ПРОЕКТИРОВАНИЕ И КОНСТРУИРОВАНИЕ СТРОИТЕЛЬНЫХ СИСТЕМ. ПРОБЛЕМЫ МЕХАНИКИ В СТРОИТЕЛЬСТВЕ

ИССЛЕДОВАНИЕ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ НЕОДНОРОДНЫХ ТЕЛ МЕТОДОМ ГРАНИЧНЫХ УРАВНЕНИЙ

Вестник МГСУ 7/2012
  • Ходжибоев Абдуазиз Абдусатторович - Таджикский технический университет имени академика М.С. Осими кандидат технических наук, доцент, заведующий кафедрой строительной механики и сейсмостойкости сооружений, +992 918893514, Таджикский технический университет имени академика М.С. Осими, Республика Таджикистан, г. Душанбе, ул. акад. Раджабовых, 10а; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 96 - 100

Рассмотрено решение задачи об определении напряженно-деформированного состояния неоднородного сооружения, опирающегося на упругой полуплоскости. На линиях контакта частей сооружения друг с другом и с полуплоскостью соблюдается условие неразрывности по деформациям и напряжениям, и на этой основе составляется разрешающая система граничных уравнений. Коэффициенты при неизвестных для сооружения определяются на основе фундаментальных решений Кельвина, а для полуплоскости - на основе решений Миндлина. Разработанные математическая модель и алгоритм расчета реализованы для исследования напряженно-деформированного состояния грунтовой плотины

DOI: 10.22227/1997-0935.2012.7.96 - 100

Библиографический список
  1. Андреев В.И. Некоторые задачи и методы механики неоднородных тел. М. : Изд-во АСВ, 2002. 288 с.
  2. Определение напряжений в упругом полупространстве со сферической полостью с учетом неоднородности среды / В.И. Андреев, А.Б. Золотов, В.И. Прокопьев, В.Н. Сидоров // Строительная механика и расчет сооружений. 1980. № 6.
  3. Андреев В.И., Гасилов В.А., Смолов А.В. Расчет термоупругих напряжений в неоднородном цилиндре // Вычислительные методы и математическое моделирование : тезисы докладов. Шушенское, 1986.
  4. Андреев В.И. Об одном методе решения в перемещениях плоской задачи теории упругости для радиально-неоднородного тела // Прикладная механика. 1987. Т. 23. № 4. С. 16-23.
  5. Андреев В.И. Приближенный метод решения смешанной краевой задачи для неоднородного цилиндра // Строительная механика и расчет сооружений. 1989. № 2. С. 8-11.
  6. Андреев В.И., Керимов К.А., Смолов А.В. Численно-аналитическое решение плоской задачи для неоднородного упругого кольца // Сопротивление материалов и теория сооружений. Вып. 53. Киев, 1989. С. 62-67.
  7. Киселев А.П., Гуреева Н.П., Киселева Р.З. Использование трехмерных конечных элементов в расчетах прочности многослойных панелей // Строительная механика инженерных конструкций и сооружений. 2009. № 4. С. 37-40.
  8. Определение напряжений в зоне пересечения пластин при плоском нагружении на основе МКЭ / А.П. Киселев, Н.П. Гуреева, Р.З. Киселева, В.В. Леонтьева // Строительная механика инженерных конструкций и сооружений. 2012. № 2. С. 55-62.
  9. Низомов Д.Н. Метод граничных уравнений в решении статических и динамических задач строительной механики. М. : Изд-во АСВ, 2000. 282 с.
  10. Новацкий В. Теория упругости. М. : Мир, 1975. 872 с.

Cкачать на языке оригинала

Полевые исследования по самозалечиванию трещин в противофильтрационном элементе из буросекущих глиноцементобетонных свай

