Preserving urban objects of historicaland architectural heritage

Вестник МГСУ 1/2014
  • Bal'zannikova Ekaterina Mikhailovna - Samara State University of Architecture and Civil Engineering (SGASU) аssistant, Depart- ment of Architecture, Samara State University of Architecture and Civil Engineering (SGASU), 194 Molodogvardeyskaya St., Samara, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 15-24

Large cities of central Russia were built under the influence of the factors that played an important role in protecting their population; natural resources and opportunities for trading were also essential. The industrial development and construction of large industrial facilities were significant for the formation of urban environment. As a result architectural monuments of great historical value that have a significant influence on the formation of the modern city image were preserved.Nowadays, a great number of buildings of historical and architectural heritage turned out to be in poor condition. Funding and its efficient use are rational means of saving the most valuable objects of historical and cultural heritage. In order to do this it is necessary to solve the problems of developing complex and effective measures for preserving these objectsThe existing method of preserving urban objects does not focus on urban architectural objects of historical and architectural value. It does not cover the study of urban development features in architectural and town-planning environment surrounding this object, it does not determine the historical and architectural value of the object and it does not identify the relationship of the object and the surrounding objects as well as architectural frame of the total area. That is why the existing method cannot be considered an appropriate system for preserving the objects of historical and architectural heritage.In order to avoid the disadvantages mentioned above and to increase tourist interest to the architecturally valuable buildings in urban areas, the author has proposed a complex approach to improve the method of reconstructing urban objects of great historical and architectural significance.The existing method of preserving historical objects includes the preparatory period of studying the degree of historical and architectural heritage wear and decay, developing the techniques for strengthening structural elements, delivering building materials, preparing the construction site and the basic period when condemned structures are demolished, new design elements are formed and assembled, interior finishing work is performed and the object facade is restored. In contrast to it, our method includes additional periods and a performance list. In particular, it is proposed to carry out a research period prior to the preparatory period, and after the basic period there should be the ending period.Thus, during the research period it is necessary to study urban development fea- tures in architectural and town-planning environment, to identify the historical and archi- tectural value of the object, to estimate its ramshackle state and whether it is habitable, to determine the relationship of the object with the architectural and aesthetic image of sur- rounding objects and to develop a conservation program; and during the ending period it is proposed to assess the historical and architectural significance of the reconstructed object in relation to the aesthetic and architectural image of the surrounding area. The proposed complex method will increase the attractiveness of a historical and architectural heritage object and its surrounding area for tourists and, consequently, raise the cultural level of the visitors. Furthermore, the method will ensure the construction of recreation zones, their more frequent usage and visiting surrounding objects of social infrastructure, because more opportunities for cultural and aesthetic pastime will be offered. The method will also provide a more reasonable and effective use of available funding due to the careful analysis and proper choice of the methods to preserve objects of historical and architectural heritage.

