of the Geotechnical Engineering Division, American Society of Civil Engineers. 1978. Vol. 104. No. 12. Pp. 1465-1488.
  12. 12. Van Impe W.F. Deformations of deep foundations // Proc. 10th Eur. Conf. SM & Found. Eng., Florence. 1991. Vol. 3. Pp. 1031-1062.
  13. 13. Prakash S., Sharma H.D. Pile foundation in engineering practice. John Wiley & Sons, 1990. 768 p.
  14. 14. Малышев М.В., Никитина Н.С. Расчет осадок фундаментов при нелинейной зависимости между напряжениями и деформациями в грунтах // Основания, фундаменты и механика грунтов. 1982. № 2. С. 21-25.
  15. 15. Hansen J.B. Revised and extended formula for bearing capacity // Bulletin 28. Copenhagen : Danish Geotechnical Institute. 1970. Рp. 5-11.
  16. 16. Joseph E.B. Foundation analysis and design. McGraw-Hill, Inc, 1997. 1240 p.
  17. 17. Тер-Мартиросян З.Г., Струнин П.В.,Чинь Туан Вьет. Сжимаемость материала сваи при определении осадки в свайном фундаменте // Жилищное строительство. 2012. № 10. С. 13-15.
  18. 18. Vijayvergiya V.N. Load-Movement characteristics of piles // Proc. Port 77 conference, American Society of Civil Engineers, Long Beach, CA, March 1977. Pp. 269-284.
  19. 19. Seed H.B., Reese L.C. The action of soft clay along friction piles // Trans., ASCE. 1957. Vol. 122. No. 1. Pp. 731-754.
  20. 20. Booker J., Poulos H.G. Analysis of creep settlement of pile foundation // Journal Geotechnical Engineering division. ASCE. 1968. Vol. 102. No. 1. Pp. 1-14.
  21. 21. Poulos H.G., Davis E.H. Pile foundation analysis and design. New York : John Wiley and Sons, 1980. 397 p.

Скачать статью

Осадка и несущая способность длинной сваи

Вестник МГСУ 5/2015
  • Тер-Мартиросян Армен Завенович - Московский государственный строительный университет (ФГБОУ ВПО «МГСУ») кандидат технических наук, доцент, доцент кафедры механики грунтов и геотехники, Московский государственный строительный университет (ФГБОУ ВПО «МГСУ»), 129337, г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Тер-Мартиросян Завен Григорьевич - Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ) доктор технических наук, профессор кафедры механики грунтов и геотехники, главный научный сотрудник научно-образовательного центра «Геотехника», Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ), 129337, г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Чинь Туан Вьет - Московский государственный строительный университет (ФГБОУ ВПО «МГСУ») аспирант кафедры механики грунтов и геотехники, Московский государственный строительный университет (ФГБОУ ВПО «МГСУ»), 129337, г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Лузин Иван Николаевич - Московский государственный строительный университет (ФГБОУ ВПО «МГСУ») аспирант кафедры механики грунтов и геотехни- ки, Московский государственный строительный университет (ФГБОУ ВПО «МГСУ»), 129337, г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 52-61

Приведены постановка и аналитическое решение задачи для количественной оценки осадки круглого фундамента с учетом его глубины заложения на основе развития задачи Миндлина, а также взаимодействия длинной жесткой сваи с окружающим грунтом, в т.ч. под пятой сваи. Предложено расчетное значение давления под пятой сваи сравнивать с начальной критической нагрузкой для круглого фундамента для проверки условия, что расчетное значение меньше начального критического.