Вестник МГСУ 3/2018 Том 13
  • Котлов Олег Николаевич - АО «Всероссийский научно-исследовательский институт гидротехники имени Б.Е. Веденеева» (ВНИИГ им. Б.Е. Веденеева) кандидат геолого-минералогических наук, заведующий отделом оснований, грунтовых и подземных сооружений, АО «Всероссийский научно-исследовательский институт гидротехники имени Б.Е. Веденеева» (ВНИИГ им. Б.Е. Веденеева), 195220, г. Санкт-Петербург, ул. Гжатская, д. 21; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Орищук Роман Николаевич - АО «Всероссийский научно-исследовательский институт гидротехники имени Б.Е. Веденеева» (ВНИИГ им. Б.Е. Веденеева) генеральный директор, АО «Всероссийский научно-исследовательский институт гидротехники имени Б.Е. Веденеева» (ВНИИГ им. Б.Е. Веденеева), 195220, г. Санкт-Петербург, ул. Гжатская, д. 21; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Гуняшова Фаина Ивановна - лаборатория инженерной геологии, АО «Всероссийский научно-исследовательский институт гидротехники имени Б.Е. Веденеева» (ВНИИГ им. Б.Е. Веденеева) ведущий инженер, лаборатория инженерной геологии, АО «Всероссийский научно-исследовательский институт гидротехники имени Б.Е. Веденеева» (ВНИИГ им. Б.Е. Веденеева), 195220, г. Санкт-Петербург, ул. Гжатская, д. 21; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 322-329

Предмет исследования: кольматирование сквозных трещин в глиноцементобетонной диафрагме грунтовой плотины на участке временных перемычек строительного котлована основных сооружений Нижне-Бурейской ГЭС. Цели: определение возможности применения имеющегося в местных карьерах песчаного материала в качестве контактного слоя, обеспечивающего «залечивание» трещин в случае их образования в теле глиноцементобетонной диафрагмы русловой плотины Нижне-Бурейской ГЭС в процессе эксплуатации. Материалы и методы: полевые эксперименты проводились на поперечной перемычке строительного котлована основных сооружений Нижне-Бурейской ГЭС. Проведение опытов заключалось в замыве искусственных трещин песчаным материалом организованных в глиноцементобетонных сваях временных перемычек, для чего в теле сваи с помощью бурения создавалась цилиндрическая полость для накопления песчаного материала. В нижней части сваи из шурфа создавались искусственные отверстия для замыва. Результаты: экспериментально подтверждено, что при использовании песков карьера № 5 сквозные трещины в диафрагме плотины Нижне-Бурейской ГЭС будут на всю глубину кольматироваться грунтом залечивающего слоя, расположенного перед верховой гранью диафрагмы. Песок карьера № 5 может быть использован в качестве материала контактного слоя, обеспечивающего самозалечивание трещин в ГЦБ диафрагме грунтовой плотины, при этом необходимо контролировать рекомендуемый гранулометрический состав песков и не допускать наличия комков глинистых грунтов. Выводы: в полевых условиях получены значения гидравлических градиентов, при которых происходит «залечивание» трещин в глиноцементобетонной диафрагме грунтовой плотины. Уточнены требования к гранулометрическому составу контактного слоя в конструкции грунтовой плотины. Разработаны рекомендации по контролю качества грунта при укладке контактного слоя грунтовой плотины.

DOI: 10.22227/1997-0935.2018.3.322-329

Библиографический список
  1. Сольский С.В., Орищук Р.Н., Лопатина М.Г., Орлова Н.Л. Исследование самозалечивания трещин в глиноцементнобетонных диафрагмах (на примере земляной плотины Гоцатлинской ГЭС // Известия ВНИИГ им. Б.Е. Веденеева. 2017. Т. 283. С. 19-29.
  2. Радченко В.Г., Лопатина М.Г., Николайчук Е.В., Радченко С.В. Опыт возведения противофильтрационных устройств из грунтоцементных смесей // Гидротехническое строительство. 2012. № 12. С. 46-54.
  3. Сольский С.В., Лопатина М.Г., Легина Е.Е. и др. Результаты лабораторных исследований фильтрационных характеристик глиноцементобетона // Гидротехническое строительство. 2016. № 8. С. 36-40.
  4. Сольский С.В., Легина Е.Е., Орищук Р.Н., и др. Анализ влияния компонентов ГЦБ на его характеристики // Вестник МГСУ. 2016. № 10. С. 80-93.
  5. Сольский С.В., Лопатина М.Г., Орищук Р.Н. и др. Анализ структуры фильтрационного потока в глиноцементобетонной диафрагме Гоцатлинской ГЭС // Гидротехническое строительство. 2017. № 7. С. 14-21.
  6. Сольский С.В., Орищук Р.Н., Лопатина М.Г., Орлова Н.Л. Исследование самозалечивания трещин в глиноцементнобетонных диафрагмах (на примере земляной плотины Гоцатлинской ГЭС // Известия ВНИИГ им. Б.Е. Веденеева. 2017. Т. 283. С. 19-29.
  7. Радченко В.Г., Лопатина М.Г., Николайчук Е.В., Радченко С.В. Опыт возведения противофильтрационных устройств из грунтоцементных смесей // Гидротехническое строительство. 2012. № 12. С. 46-54.
  8. Сольский С.В., Лопатина М.Г., Легина Е.Е. и др. Результаты лабораторных исследований фильтрационных характеристик глиноцементобетона // Гидротехническое строительство. 2016. № 8. С. 36-40.
  9. Сольский С.В., Легина Е.Е., Орищук Р.Н., и др. Анализ влияния компонентов ГЦБ на его характеристики // Вестник МГСУ. 2016. № 10. С. 80-93.
  10. Сольский С.В., Лопатина М.Г., Орищук Р.Н. и др. Анализ структуры фильтрационного потока в глиноцементобетонной диафрагме Гоцатлинской ГЭС // Гидротехническое строительство. 2017. № 7. С. 14-21.