DOI: 10.22227/1997-0935.2014.1.15-24

Библиографический список
  1. Rybal'chenko Yu.D., Samogorov V.A. Gradostroitel'nye preobrazovaniya v provintsial'nykh gorodakh Rossii XVIII — nachala XX vv. [Urban Development in Provincial Cities of Russia in 18th — 20th Centuries]. Privolzhskiy nauchnyy zhurnal [Volga Scientific Journal]. 2009, no. 2, pp. 65—71.
  2. Bal'zannikova E.M. Gradostroitel'noe formirovanie Samary i razvitie promyshlennosti goroda v kontse XIX — nachale XX v. [Urban and Industrial Development of Samara in the Late 19th — early 20th Century]. Vestnik SGASU. Gradostroitel'stvo i arkhitektura [Samara State University of Architecture and Civil Engineering. Urban Planning and Architecture]. 2011, no. 1, pp. 44—48.
  3. Samogorov V.A., Ivanov M.O. Arkhitektura Aleksandra i Petra Shcherbachevykh v Samare [Architecture of Alexander and Peter Shcherbachevs in Samara]. Samara, 2004, 119 p.
  4. Vavilonskaya T.V. Zadachi sistemnogo planirovaniya v usloviyakh arkhitekturno-istoricheskoy sredy [Issues of System Planning in the Architectural and Historical Environment]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2009, no. 2, pp. 14—17.
  5. Vavilonskaya T.V. Strategiya obnovleniya arkhitekturno-istoricheskoy sredy: monografiya [Strategy of Renewing Architectural and Historical Environment]. Samara, SGASU Publ., 2008, 368 p.
  6. Karkar'yan V.G. Derevyannoe zodchestvo Samary, ili Osen' patriarkhov [Wooden Architecture of Samara or Patriarchs's Autumn]. Samara, Agni Publ., 2002, 152 p.
  7. Baranova T.V., Kosenkova N.A. Synthetic Image of Orthodox Architecture in the Middle Volga. Sacred Architecture in Shaping the Identity of Place. Politechnika Lubelska, Lublin, 2006, pp. 149—157.
  8. Cevat Erder. Our Architectural Heritage: from Consciousness to Conversation. UNESCO, United Kingdom, 1986, 236 p.
  9. Bal'zannikov M.I., Privorotskiy D.S. Reshenie voprosov zritel'nogo vospriyatiya pri stroitel'stve khrama sv. Georgiya Pobedonostsa v Samare [Issues of Visual Perception when Constructing the Church of St. George the Victory-bearer in Samara]. Architektura sakralna w ksztaltovaniu tozsamosci kulturowej miejsca. Lublin, Wydawnictwo Politechniki Lubelskiej, 2006, pp. 345—357.
  10. Bernard Feilden, Perek Linstrum. A European View. New Uses for Old Buildings. Architectural Conservation in Europe. Edited by Sherban Cantacuzino. Watson-Guptill Publications, New York, 1975, pp. 127—130.
  11. Bernard Feilden. Conservation of Historical Buildings. London, Butterworth and Co (Publishers) Ltd., 1982, pp. 6—12.
  12. Dennis Rodwell. Conversation legislation. New Uses for Old Buildings. Architectural Conservation in Europe. Edited by Sherban Cantacuzino. Watson-Guptill Publications, New York, 1975, pp. 127—136.
  13. Rybacheva O.S., Samogorov V.A. Ponyatie «Samarskiy dvor» v sisteme pravoustanavlivayushchikh i gradoreguliruyushchikh dokumentov [The Concept of "Samara Yard" in the System of Title and Town-development Documents]. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universitetata [Proceedings of Tomsk State University of Architecture and Building]. 2012, no. 4 (37), pp. 65—74.
  14. Samogorov V.A., Bal'zannikova E.M. Predpriyatiya po proizvodstvu stroitel'nykh materialov v Samarskom krae v kontse XIX — nachale XX vekov [Enterprises Producing Building Materials in the Samara Region in the Late XIX Early XX Centuries]. Vestnik Volzhskogo regional'nogo otdeleniya RAASN [Proceedings of Volga Regional Division of Russian Academy of Architecture and Construction Sciences]. 2013, no. 16, pp. 122—126.
  15. Bal'zannikova E.M. Istoriya razvitiya predpriyatiy mukomol'noy promyshlennosti v Samare v kontse XIX — nachale XX vekov [The History of Flour Milling Enterprises Development in Samara in the late 19th — Early 20th Centuries]. Vestnik SGASU. Gradostroitel'stvo i arkhitektura [Samara State University of Architecture and Civil Engineering. Urban Planning and Architecture]. 2012, no. 3, pp. 6—10.
  16. Bal'zannikova E.M. Rekonstruktsiya promyshlennoy zastroyki po printsipu organizatsii loftov [Reconstruction of Industrial Development on the Principle of Loft Organization]. Traditsii i innovatsii v stroitel'stve i arkhitekture: Materialy 69-y Vserossiyskoy nauchno-tekhnicheskoy konferentsii [Traditions and Innovations: Materials of the 69th All-Russian Scientific and Technical Conference]. Samara, SGASU Publ., 2012, Part 1, pp. 401—404.
  17. Khimunina S.D., editor. Ukazaniya po tekhnologii remontno-stroitel'nogo proizvodstva i tekhnologicheskie karty na raboty pri kapital'nom remonte zhilykh domov. Kn. 1. Obshchestvennye raboty [Instructions for Repair and Construction Technology of and Technological Maps for Major Repairing of Residential Housing. Book 1. Public Work]. 2nd edition. Leningrad, Stroyizdat Publ., 1977, 432 p.
  18. Samogorov V.A., Rybacheva O.S. Rekonstruktsiya istoricheskoy chasti Samary s uchetom slozhivshikhsya granits uchastkov zemlepol'zovaniya (dvorovykh prostranstv) [Reconstruction of the Historical Part of Samara Considering the Existing Boundaries of Land Lots (Courtyard Spaces)]. Vestnik Volgogradskogo gosudarstvennogo arkhitekturno-stroitelnogo universitetata. Seriya: Stroitel'stvovo i arkhitektura [Volgograd State University of Architecture and Civil Engineering]. 2013, no. 31 (50), Part. 1. Goroda Rossii. Problemy proektirovaniya i realizatsii [Cities of Russia. Problems of Design and Implementation]. Pp. 300—304.
  19. Samogorov V.A., Rybacheva O.S. Novoe stroitel'stvo v usloviyakh istoricheski slozhivsheysya zastroyki Samary s uchetom granits dvorovladeniy [New Construction Work in the Conditions of Historical Development of Samara Considering the Boundaries of Tenancy]. Vestnik SGASU. Gradostroitel'stvo i arkhitektura [Proceedings of Samara State University of Architecture and Civil Engineering. Urban Planning and Architecture]. 2011, no. 3, pp. 70—72.
  20. Vavilonskaya T.V. Strategiya obnovleniya arkhitekturno-istoricheskoy sredy (na primere g. Samary) [Strategy of Renewing Architectural and Historical Environment (on the Example of Samara City]. Izvestiya OrelGTU. Seriya: Stroitel'stvo i transport [News of State University — Education-Science-Production Complex of Orel. Series: Construction and Transport]. 2009, no. 3/23, pp. 68—72.