DOI: 10.22227/1997-0935.2015.5.52-61

Библиографический список
  1. Надаи А. Пластичность и разрушение твердых тел. Т. 2 / пер. с англ. М. : Мир, 1969. 853 с.
  2. Флорин В.А. Основы механических грунтов. Т. 1. М. : Госстройиздат, 1959. 356 с.
  3. Теличенко В.И., Тер-Мартиросян З.Г. Взаимодействие сваи большой длины с нелинейно-деформируемым массивом грунта // Вестник МГСУ. 2012. № 4. С. 22-27.
  4. Тер-Мартиросян З.Г., Нгуен Занг Нам. Взаимодействие свай большой длины с неоднородным массивом с учетом нелинейных и реологических свойств грунтов // Вестник МГСУ. 2008. № 2. С. 3-14.
  5. Тер-Мартиросян З.Г., Чинь Туан Вьет. Взаимодействие одиночной длинной сваи с основанием с учетом сжимаемости ствола сваи // Вестник МГСУ. 2011. № 8. С. 104-110.
  6. Mattes N.S., Poulos H.G. Settlement of single compressible pile // Journal SoilMech. Foundation ASCE. 1969. Vol. 95, No. 1. Pp. 189-208.
  7. Тер-Мартиросян З.Г., Тер-Мартиросян А.З., Сидоров В.В. Начальное критическое давление под подошвой круглого фундамента и под пятой буронабивной сваи круглого сечения // Естественные и технические науки. 2014. № 11-12 (78). С. 372-376.
  8. Бартоломей А.А., Омельчак И.М., Юшков Б.С. Прогноз осадок свайных фундаментов / под ред. А.А. Бартоломея. М. : Стройиздат, 1994. 384 с.
  9. Coyle H.M., Reese L.C. Load transfer for axially loaded piles in clay // Journal Soil Mechanics and Foundation Division, ASCE. March1996. Vol. 92. No. 2. Pp. 1-26.
  10. Randolph M.F., Wroth C.P. Analysis of deformation of vertically loaded piles // Journal of the Geotechnical Engineering Division, American Society of Civil Engineers. 1978. Vol. 104. No. 12. Pp. 1465-1488.
  11. Van Impe W.F. Deformations of deep foundations // Proc. 10th Eur. Conf. SM & Found. Eng., Florence. 1991. Vol. 3. Pp. 1031-1062.
  12. Тер-Мартиросян З.Г. Механика грунтов. М. : Изд-во АСВ, 2009. 550 с.
  13. Prakash S., Sharma H.D. Pile foundation in engineering practice. John Wiley & Sons, 1990. 768 p.
  14. Малышев М.В., Никитина Н.С. Расчет осадок фундаментов при нелинейной зависимости между напряжениями и деформациями в грунтах // Основания, фундаменты и механика грунтов. 1982. № 2. С. 21-25.
  15. Joseph E.B. Foundation analysis and design. McGraw-Hill, Inc, 1997. 1240 p.
  16. Тер-Мартиросян З.Г., Струнин П.В., Чинь Туан Вьет. Сжимаемость материала сваи при определении осадки в свайном фундаменте // Жилищное строительство. 2012. № 10. С. 13-15.
  17. Hansen J.B. Revised and extended formula for bearing capacity // Bulletin 28. Danish Geotechnical Institute. Copenhagen, 1970. Рp. 5-11.
  18. Vijayvergiya V.N. Load-Movement characteristics of piles // Proc. Port 77 conference, American Society of Civil Engineers, Long Beach, CA, March 1977. Pp. 269-284.
  19. Booker J., Poulos H.G. Analysis of creep settlement of pile foundation // Journal Geotechnical Engineering division. ASCE. 1976. Vol. 102. No. 1. Pp. 1-14.
  20. Poulos H.G., Davis E.H. Pile foundation analysis and design. New York : John Wiley and Sons, 1980. 397 p.
  21. Seed H.B., Reese L.C. The action of soft clay along friction piles // Trans., ASCE. 1957. Vol. 122. No. 1. Pp. 731-754.

Скачать статью

К ВОПРОСУ ПРОГНОЗА ОСАДКИ СВАИНА АРГИЛЛИТОПОДОБНОЙ ГЛИНЕ ЧИСЛЕННЫМИИ АНАЛИТИЧЕСКИМИ МЕТОДАМИ

Вестник МГСУ 6/2016
  • Пономарев Андрей Будимирович - Пермский национальный исследовательский политехнический университет (ПНИПУ) доктор технических наук, профессор, заведующий кафедрой строительного производства и геотехники, Пермский национальный исследовательский политехнический университет (ПНИПУ), 614990, г. Пермь, Комсомольский пр-т, д. 29; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Сычкина Евгения Николаевна - Пермский национальный исследовательский политехнический университет (ПНИПУ) кандидат технических наук, доцент кафедры строительного производства и геотехники, Пермский национальный исследовательский политехнический университет (ПНИПУ), 614990, г. Пермь, Комсомольский пр-т, д. 29; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Волгарева Надежда Леонидовна - Пермский национальный исследовательский политехнический университет (ПНИПУ) магистрант кафедры строительного производства и геотехники, Пермский национальный исследовательский политехнический университет (ПНИПУ), 614990, г. Пермь, Комсомольский пр-т, д. 29; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 34-45