Скачать статью

МЕТОДИКА РАСЧЕТА УСТОЙЧИВОСТИ ОТКОСОВ ПО ПРОСТРАНСТВЕННЫМ ПОВЕРХНОСТЯМ СКОЛЬЖЕНИЯ В ВИДЕ ЭЛЛИПСОИДА ВРАЩЕНИЯ

Вестник МГСУ 4/2013
  • Саинов Михаил Петрович - Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ) кандидат технических наук, доцент, доцент кафедры гидравлики и гидротехнического строительства, Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ), 129337, г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 188-200

Приведены основные положения разработанной методики расчета устойчивости откосов по поверхностям скольжения в виде эллипсоида вращения. Для разбиения массива обрушения на элементарные части использован метод конечных элементов. Для определения величин сил трения использованы результаты расчета напряженно-деформированного состояния (НДС) плотины, полученного методом конечных элементов (МКЭ).Рассмотрены методические вопросы расчетов устойчивости откосов. Показана важность использования при расчетах НДС конечных элементов высокого порядка. Решение тестовых задач позволило дать рекомендации по выбору интервалов варьирования параметров формы эллипсовидных пространственных поверхностей скольжения. Установлено, что шаг главной полуоси эллипса можно принимать равным 1 % от высоты откоса. Исследования формы наиболее вероятных поверхностей скольжения показали, что при учете только сил собственного веса их форма стремится к круглоцилиндрической. При учете сейсмических сил поверхности скольжения могут иметь форму, близкую к шарообразной или даже дискообразную.

DOI: 10.22227/1997-0935.2013.4.188-200

Библиографический список
  1. Гольдин А.Л., Рассказов Л.Н. Проектирование грунтовых плотин. М. : Изд-во АСВ, 2001. 384 с.
  2. Терцаги К. Строительная механика грунта. М.-Л. : Геостройиздат, 1933. 510 с.
  3. Чугаев Р.Р. Земляные гидротехнические сооружения. Ленинград : Энергия, 1967. 460 с.
  4. Маслов И.А. Аналитический метод расчета устойчивости откосов // Гидротехническое строительство. 1989. № 12. С. 9—14.
  5. Истомин В.И. Соответствие расчетной схемы способу расчета коэффициента устойчивости // Гидротехническое строительство. 1989. № 12. С. 17—20.
  6. Бухарцев В.Н. Общий метод расчета устойчивости грунтовых откосов в рамках плоской задачи // Гидротехническое строительство. 1983. № 11. С. 28—32.
  7. Бухарцев В.Н., Иванов А.Ю., Того И. Опыт использования вариационного метода в расчетах устойчивости откосов и склонов // Гидротехническое строительство. 1990. № 4. С. 46—48.
  8. Бате К., Вилсон Е. Численные методы анализа и метод конечных элементов. М. : Стройиздат, 1982. 446 с.
  9. Теория упругости / перев. с англ. С.П. Тимошенко, Дж. Гуьер. М. : Главная редакция физико-математической литературы изд-ва «Наука», 1975. 576 с.
  10. Саинов М.П. Влияние напряженного состояния склона из однородного грунта на его устойчивость // Вестник МГСУ. 2012. № 10. С. 102—108.