Cкачать на языке оригинала

The reaction of the building structure with window unit to the explosiveimpact on the basis of dynamic equation solution

Вестник МГСУ 1/2014
  • Doronin Fedor Leonidovich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Associate Professor, Department of Hydraulics and Water Resources, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, 129337, Moscow, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Truchanova Lyudmila Nikolaevna - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Associate Pro- fessor, Department of Physics, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, 129337, Moscow, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Fomina Marina Vasilyevna - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Professor, Department of Physics, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, 129337, Moscow, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 33-40

When designing residential buildings, additional measures for increasing the strength at dynamic effects indoors are not foreseen. The walls of the structure fixed in the framework are not designed for shock wave caused by explosion of utility gas. When designing a building, the task of the special dynamic load is often reduced to the calculation of the safe shock pressure, exceeding of which leads to the destruction of the structures. The wall with the window area under dynamic effects is a blast relief panel, which reduces the excess pressure inside the room. The proposed method of calculating a design with a window unit allows determining the dynamic reaction of the wall on explosive pulse. The proposed calculation technique of the constructions at shock loads allows tracing the changes of the inertial forces and displacements at any stage of dynamic response. The reaction to dynamic loads can be also set for non-monolithic structures, consisting of different materials with different conditions of fastening. Elastoplastic reaction of a brick wall with glass units was determined using step-by-step method of linear acceleration. The calculation of stress-strain state of brick walls with window panes determined the strength properties of the structures close to the monolithic version. The proposed technique of numerical solution of dynamic equations is applied only in the analysis of elastic systems, in which the dynamic characteristics remain unchanged throughout the reaction process.