Рассмотрена проблема проектирования свайных фундаментов на аргиллитоподобных глинах. Выполнен расчет осадки одиночной забивной сваи численными методами, реализованными в программном комплексе Plaxis 2D, и аналитическим методом, согласно методике СП 24.13330.2011. Особое внимание уделено расчету осадки сваи с учетом зон уплотнения в околосвайном грунтовом пространстве. Расчетные значения сопоставлены с результатами натурных экспериментов. Даны рекомендации по прогнозу осадки свайных фундаментов на аргиллитоподобных глинах.

DOI: 10.22227/1997-0935.2016.6.34-45

Библиографический список
  1. Пономарев А.Б., Сычкина Е.Н. Прогноз осадки свайных фундаментов на аргиллитоподобных глинах (на примере Пермского региона) // Основания, фундаменты и механика грунтов. 2014. № 3. С. 20-24.
  2. Хмелевцов А.А. Аргиллитоподобные глины в районе Большого Сочи и их физико-механические характеристики // Известия высших учебных заведений. Северо-Кавказский регион. Естественные науки. 2011. № 5. С. 77-79.
  3. Bond A.J., Jardine R.J. Effects of installing displacement piles in high OCR clay // Geotechnique. 1991. No. 41. Pp. 341-363.
  4. Cooke R.W., Price G., Tarr K. Jacked piles in London Clay: a study of load transfer and settlement under working conditions // Geotechnique. 1979. No. 29. Pp. 113-147.
  5. Salager S., Francois B., Nuth M., Laloui L. Constitutive analysis of the mechanical anisotropy of Opalinus Clay // Acta Geotechnica. 2013. Vol. 8. Issue 2. Pp. 137-154.
  6. Nishimura S., Minh N. A., Jardine R. J. Shear strength anisotropy of natural London clay // Geotechnique. 2007. No. 57 (1). Pp. 49-62.
  7. De Ruiter J., Beringen F.L. Pile foundations for large North Sea structures // Marine Geotechnology. 1979. No. 3. Pp. 267-314.
  8. Lehane B.M., Jardine R.J. Displacement pile behaviour in glacial clay // Canadian Geotechnial Journal. 1994. No. 31. Pp. 79-90.
  9. Matsumoto T., Michi Y., Hirano T. Performance of Axially loaded steel pipe piles driven in soft rock // Journal of geotechnical and geoenvironmental engineering. 1995. No. 121 (4). Pp. 305-315.
  10. Трофимов В.Т., Королев В.А., Вознесенский Е.А., Зиангиров Р.С. Грунтоведение / под ред. В.Т. Трофимова. 6-е изд., перераб. и доп. М. : Наука, 2005. 1023 с.
  11. Zhang C.L., Wieczorek K., Xie M.L. Swelling experiments on mudstones // Journal of Rock Mechanics and Geotechnical Engineering. 2010. No. 2 (1). Pp. 44-51.
  12. Zhang F., Xie S.Y., Hu D.W., Shao J.F., Gatmiri B. Effect of water content and structural anisotropy on mechanical property of claystone // Applied Clay Science. 2012. No. 69. Pp. 79-86.
  13. Бартоломей А.А., Омельчак И.М., Юшков Б.С. Прогноз осадок свайных фундаментов / под ред. А.А. Бартоломея. М. : Стройиздат, 1994. 380 с.
  14. Тер-Мартиросян А.З., Тер-Мартиросян З.Г., Чинь Туан Вьет, Лузин И.Н. Осадка и несущая способность длинной сваи // Вестник МГСУ. 2015. № 5. С. 52-60.
  15. Лушников В.В., Ярдяков А.С. Анализ расчетов осадок в нелинейной стадии работы грунта // Вестник Пермского национального исследовательского политехнического университета. Строительство и архитектура. 2014. № 2. С. 44-55.
  16. Azzouz A.S., Morrison M.J. Field measurements on model pile in two clay deposits // Journal of Geotechnical Engineering. 1988. No. 114. Pp. 104-121.
  17. Bensallam S., Bahi L., Ejjaaouani H., Shakhirev V., Rkha Chaham K. Clay soil settlement: In-situ experimentation and analytical approach // Soils and Foundations. 2014. No. 54. Pp. 109-115.
  18. Fattah M.Y., Shlash K.T., Al-Soud Madhat S.M. Pile-clayey soil interaction analysis by boundary element method // Journal of Rock Mechanics and Geotechnical Engineering. 2012. No. 4 (1). Pp. 28-43.
  19. Gavin K., Gallagher D., Doherty P., McCabe B. Field investigation assessing the effect of installation method on the shaft resistance of piles in clay // Canadian Geotechnical Journal. 2010. No. 47 (7). Pp. 730-741.
  20. Катценбах Р. Последние достижения в области фундаментостроения высотных зданий на сжимаемом оснований // Вестник МГСУ. 2006. № 1. С. 105-118.
  21. Meyerhof G.G. Bearing capacity and settlement of pile foundations // Journal of Geotechnical Engineering. 1976. Vol. 102. No. 3. Pp. 195-228.
  22. Randolph M.F., Carter J.P., Wroth C.P. Driven piles in clay - the effects of installation and subsequent consolidation // Geotechnique. 1979. No. 29. Pp. 361-393.
  23. Suzuki M., Fujimoto T., Taguchi T. Peak and residual strength characteristics of cement-treated soil cured under different consolidation conditions // Soils and Foundations. 2014. No. 54 (4). Pp. 687-698.
  24. Ponomaryov A., Sychkina E. Analysis of strain anisotropy and hydroscopic property of clay and claystone // Applied Clay Science. 2015. Vol. 114. Pp. 61-169.