Скачать статью

Исследование влияния формы створа на работу периметрального шва каменной плотины с железобетонным экраном

Вестник МГСУ 9/2013
  • Саинов Михаил Петрович - Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ) кандидат технических наук, доцент, доцент кафедры гидравлики и гидротехнического строительства, Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ), 129337, г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 101-117

Приведен анализ влияния формы створа на величины перемещений в периметральном шве каменной плотины с железобетонным экраном высотой 100 м. Рассмотрено 6 вариантов створов с разными шириной русловой части створа и наклоном бортов. Перемещения в периметральном шве были получены с помощью вычислительной программы, которая позволяет моделировать работу швов с помощью контактных конечных элементов. Установлено, что в периметральном шве перемещения происходят в трех направлениях: раскрытия, контурные прогибы и продольные смещения экрана. Во всех вариантах произошло раскрытие периметрального шва. Исследования показали, что наибольшее влияние на величину перемещений в периметральном шве оказывает ширина русловой части плотины.

DOI: 10.22227/1997-0935.2013.9.101-117

Библиографический список
  1. Stapledon D., MacGregor P., Bell G., Fell R. Geotechnical Engineering of Dams. Taylor & Francis, 2005.
  2. Chartrand C., Claisse M., Beauséjour N., Briand M.-H., Bouzaiene H., Boisjoly C., Gonzaga G., Quenneville R., Bergeron A. Toulnustouc Dam. Canadian Consulting Engineer. Oct/Nov 2006. Vol. 47 Issue 6. P. 51.
  3. Проектирование и строительство плотин из местных материалов (по материалам VII и VIII Международных конгрессов по большим плотинам) / сост. А.А. Ничипорович, под общ. ред. А.А. Борового. М. : Энергия, 1967. С. 90—99.
  4. ICOLD. Concrete Face Rockfill dam: Concepts for design and construction // International Commision on Large Dams: 2010. Bulletin 141.
  5. ICOLD. Rockfill dams with Concrete Facing-State of the Art // International Commision on Large Dams: 1989. Bulletin 70.
  6. Саинов М.П. Особенности расчетов напряженно-деформированного состояния каменных плотин с железобетонными экранами // Вестник МГСУ. 2006. № 2. С. 78—86.
  7. Выборнов К.А., Саинов М.П. Влияние работы швов на пространственное напряженно-деформированное состояние каменной плотины с железобетонным экраном // Вестник МГСУ. 2011. Вып. № 5. С. 12—17.
  8. Yu He, Li Shouju, Liu Yingxi, Zhang Jun. Non-Linear Analysis of Stress and Strain of Concrete Faced Rockfill Dam for Sequential Impoundment Process // Mathematical and Computational Applications. 2010. Vol. 15, №. 5, pp. 796—801.
  9. Park Han-Gyu, Seo Min-Woo, Kim Yong-Seong, Lim Heui-Dae. Settlement Behavior Characteristics of CFRD in Construction Period — Case of Daegok Dam // Jour. of the KGS. 2005. Vol. 21, №. 7. September, pp. 91—105.
  10. Anna Szostak-Chrzanowski, Michel Massiéra, Nianwu Deng. Concrete Face Rockfill Dams — New Chalenges for Monitoring and Analysis // Reports on Geodesy. 2009. Z. 2/87, pp. 381—390.
  11. Гу Гань-Чэнь. Трехмерный нелинейный статический и динамический анализ каменно-набросных плотин с железобетонными экранами методом конечных элементов. Нанкин : Хохай ун-т, 1990.
  12. Riza Savas Özkuzukiran. Settlement Behavior of Concrete Face Rockfill Dams: A case Study // A thesis Submitted for the degree of master of science in Civil Enginieering / Graduate School of Natural and Applied Sciences of Middle East Technical University. 2005.
  13. Современное научное обоснование строительства каменно-набросных плотин с железобетонными экранами / В.Г. Радченко, В.Б. Глаговский, Н.А. Кассирова, Е.В. Курнева, М.А. Дружинин // Гидротехническое строительство. 2004. № 3. С. 2—8.
  14. Гольдин А.Л., Рассказов Л.Н. Проектирование грунтовых плотин. М. : Изд-во АСВ, 2001. 384 с.
  15. Рассказов Л.Н., Джха Дж. Деформируемость и прочность грунта при расчете высоких грунтовых плотин // Гидротехническое строительство. 1997. № 7. С. 31—36.