DOI: 10.22227/1997-0935.2014.1.33-40

Библиографический список
  1. Abrosimov A.A., Komarov A.A. Meropriyatiya, obespechivayushchie bezopasnye nagruzki pri avariynykh vzryvakh v zdaniyakh so vzryvoopasnymi tekhnologiyami [Measures Providing Proof Loads at Accidental Explosions in the Buildings with Explosion Hazardous Technologies]. Seysmostoykoe stroitel'stvo. Bezopasnost' sooruzheniy [Antiseismic Construction. Security of Structures]. 2002, no. 4, pp. 48—51.
  2. Komarov A.A. Razrushenie zdaniy pri avariynykh vzryvakh bytovogo gaza [Destruction of Buildings Subject to Accidental Explosions of the Utility Gas]. Pozharobezopasnost [Fire Safety]. 2004, vol. 13, no. 5, pp. 15—23.
  3. Pilyugin L.P. Obespechenie vzryvoustoychivosti zdaniy s pomoshch'yu predokhranitel'nykh konstruktsiy [Ensuring Blast Resistance of Buildings with the Help of Protecting Structures]. Moscow, Pozhnauka Publ., 2000, 224 p.
  4. Mishuev A.V., Komarov A.A., Khusnutdinov D.Z. Obshchie zakonomernosti razvitiya avariynykh vzryvov i metody snizheniya vzryvnykh nagruzok do bezopasnogo urovnya [Common Patterns of Accidental Explosions Development and Methods of Reducing Explosive Loads up to the Safe Level]. Pozharobezopasnost [Fire Safety]. 2001, vol. 10, no. 6, pp. 8—19.
  5. Komarov A.A. Analiz posledstviy avariynogo vzryva prirodnogo gaza v zhilom dome [The Analysis of the Consequences of Natural Gas Explosions in Residential Building]. Pozharobezopasnost [Fire Safety]. 1999, vol. 8, no. 4, pp. 49—53.
  6. Newmark N.M., Rosenblueth E. Fundamentals of Earthquake Engineering. Prentice-Hall, Inc. Englewood Cliffs, New York, 1971, 344 p.
  7. Ambriashvili Yu.K., Anan'in A.I., Barchenkov A.G. and others. Spravochnik proektirovshchika. Dinamicheskiy raschet spetsial'nykh inzhenernykh sooruzheniy i konstruktsiy [Designer's Guidance. Dynamic Calculation of Special Engineering Structures and Constructions]. Moscow, Stroyizdat Publ., 1986, 462 p.
  8. Clough R.W., Penzien J. Dynamics of Structures. World Book Company, New York, 1977, 320 p.
  9. Korn G.A., Korn T.M. Mathematical Handbook for Scientists and Engineers. Second Edition. Dover, New York, 2000, 943 p.
  10. Doronin F.L., Lyapin A.Yu. Raschet konstruktsiy sooruzheniy na vzryvnuyu nagruzku na osnove chislennogo resheniya uravneniya dvizheniya [Calculation of Building Structures for the Explosive Load Basing on Numerical Solutions of Motion Equation]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2010, no. 4, pp. 72—78.

Cкачать на языке оригинала

Foundation calculation for buildings and structures with two elastic characteristics of the foundation using features of Fourier transformsfor finite functions

Вестник МГСУ 1/2014
  • Kurbatskiy Evgeniy Nikolaevich - Moscow State University of Railway Engineering (MIIT) Doctor of Technical Sci- ences, Professor, head, Department of Underground Structures, Moscow State University of Railway Engineering (MIIT), 9-9 Obraztsova st., Moscow, 127994, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Mai Duc Minh. - Moscow State University of Railway Engineering (MIIT) postgraduate student, Department of Underground Structures, Moscow State University of Railway Engineering (MIIT), 9-9 Obraztsova st., Moscow, 127994, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 41-51