Скачать статью

КОНСОЛИДАЦИЯ И ПОЛЗУЧЕСТЬ ОСНОВАНИЙ ФУНДАМЕНТОВ КОНЕЧНОЙ ШИРИНЫ

Вестник МГСУ 4/2013
  • Тер-Мартиросян Завен Григорьевич - Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ) доктор технических наук, профессор кафедры механики грунтов и геотехники, главный научный сотрудник научно-образовательного центра «Геотехника», Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ), 129337, г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Тер-Мартиросян Армен Завенович - Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ) доктор технических наук, профессор кафедры механики грунтов и геотехники, руководитель научно-образовательного центра «Геотехника», Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ), 129337, г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Нгуен Хуи Хиеп - Московский государственный строительный университет (ФГБОУ ВПО «МГСУ») аспирант кафедры механики грунтов, оснований и фундамен- тов, Московский государственный строительный университет (ФГБОУ ВПО «МГСУ»), 129337, г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 38-52

Приведены постановка и решения задач консолидации и ползучести водонасыщенных оснований из глинистых грунтов под воздействием местной нагрузки (плоская задача). Показано, что в условиях плоской задачи избыточное поровое давление в начальный момент нагружения локализуется непосредственно под местной нагрузкой на глубину 1/2 от мощности сжимаемой толщи и затем смещается вниз во времени и что осадка основания обусловлена как сдвиговыми, так и объемными деформациями грунта. Кроме того, соотношение сдвиговых и объемных частей достигает 10. Поэтому предложено осадку основания определить в виде суммы от объемных и сдвиговых деформаций в отдельности.Для решения дифференциального уравнения фильтрационной консолидации в условиях двухмерный задачи используется программный комплекс Mathcad. Это позволило производить расчеты по определению изолиний избыточного порового давления для любого момента времени от начала приложения нагрузки. Для определения степени консолидации осадки предложена новая зависимость в виде отношений изменяющейся площади эпюры среднего эффективного напряжения к площади эпюры среднего напряжения в стабилизированном состоянии.В заключительном разделе статьи приведено решение задачи по прогнозированию осадки водонасыщенного основания с учетом сдвиговой ползучести скелета грунта. В качестве расчетной принята упруго-вязкая модель Бингама с изменяющимися во времени коэффициентами вязкости. Показано, что в этом случае сдвиговая часть осадки с момента приложения внешней нагрузки будет развиваться пропорционально логарифму времени независимо от процесса фильтрационной консолидации.