Скачать статью

Устойчивость грунтовой плотины с вертикальной диафрагмой

Вестник МГСУ 1/2016
  • Орехов Вячеслав Валентинович - Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ) доктор технических наук, главный научный сотрудник научно-технического центра «Экспертиза, проектирование, обследование», Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ), 129337, г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 143-149

Рассмотрены результаты расчетно-теоретического прогноза напряженно-деформированного состояния высокой грунтовой плотины с противофильтрационным элементом из укатанного асфальтобетона. Расчеты выполнены методом конечных элементов в упругопластической постановке и с учетом поэтапности возведения плотины и заполнением водохранилища после окончательного возведения плотины. Показано, что работа грунтовой плотины с вертикально расположенной диафрагмой при заполнении водохранилища характеризуется горизонтальным смещением низовой упорной призмы в нижний бьеф и образованием в верховой упорной призме опускающегося вдоль диафрагмы клина. Несмотря на это, возможное разрушение плотины происходит классическим способом - обрушением низового откоса по кругло-цилиндрической поверхности.

DOI: 10.22227/1997-0935.2016.1.143-149

Библиографический список
  1. Ляпичев Ю.П. Проектирование и строительство современных высоких плотин. М. : РУДН, 2004. 274 с.
  2. Bituminous cores for fill dams // International Commission on Large Dams. Bulletin 84. Paris. ICOLD Publ. 1992. 140 p.
  3. Strobl T. and Schmid R. The behavior of dams with asphaltic concrete cores during impounding // Wilmington Business Publishing. Dartford. UK. 1993. Pp. 29-34.
  4. Pircher W., Schwab H. Design, construction and behavior of the asphaltic concrete core wall of the Finstetal Dam // Transaction : 16th Int. Congress on Large Dams. Paris : ICOLD Press, 1988. Pp. 901-924.
  5. Saxegaard H. Asphalt core dams: Increased productivity to improve speed of construction // Int. J. on Hydropower and Dams. 2002. Vol. 9. No. 6. Pp. 72-74.
  6. Ghanooni S. and Mahin Roosta R. Seismic analysis and design of asphaltic concrete core dams // Journal of Hydropower and Dams. 2002. Vol. 9 (6). Pp. 75-78.
  7. Hao Y.L., He B. Design of the Yele asphalt core rokfill dam // Dam Construction in Cina-State of the Art. 2008. Pp. 226-233.
  8. Alicescu V., Tournier J.P., Yannobel P. Design and construction of Nemiscau-1 Dam, the first asphalt core rockfill dam in North America // Proc. of CDA 2008 Annual Conference, Canadian Dam Association. 2008. Pp. 1-11.
  9. Волынчиков А.Н. Богучанская ГЭС - пусковой объект российской гидроэнергетики // Гидротехническое строительство. 2010. № 9. С. 30-37.
  10. Wang Weibiao, Hoeg K. Developments in the dosing and construction of asphalt dams // Hydropower and dams. 2010. No. 3. Pp. 83-90.
  11. Nackler К., Tschernutter P. Austria’s second highest central asphaltic membrane at Feistritzbach dam // Water Power & Dam Constr. 1992. No. 7. Pp. 36-42.
  12. Hoeg K., Vatstad T., Kjaernsli B., Ruud A.M. Asphalt core embankment dams: Recent case and research // Int. J. Hydropower Dams. 2007. Vol. 13 (5). Pp. 112-119.
  13. Zhu-sheng, Guang-jing Cao. Three Gorges Project: safety checking of Maopingxi asphalt-concrete core rockfill dam // Proc. of the 4th Int. Conf. on Dam Engineering. Nanjing, China, A.A. Balkema, 2004. Pp. 1181-1188.
  14. Орехов В.В. Напряженно-деформированное состояние сверхвысокой грунтовой плотины с асфальтобетонной диафрагмой // Гидротехническое строительство. 2015. № 5. С. 57-59.
  15. Рассказов Л.Н., Смирнова М.В. К выбору типа грунтовой плотины // Гидротехническое строительство. 2014. № 2. С. 20-23.
  16. Вайнберг А.И., Ландау Ю.А. Новая конструкция высокой каменнонабросной плотины с асфальтобетонной диафрагмой в суровых климатических условиях // Гидротехническое строительство. 2015. № 1. С. 13-23.
  17. Рассказов Л.Н., Шеримбетов Х.С. Свойства асфальтобетона диафрагм и экранов каменных плотин // Гидротехническое строительство. 1989. № 5. С. 26-30.
  18. Чукин Б.А. Напряженно-деформированное состояние и устойчивость каменно-набросных плотин с противофильтрационным элементом из асфальтобетона : автореф. дисс.. канд. техн. наук. М., 1983. 20 с.
  19. Зарецкий Ю.К., Ломбардо В.Н. Статика и динамика грунтовых плотин. М. : Энергоатомиздат, 1983. 255 с.
  20. Орехов В.В. Комплекс вычислительных программ «Земля-89» // Исследования и разработки по компьютерному проектированию фундаментов и оснований : межвузов. сб. Новочеркасск, 1990. C. 14-20.
  21. Орехов В.В. Объемная математическая модель и результаты расчетных исследований напряженно-деформированного состояния основных сооружений Рогунской ГЭС // Гидротехническое строительство. 2011. № 4. С. 12-19.