The problem of a beam resting on elastic foundation often occurs in the analysis of building, geotechnical, highway, and railroad structures. Its solution demands modeling of the mechanical behavior of the beam, the mechanical behavior of the soil as elastic subgrade and the form of interaction between the beam and the soil. The oldest, most fa- mous and most frequently used mechanical model is the one devised by Winkler (1867), in which the beam-supporting soil is modeled as a series of closely spaced, mutually independent, linear elastic vertical springs, which, evidently, provide resistance in direct proportion to the deflection of the beam.The solution is presented for the problem of an Euler–Bernoulli beam supported by an infinite two-parameter Pasternak foundation. The beam is subjected to arbitrarily distributed or concentrated vertical loading along its length. Static response of a beam on an elastic foundation characterized by two parameters is investigated assuming, that the beam is subjected to external loads and two concentrated edge load. The governing equations of the problem are obtained and solved by pointing out that there is a concentrated edge foundation reaction in addition to a continuous foundation reaction along the beam axis in the case of complete contact in the foundation reactions of the two-parameter foundation model. The proposed method is based on the properties of Fourier transforms of the finite functions. Particular attention is paid to the problem, taking into account the deformation of soil areas outside the beam. The beam model with two foundation coefficients more realistically describes the behavior of strip footings under loading.

DOI: 10.22227/1997-0935.2014.1.41-51

Библиографический список
  1. Korenev B.G. Voprosy rascheta balok i plit na uprugom osnovanii [Problems of Calculating Beams and Slabs on Elastic Foundation]. Moscow, Gosstroyizdat Publ., 1954, 231 p.
  2. Gorbunov-Posadov M.I, Malikova T.A. Raschet konstruktsiy na uprugom osnovanii [Calculation of Structures on Elastic Foundation]. 2-nd edition. Moscow, Stroyizdat Publ., 1973, 627 p.
  3. Pasternak P.L. Osnovy novogo metoda rascheta fundamentov na uprugom osnovanii pri pomoshchi dvukh koeffitsientov posteli [Fundamentals of a New Method of Elastic Foundation Analysis by Means of Two-constants]. Moscow, 1954, 55 p.
  4. Celep Z., Demir F. Symmetrically Loaded Beam on a Two-parameter Tensionless Foundation. Structural Engineering and Mechanics. 2007, vol. 27, no. 5, pp. 555—574.
  5. Eisenberger M., Bielak J. Finite Beams on Infinite Two-parameter Elastic Foundations. Computers & Structures. 1992, vol. 42, no. 4, pp. 661—664.
  6. Sapountzakis E.J., Kampitsis A.E. Inelastic Analysis of Beams on Two Parameter Tensionless Elastoplastic Foundation. Engineering Structures. 2013, no. 48, pp. 389—401.
  7. Ma X., Butterworth J.W., Clifton G.C. Static Analysis of an Infinite Beam Resting on a Tensionless Pasternak Foundation. European Journal of Mechanics — A/Solids. 2009, vol. 28, no. 4, ðð. 697—703.
  8. Razaqpur A., Shah K. Exact Analysis of Beams on Two-parameter Elastic Foundations. International Journal of Solids and Structures. 1991, vol. 27, no. 4, pp. 435—454.
  9. Morfidis K., Avramidis I.E. Formulation of a Generalized Beam Element on a Twoparameter Elastic Foundation with Semi-rigid Connections and Rigid Offsets. Computers & Structures. 2002, vol. 80, no. 25, ðð. 1919—1934.
  10. Kurbatskiy E.N. Metod resheniya zadach stroitel'noy mekhaniki i teorii uprugosti, osnovannyy na svoystvakh izobrazheniy Fur'e finitnykh funktsiy [Solution Method for the Tasks of Construction Mechanics and the Elasticity Theory Based on the Properties of Fourier Transform for Finite Functions]. Dissertatsiya na soiskanie uchenoy stepeni doktora tekhnicheskikh nauk [Doctoral Thesis in Engineering Sciences]. Moscow, MIIT Publ., 1995, 205 p.
  11. Mai Duc Minh. Raschet tonneley, raspolozhennykh v uprugoplasticheskikh gruntakh, peresekayushchikh zony razloma, na seysmicheskie vozdeystviya [Seismic Design for the Tunnels Located on Elasto-plastic Soils Across Fault Zones]. Stroitel'stvo i rekonstruktsiya [Construction and Reconstruction]. 2013, no. 1 (45), pp.19—25.
  12. Klepikov S.N. Raschet konstruktsiy na uprugom osnovanii [Calculation of Structures on Elastic Foundation]. Moscow, Kiev Publ., 1967, 185 p.