DOI: 10.22227/1997-0935.2013.4.38-52

Библиографический список
  1. Кошляков Н.С., Глинер Э.Б., Смирнов М.М. Основные дифференциальные уравнения математической физики. М. : Физмат, 1962. 765 с.
  2. Флорин В.А. Основы механики грунтов. Т. 1. М. : Стройиздат, 1959.
  3. Цытович Н.А. Механика грунтов. М. : Стройиздат, 1963. 636 с.
  4. Зарецкий Ю.К. Вязко-пластичность грунтов и расчеты сооружений. М. : Стройиздат, 1988. 350 с. СП 22.13330.2011. Основания зданий и сооружений. М., 2011. 85 с.
  5. Тихонов А.Н., Самарский А.А. Уравнения математической физики. М. : Наука, 1996. 724 с.
  6. Тер-Мартиросян З.Г. Механика грунтов. М. : Изд.-во АСВ, 2009. 550 с.
  7. Тер-Мартиросян А.З. Взаимодействие фундаментов с основанием при циклических и вибрационных воздействиях с учетом реологических свойств грунтов : дисс. … канд. техн. наук. М. : МГСУ, 2010.
  8. Вялов С.С. Реологические основы механики грунтов. М. : Высш. шк., 1978. 447 с.
  9. Галин Л.А. Контактные задачи теории упругости и вязко-упругости. М. : Наука, 1980. 296 с.
  10. Справочник Plaxis V 8.2 / пер. М.Ф. Астафьева. 2006. 182 с.
  11. Флорин В.А. Основы механики грунтов. Т. 2. М. : Стройиздат, 1959.
  12. Арутюнян Н.Х., Колмановский В.Б. Теория ползучести неоднородных тел. М.

Скачать статью

ВЗАИМОДЕЙСТВИЕ ОДИНОЧНОЙ ДЛИННОЙ СВАИ С ДВУХСЛОЙНЫМ ОСНОВАНИЕМ С УЧЕТОМ СЖИМАЕМОСТИ СТВОЛА СВАИ

Вестник МГСУ 4/2012
  • Тер-Мартиросян Завен Григорьевич - Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ) доктор технических наук, профессор кафедры механики грунтов и геотехники, главный научный сотрудник научно-образовательного центра «Геотехника», Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ), 129337, г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Чинь Туан Вьет - Московский государственный строительный университет (ФГБОУ ВПО «МГСУ») аспирант кафедры механики грунтов, оснований и фундаментов, Московский государственный строительный университет (ФГБОУ ВПО «МГСУ»), 129337, г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 28 - 34

С УЧЕТОМ СЖИМАЕМОСТИ СТВОЛА СВАИ
Изложены решения задачи о взаимодействии длинной сжимаемой сваи с двухслойным линейно-деформируемым основанием. Показано, что учет сжимаемости материала сваи приводит к качественно новому распределению касательных напряжений вдоль поверхности цилиндрических свай. Отмечено, что с ростом длины сваи и жесткости верхней части основания увеличивается доля нагрузки воспринимаемая боковой поверхностью сваи, и что при определенных условиях окружающей грунтовой среды нагрузка, воспринимаемая нижней частью основания, может составить 20…30 % от общей нагрузки.