Скачать статью

ВЛИЯНИЕ ДЕФОРМИРУЕМОСТИ МАТЕРИАЛА ПРОТИВОФИЛЬТРАЦИННОЙ ДИАФРАГМЫ, ВЫПОЛНЕННОЙ В ГРУНТОВОЙ ПЛОТИНЕ МЕТОДОМ «СТЕНА В ГРУНТЕ», НА ЕГО ПРОЧНОСТЬ

Вестник МГСУ 2/2017 Том 12
  • Саинов Михаил Петрович - Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ) кандидат технических наук, доцент кафедры гидравлики и гидротехнического строительства, Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ), 129337, г. Москва, Ярославское шоссе, д. 26.
  • Кудрявцев Григорий Михайлович - Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ) ассистент кафедры гидравлики и гидротехнического строительства, Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ), 129337, г. Москва, Ярославское шоссе, д. 26.

Страницы 214-221

В конструкции гидротехнических сооружений используются противофильтрационные элементы, для возведения которых часто применяют способ «стена в грунте». Предыдущие исследования показали, что надежная работы стены-диафрагмы во многом зависит от свойств материала, из которого она выполнена. В статье рассмотрены результаты расчетов напряженно-деформированного состояния грунтовой плотины высотой 39 м с противофильтрационным элементом в виде диафрагмы, выполненной методом «стена в грунте». В исследовании варьировались свойства материала стены. В ходе работ было выявлено, что опасность для диафрагмы представляют растягивающие напряжения, возникающие от деформаций изгиба при восприятии стеной гидростатического давления. Эти напряжения представляют проблему для конструкций противофильтрационных диафрагм-«стен в грунте» в грунтовых плотинах из жестких материалов. Чем жестче материал, тем выше опасность проявления растягивающих напряжений. При использовании материала с модулем деформации менее 1000 МПа растягивающие напряжения не проявляются, так как компенсируются сжатием под действием собственного веса стены. Если использовать в качестве материала стены железобетон, то возникающие растягивающие напряжения превысят прочность железобетона на растяжение и не смогут быть восприняты даже арматурой. Рекомендуется использовать глиноцементобетон с модулем деформации не выше 1000 МПа.