Cкачать на языке оригинала

The experimental research of GFRPand BFRP operation under compression

Вестник МГСУ 1/2014
  • Lapshinov Andrey Evgenievich - Moscow State University of Civil Engineering (MGSU) postgraduate student, assistant, Department of Reinforced Concrete Structures, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe schosse, Moscow, 129337, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 52-57

In the foreign countries there are not only design guidelines but also standards for testing FRP materials. These codes do not recommend using FRP bars in compressive members, such as columns. But the compressive strength shouldn’t be neglected according to those design codes. In our country the standards for FRP testing and design codes are just in the process of development.This paper contains the results of a compression testing of GFRP and BFRP with different configurations. The proposed height of the specimen was 1d, 3d and 5d. The results of the tests and failure mechanisms of the samples are discussed. The author also gives strain distribution in dependence with the specimen type. The conclusions and proposals for the use of FRP reinforcement in compression are offered. One of the main conclusions is that with the height increase the compressive strength also increases, while the strain decreases.Basing on the survey results the ratio of tensile strength to compressive strength and the ratio of compressive elasticity modulus to tensile elasticity modulus are given.

DOI: 10.22227/1997-0935.2014.1.52-57

Библиографический список
  1. ACI 440.1R—06. Guide for the Design and Construction of Structural Concrete Reinforced with FRP Bars. ACI Committee 440, American Concrete Institute, Farmington Hills, Mich, 2006, 44 p.
  2. ACI 440.3R—04. Guide for Test Methods for Fiber Reinforced Polymers (FRP) for Reinforcing and Strengthening Concrete Structures. ACI Committee 440, American Concrete Institute, Farmington Hills, Mich, 2004, 40 p.
  3. CNR-DT 203/2006, 2006. Istruzioni per la Progettazione, l’Esecuzione e il Controllo di Strutture di Calcestruzzo armato con Barre di Materiale Composito Fibrorinforzato (in Italian).
  4. CAN/CSA-S6-02, 2002. Design and Construction of Building Components with Fibre-Reinforced Polymers, CAN/CSA S806-02, Canadian Standards Association, Rexdale, Ontario, Canada, 177 p.
  5. Fib Bulletin #40. FRP Reinforcement in RC Structures. 147 p.
  6. ASTM D6641 / D6641M—09. Standard Test Method for Compressive Properties of Polymer Matrix Composite Materials Using a Combined Loading Compression (CLC) Test Fixture.
  7. ASTM D3410 / D3410M—03(2008). Standard Test Method for Compressive Properties of Polymer Matrix Composite Materials with Unsupported Gage Section by Shear Loading.
  8. ASTM D695—10. Standard Test Method for Compressive Properties of Rigid Plastics.
  9. GOST 4651—82 (ST SEV 2896—81). Plastmassy. Metod ispytaniya na szhatie [Russian State Standard 4651—82 (ST SEV 2896—81). Plastic. Compression Test Method].
  10. Blaznov A.N., Savin V.F., Volkov Yu.P., Tikhonov V.B. Issledovanie prochnosti i ustoychivosti odnonapravlennykh stekloplastikovykh sterzhney pri osevom szhatii [Examining Strength and Stability of Monodirectional Glass Fiber Rods under Axial Compression]. Mekhanika kompozitsionnykh materialov i konstruktsiy]. 2007, vol.13, no. 3, pp. 426—440.