DOI: 10.22227/1997-0935.2012.4.28 - 34

Библиографический список
  1. Тер-Мартиросян З.Г. Механика грунтов. М. : Изд-во АСВ, 2009. 550 с.
  2. Тер-Мартиросян З.Г., Нгуен Занг Нам. Взаимодействие свай большой длины с неоднородным массивом с учетом нелинейных и реологических свойств грунтов // Вестник МГСУ. 2008. № 2. С. 3-14.
  3. Механика грунтов, основания и фундаменты / С.Б. Ухов, В.В. Семенов, В.В. Знаменский, З.Г. Тер-Мартиросян, С.Н. Чернышев. М. : Изд-во АСВ, 2004. 566 с.
  4. Тер-Мартиросян З.Г., Чинь Туан Вьет. Взаимодействие одиночной длинной сваи с основанием с учетом сжимаемости ствола сваи // Вестник МГСУ. 2011. № 8. С. 104-111.
  5. Нгуен Занг Нам. Определение осадки круглого штампа с учетом его заглубления // Сб. тр. 4-й междунар. науч.-практ. конф. молодых ученых, аспирантов и докторантов «Строительство-формирование среды жизнедеятельности». МГСУ. М., 2006.

Cкачать на языке оригинала

Численные исследования работы забивной сваи на аргиллитоподобных глинах

Вестник МГСУ 2/2019 Том 14
  • Сычкина Евгения Николаевна - Пермский национальный исследовательский политехнический университет (ПНИПУ) кандидат технических наук, доцент кафедры строительного производства и геотехники, Пермский национальный исследовательский политехнический университет (ПНИПУ), 614990, г. Пермь, Комсомольский пр-т, д. 29; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Антипов Вадим Валерьевич - Пермский национальный исследовательский политехнический университет (ПНИПУ) аспирант кафедры строительного производства и геотехники, Пермский национальный исследовательский политехнический университет (ПНИПУ), 614990, г. Пермь, Комсомольский пр-т, д. 29; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Офрихтер Ян Вадимович - Пермский национальный исследовательский политехнический университет (ПНИПУ) аспирант кафедры строительного производства и геотехники, Пермский национальный исследовательский политехнический университет (ПНИПУ), 614990, г. Пермь, Комсомольский пр-т, д. 29; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 188-198

Введение. Рассмотрены особенности работы сваи на аргиллитоподобных глинах пермского возраста при помощи численных и натурных экспериментов, аналитических расчетов.
Материалы и методы. Численное моделирование выполнено в программных комплексах Plaxis 3D и Midas GTS NX. Натурные испытания забивных свай проведены в соответствии с требованиями ГОСТ 20276-2012. Полученные результаты сопоставлены с результатами аналитических расчетов по СП 24.13330.2011.
Результаты. Научная новизна работы — в сравнительном анализе результатов численного моделирования взаимодействия забивной сваи с аргиллитоподобными глинами с результатами полевых испытаний и аналитических расчетов. Расчет методом конечных элементов в программном комплексе Plaxis 3D с использованием модели Hardening Soil показал завышенные значения осадки (до 6 раз) по отношению к стабилизированным осадкам натурных свай.
Расчеты в программном комплексе Midas GTS NX выявили завышенные по отношению к натурным испытаниям значения осадки свай (13–24 раза). Аналитические расчеты в соответствии с СП 24.13330.2011 также показали завышенные (до 3 раз) значения максимальной осадки сваи по отношению к стабилизированной осадке при натурных испытаниях свай.
Выводы. Расчеты методом конечных элементов в программных комплексах Plaxis 3D и Midas GTS NX, аналитическим методом по СП 24.13330.2011 показали завышенные значения осадки по отношению к стабилизированным осадкам свай на аргиллитоподобных глинах. Использование модели Linear-Elastic для аргиллитоподобных глин при численных расчетах в Plaxis 3D позволяет получить значения осадок близкие к натурным. Однако применение данной модели не в полной мере оправдано для аргиллитоподобной глины в связи с наличием остаточных деформаций и
нелинейным характером осадки сваи при нагружении. Необходима корректировка существующих численных и аналитических методов расчета свайных фундаментов на аргиллитоподобных глинах. Следует продолжать работы по дальнейшему обобщению опыта устройства свай на выветрелых аргиллитоподобных глинах для оценки длительной работы не только одиночной сваи, но и свайного фундамента.