DOI: 10.22227/1997-0935.2017.2.214-221

Библиографический список
  1. Mirghasemi A.A., Pakzad M., Shadravan B. The world’s largest cutoff wall at Karkheh dam // Hydropower & Dams. 2005. Issue 2. Pp. 2-6.
  2. Ehrhardt T., Scheid Y., El Tayeb A. Entwurf und ausfuhrung der steinschuttdamme und der schlitzwand des Merowe-Projektes // WasserWirtschaft. 2011. Vol. 101 (1-2). Pp. 36-42.
  3. Noell H., Langhagen K., Popp M., Lang T. Rehabilitation of the sylvenstein earth-fill dam - Design and construction of the cut off wall // WasserWirtschaft. 2013. Vol. 103. Issue 5. Pp. 76-79.
  4. Баранов А.Е. Из опыта проектирования и строительства Юмагузинского гидроузла на р. Белой // Вестник МГСУ. 2006. № 2. С. 112-122.
  5. Ганичев И.А., Мещеряков А.Н., Хейфец В.Б. Новые способы устройства противофильтрационных завес // Гидротехническое строительство. 1961. № 2. С. 14-18.
  6. Круглицкий Н.Н., Мильковский С.И., Скворцов В.Ф., Шейнблюм В.М. Траншейные стенки в грунтах. Киев : Наукова Думка, 1973. 304 с.
  7. Федоров Б.С., Смородинов М.И. «Стена в грунте» - прогрессивный способ строительства. М. : Стройиздат, 1975. 33 с. (Бюро внедрения)
  8. Vaughan P.P., Kluth D.J. et al. Cracking and erosion of the rolled clay core of Balderhead dam and the remedial works adopted for its repair // 10-th ICOLD Congress. 1970. Q. 36. R. 5. Pp.73-93.
  9. Ничипорович А.А., Тейтельбаум А.И. Оценка трещинообразования в ядрах каменно-земляных плотин // Гидротехническое строительство. 1973. № 4. С. 10-27.
  10. Малышев Л.И., Шишов И.Н., Кудрин К.П., Бардюков В.Г. Технические решения и результаты первоочередных работ по сооружению противофильтрационной стены в грунте в ядре и в основании плотины Курейской ГЭС // Гидротехническое строительство. 2001. № 3. C. 31-36.
  11. Малышев Л.И., Рассказов Л.Н., Солдатов П.В. Состояние плотины Курейской ГЭС и технические решения по ее ремонту // Гидротехническое строительство. 1999. № 1. С. 31-36.
  12. Бардюков В.Т., Изотов В.Н., Гришин В.А., Радченко В.Г., Шишов И.Н. Ремонт плотины Курейской ГЭС // Известия Всероссийского научно-исследовательского института гидротехники им. Б.Е. Веденеева. 2000. Т. 238. С. 92-96.
  13. Радченко В.Г., Лопатина М.Г., Николайчук Е.В., Радченко С.В. Опыт возведения противофильтрационных устройств из грунтоцементных смесей // Гидротехническое строительство. 2012. № 6. С. 46-54.
  14. Strobl T., Shmid R. Wadi Hawashinah dam. Oman. Ground Water recharge dam to stop salt water instrusion. Strabag. Dam engineering in Kenya, Nigeria, Oman and Turkey. Cologne, April 1997. No. 52. Pp. 67-68.
  15. Lorenz W., List F. Application of the trench diaphragm method in constructing the impervious core of dams consisting in part of the low-grade fill material // 12-th ICOLD. Congress, Mexico, 1976, Q. 44. R. 6. Pp. 93-104.
  16. Королев В.М, Смирнов О.Е., Аргал Э.С., Радзинский А.В. Новое в создании противофильтрационного элемента в теле грунтовой плотины // Гидротехническое строительство. 2013. № 8. С. 2-9.
  17. Пат. 130322 RU, МПК E02B 7/06, E02B 3/16. Грунтовая плотина / Н.А. Алиев, Б.У. Гаджимагомаев, В.Н. Киселев, Д.А. Никулин, В.А. Редькин, Б.Н. Юркевич ; патентообл. ОАО «Ленгидропроект». № 2013111020/13 ; заявл. 12.03.2013 ; опубл. 20.07.2013. Бюл. № 20.
  18. Пат. 151898 RU, МПК E02B 7/06, E02B 3/16. Грунтовая плотина / А.С. Гаркин, В.В. Борзунов, А.В. Васильев, Е.А. Кадушкина, Е.А. Николаева ; патентообл. ОАО «Ленгидропроект». № 2014144558/13 ; заявл. 05.11.2014 ; опубл. 20.04.2015. Бюл. № 11.
  19. Рассказов Л.Н., Бестужева А.С., Саинов М.П. Бетонная диафрагма как элемент реконструкции грунтовой плотины // Гидротехническое строительство. 1999. № 4. C. 10-16.
  20. Саинов М.П. Влияние жесткости материала противофильтрационной стены в основании грунтовой плотины на ее прочность // Приволжский научный журнал. 2016. № 3 (39). С. 62-69.
  21. Рассказов Л.Н., Радзинский А.В., Саинов М.П. Выбор состава глиноцементобетона при создании «стены в грунте» // Гидротехническое строительство. 2014. № 3. С. 16-23.
  22. Рассказов Л.Н., Радзинский А.В., Саинов М.П. Прочность и деформативность глиноцементобетона в сложном напряженном состоянии // Гидротехническое строительство. 2014. № 8. С. 29-33.
  23. Саинов М.П. Вычислительная программа по расчету напряженно-деформированного состояния грунтовых плотин: опыт создания, методики и алгоритмы // International Journal for Computational Civil and Structural Engineering. 2013. Vol. 9. No. 4. Pp. 208-225.
  24. Рассказов Л.Н., Джха Дж. Деформируемость и прочность грунта при расчете высоких грунтовых плотин // Гидротехническое строительство. 1997. № 7. С. 31-36.