DOI: 10.22227/1997-0935.2019.2.188-198

Библиографический список
  1. Хмелевцов А.А. Аргиллитоподобные глины в районе Большого Сочи и их физико-механические характеристики // Известия высших учебных заведений. Северо-Кавказский регион. Естественные науки. 2011. № 6. С. 77-79.
  2. Ponomaryov A.B., Sychkina E.N. Analysis of pile foundation behavior on modern and ancient clay bases // Challenges and Innovations in Geotechnics : Proceedings of the 8th Asian Young Geotechnical Engineers Conference. 2016. Pp. 111-114.
  3. Пономарев А.Б., Захаров А.В., Сурсанов Д.Н. К вопросу использования верхнепермских отложений в качестве грунтовых оснований // Вестник ПНИПУ. Урбанистика. 2011. № 1. С. 74-80.
  4. Ponomarev A.B., Sychkina E.N. On the stress-strain state and load-bearing strength of argillite-like clays and sandstones // Soil Mechanics and Foundation Engineering. 2018. Vol. 55. Issue 3. Pp. 141-145. DOI: 10.1007/s11204-018-9517-1
  5. Suxin Z., Yuanqiao P., Jianxin Y., Xinrong L., Yongqun G. Characteristics of claystones across the terrestrial Permian-Triassic boundary: Evidence from the Chahe section, western Guizhou, South China // Journal of Asian Earth Sciences. 2006. Vol. 27. Issue 3. Pp. 358-370. DOI: 10.1016/j.jseaes.2005.04.007
  6. Ponomaryov A., Sychkina E. Analysis of strain anisotropy and hydroscopic property of clay and claystone // Applied Clay Science. 2015. Vol. 114. Pp. 161-169. DOI: 10.1016/j.clay.2015.05.023
  7. Changdong L., Xiaoyi W., Huiming T., Guoping L., Junfeng Y., Yongquan Z. A preliminary study on the location of the stabilizing piles for colluvial landslides with interbedding hard and soft bedrocks // Engineering Geology. 2017. Vol. 224. Pp. 15-28. DOI: 10.1016/j.enggeo.2017.04.020
  8. Armand G., Conil N., Talandier J., Seyedi D.M. Fundamental aspects of the hydromechanical behaviour of Callovo-oxfordian claystone: From experimental studies to model calibration and validation // Computer and Geotechnics. 2017. Vol. 85. Pp. 277-286. DOI: 10.1016/j.compgeo.2016.06.003
  9. Zhang F., Xie S.Y., Hu D.W., Shao J.F., Gatmiri B. Effect of water content and structural anisotropy on mechanical property of claystone // Applied Clay Science. 2012. No. 69. Pp. 79-86. DOI: 10.1016/j.clay.2012.09.024
  10. Manica M., Gens A., Vaunat J., Ruiz D.F. A time-dependent anisotropic model for argillaceous rocks. Application to an underground excavation in Callovo-Oxfordian claystone // Computers and Geotechnics. 2017. Vol. 85. Pp. 341-350. DOI: 10.1016/j.compgeo.2016.11.004
  11. Бартоломей А.А., Омельчак И.М., Юшков Б.С. Прогноз осадок свайных фундаментов. М. : Изд-во ГУП «НИАЦ» Москомархитектуры, 1994. 384 с.
  12. Bartolomei A.A., Ponomarev A.B. Experimental investigations and prediction of settlement of conical-pile foundations // Soil Mechanics and Foundation Engineering. 2001. No. 38. Issue 2. Pp. 42-50. DOI: 10.1023/A:1010422029681
  13. Готман Н.З., Алехин В.С., Сергеев Ф.В. Определение предельного сопротивления основания сваи в составе группы свай // Вестник ПНИПУ. Строительство и архитектура. 2017. Т. 8. № 3. С. 13-21. DOI: 10.15593/2224-9826/2017.3.02
  14. Ильичев В.А., Мариупольский Л.Г., Вахолдин В.В. Рекомендации по расчету, проектированию и устройству свайных фундаментов нового типа в г. Москва. М. : Изд-во ГУП «НИАЦ» Москомархитектуры, 1997. 93 с.
  15. Катценбах Р. Последние достижения в области фундаментостроения высотных зданий на сжимаемом основании // Вестник МГСУ. 2006. № 1. С. 105-118.
  16. Тер-Мартиросян З.Г., Сидоров В.В., Тер-Мартиросян А.З., Манукян А.В. Скорость осадки сваи, погруженной в толщу глинистого грунта, с учетом его упруговязких и упругопластических свойств // Жилищное строительство. 2016. № 11. С. 3-6.
  17. Лузин И.Н., Тер-Мартиросян З.Г. Экспериментально-теоретические основы расчетов осадок фундаментов глубокого заложения в переуплотненных грунтах // Строительство и архитектура. 2016. T. 4. № 2. С. 45-48. DOI: 10.12737/19908
  18. Шулятьев О.А. Фундаменты высотных зданий // Вестник ПНИПУ. Строительство и архитектура. 2014. № 4. С. 202-244.
  19. Малышкин А.П., Есипов А.В. Численные исследования взаимного влияния свай в группах // Академический вестник Уралниипроект РААСН. 2017. № 2 (33). С. 86-89.
  20. Ладыженский И.Г., Сергиенко А.В. Опыт проектирования свайных и свайно-плитных фундаментов на участке ММДЦ «МОСКВА-СИТИ» // Промышленное и гражданское строительство. 2016. № 10. С. 46-54.
  21. Уткин В.С. Работа висячих свай в грунте основания и их расчет по осадке // Вестник МГСУ. 2018. Т. 13. № 9 (119). С. 1125-1132. DOI: 10.22227/1997-0935.2018.9.1125-1132
  22. Bond A.J., Jardine R.J. Effects of installing displacement piles in a high OCR clay // Geotechnique. 1991. Vol. 41. Issue 3. Pp. 341-363. DOI: 10.1680/geot.1991.41.3.341
  23. Hamderi M. Comprehensive group pile settlement formula based on 3D finite element analyses // Soils and foundations. 2018. Vol. 58. Issue 1. Pp. 1-15. DOI: 10.1016/j.sandf.2017.11.012
  24. Lehane B.M., Jardine R.J. Displacement pile behaviour in glacial clay // Canadian Geotechnical Journal. 1994. Vol. 31. Issue 1. Pp. 79-90. DOI: 10.1139/t94-009
  25. Meyerhof G.G. Some recent research on the bearing capacity of foundations // Canadian Geotechnical Journal. 1963. Vol. 1. Issue 1. Pp. 16-26. DOI: 10.1139/t63-003
  26. Randolph M.F., Carter J.P., Wroth C.P. Driven piles in clay - the effects of installation and subsequent consolidation // Geotechnique. 1979. Vol. 29. Issue 4. Pp. 361-393. DOI: 10.1680/geot.1979.29.4.361
  27. Sheil B.B., McCabe B.A. An analytical approach for the prediction of single pile and pile group behaviour in clay // Computers and Geotechnics. 2016. Vol. 75. Pp. 145-158. DOI: 10.1016/j.compgeo.2016.02.001
  28. Zhang Q., Liu S., Zhang S., Zhang J., Wang K. Simplified non-linear approaches for response of a single pile and pile groups considering progressive deformation of pile-soil system // Soils and foundations. 2016. Vol. 56. Issue 3. Pp. 473-484. DOI: 10.1016/j.sandf.2016.04.013
  29. Зерцалов М.Г., Знаменский В.В., Хохлов И.Н. Об особенностях расчета несущей способности буронабивных свай в скальных массивах при действии вертикальной нагрузки // Вестник ПНИПУ. Строительство и архитектура. 2018. Т. 9. № 1. С. 52-59. DOI: 10.15593/2224-9826/2018.1.05
  30. Haberfield C.M., Lochaden A.L.E. Analysis and design of axially loaded piles in rock // Journal of Rock Mechanics and Geotechnical Engineering. 2018. DOI: 10.1016/j.jrmge.2018.10.001
  31. Парамонов В.Н., Тихомирова Л.К. Изменение несущей способности забивных свай во времени // Реконструкция городов и геотехническое строительство. 2000. № 1. С. 127-131.
  32. Ponomarev A.B., Sychkina E.N. Verification of the results of numerical and analytical estimates of the settling of a single pile in argillite-like clay // Soil Mechanics and Foundation Engineering. 2016. Vol. 53. Issue 2. Pp. 78-81. DOI: 10.1007/s11204-016-9368-6

Скачать статью

Результаты 1 - 10 из 10