Скачать статью

АНАЛИЗ РАБОТЫ ПОЛИМЕРНОГО ЭКРАНА ВЫСОКОЙ ГРУНТОВОЙ ПЕРЕМЫЧКИ НА ОСНОВЕ РАСЧЕТОВ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ

Вестник МГСУ 8/2013
  • Саинов Михаил Петрович - Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ) кандидат технических наук, доцент, доцент кафедры гидравлики и гидротехнического строительства, Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ), 129337, г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Хохлов Сергей Викторович - ООО «ТемпСтройСистема» руководитель направления «Плотины и мосты», ООО «ТемпСтройСистема», 119296, г. Москва, Университетский проспект, д. 5; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 78-88

Рассмотрены результаты численного исследования напряженно-деформированного состояния конструкции грунтовой перемычки высотой 50 м, в которой противофильтрационным элементом является геокомпозитный экран (геомембрана и слои геотекстиля). Показано, что из-за низкого коэффициента трения на контакте геокомпозитного экрана с грунтом возможно оползание верховой призмы плотины по экрану. За счет этого в геомембране можно ожидать появления значительных растягивающих усилий, сопоставимых с прочностью полимерного материала. Устройство тяжелой пригрузки экрана грунтом неблагоприятно сказывается на надежности геомембраны. В полимерном экране необходимо устраивать компенсаторы, позволяющие экрану удлиняться без появления растягивающих усилий.

DOI: 10.22227/1997-0935.2013.8.78-88

Библиографический список
  1. Попченко С.Н., Глебов В.Д., Игонин Х.А. Опыт применения полимерных материалов в гидротехническом строительстве // Гидротехническое строительство. 1973. № 12. С. 9—13.
  2. Радченко В.П., Семенков В.М. Геомембраны в плотинах из грунтовых материалов // Гидротехническое строительство. 1993. № 10. С. 46—52.
  3. Бруссе А.Г., Глебов В.Д., Детков Б.В. Полиэтиленовый экран перемычки УстьХантайской ГЭС // Гидротехническое строительство. 1971. № 11. С. 4—5.
  4. Гольдин А.Л., Рассказов Л.Н. Проектирование грунтовых плотин. М. : Изд-во АСВ, 2001. 384 с.
  5. Зиневич Н.И., Лысенко В.П., Никитенков А.Ф. Центральная пленочная диафрагма плотины Атбашинской ГЭС // Энергетическое строительство. 1974. № 3. С. 59—62.
  6. Глебов В.Д., Лысенко В.П. Конструирование пленочных противофильтрационных элементов в плотинах и перемычках // Гидротехническое строительство. 1973. № 5. С. 33—35.
  7. Айрапетян Р.А. Проектирование каменно-земляных и каменнонабросных плотин. М. : Энергия, 1975.
  8. Рекомендации по проектированию и строительству противофильтрационных устройств из полимерных рулонных материалов / ОАО «ВНИИГ им. Б.Е.Веденеева»; СПб.НИИ АКХ им. К.Д. Памфилова. СПб., 2001.
  9. СН 551—82. Инструкция по проектированию и строительству противофильтрационных устройств из полиэтиленовой пленки для искусственных водоемов / ООО «Гидрокор», 2001.
  10. Scuero A.M. and Vaschetti G.L. “Repair of CFRDs with synthetic geomembranes in extremely cold climates”, Proceedings, Hydro 2005 – Policy into practice, Villach, 2005.
  11. Sembenelli P., and Rodriquez E.A. “Geomembranes for Earth and Earth-Rock Dams: State-of-the-Art Report,” Proc. Geosynthetics Applications, Design and Construction, M. B. deGroot, et al., Eds., A. A. Balkema, 1996, pp. 877—888.
  12. Корчевский В.Ф., Обополь А.Ю. О проектировании и строительстве Камбаратинских гидроэлектростанций на р.Нарыне в Киргизской Республике // Гидротехническое строительство. 2012. № 2. С. 2—12.
  13. Pietrangeli G., Pietrangeli A., Scuero A., Vaschetti G., Wilkes J. Gibe III: Zigzag geomembrane core for rockfill cofferdam in Ethiopia. 31st Annual USSD Conference San Diego, California, April 11-15, 2011, pp. 985—994.

Скачать статью

Результаты 1 - 7 из 7