Cкачать на языке оригинала

The approximate method of maximal tensile stress determination in rods of double-contour geodeticdomes of the system “R” exposed to dead load

Вестник МГСУ 1/2014
  • Lakhov Andrey Yakovlevich - Nizhny Novgorod State University of Architecture and Civil Engineering (NNGASU) Candidate of Technical Sci- ences, Associate Professor, Department of Information Systems and Technologies, Nizhny Novgorod State University of Architecture and Civil Engineering (NNGASU), 65 Ilyins- kaya st., 603950, Nizhny Novgorod, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 58-65

The article is a brief review of the research of stress-strain state of a structure that represents a hemispherical geodetic dome exposed to the dead load. Double-contour geodetic domes composed of plates and rods are the subject of the research. The process of their design has two stages: (a) design of geometric models of geodetic domes and (b) analysis of the domes.The author demonstrates that the first stage can be implemented through the employment of the library of ArchiCAD objects. Supplementary research is needed to have the second stage implemented. The objective of this research is to present the results of the research using computeraided methods of metal structures modeling.The article presents a study of the stress-strain state of a construction with a geodetic dome (shell) of the system “R” (classification of prof. G.N. Pavlov). The purpose of the paper is to present the results of numerical modeling in PATRAN/NASTRAN system in the form of approximate formulas. Approximate formulas are presented for calculation of global maximum of stress in second contour.

DOI: 10.22227/1997-0935.2014.1.58-65

Библиографический список
  1. Pavlov G.N. Osnovnye kontseptsii avtomatizatsii arkhitekturnogo proektirovaniya geodezicheskikh kupolov i obolochek [Main Concepts of Architectural Design Automation of Geodetic Domes and Shells]. Izvestiya vuzov. Seriya «Stroitel'stvo» [News of Institutions of Higher Education. Construction Series]. 2005, no. 10, pp. 104—108.
  2. Pavlov G.N., Suprun A.N. Geodezicheskie kupola — proektirovanie na sovremennom urovne [Geodetic Domes – Up-to-date Design]. SAPR i grafika [CAD Systems and Graphics]. 2006, no. 3, pp. 25—27.
  3. Tupolev M.S. Geometriya sbornykh sfericheskikh kupolov [Geometry of Build-up Spherical Domes]. Arkhitektura SSSR [Architecture of the USSR]. 1969, no. 1, pp. 9—11.
  4. Fuller R.B. Geodesic Dome. Perspecta. 1952, no. 1, pp. 30—33.
  5. Vinogradov G.G. Raschet stroitel'nykh prostranstvennykh konstruktsiy [Analysis of Building Space Structures]. Moscow, Stroyizdat, Leningradskoe otd. Publ., 1990, 264 p.
  6. Suprun A.N, Dyskin L.M., Platov A.Yu., Lakhov A.Ya. Avtomatizirovannoe proektirovanie i raschet na prochnost' odnokonturnykh geodezicheskikh obolochek iz ploskikh elementov [Automated Design and Strength Analysis of Singe-contour Geodetic Shells Composed of Flat Elements]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2012, no. 8, pp. 226—233.
  7. Andres M., Harte R. Buckling of Concrete Shells: a Simplified Numerical Approach. Journal of the International Association for Shell and Spatial Structures: IASS. 2006, vol. 47, no. 3, December n. 152, pp. 163—175.
  8. Lakhov A.Ya. Priblizhennyy sposob opredeleniya maksimal'nykh napryazheniy v geodezicheskikh odnokonturnykh kupolakh sistemy “P” ot vozdeystviya sobstvennogo vesa [The Approximate Method of Maximal Stress Determination in Single-contour Geodetic Domes of the System “P” Exposed to Dead Load]. Privolzhskiy nauchnyy zhurnal [Volga Region Scientific Journal]. 2013, no. 3, pp. 13—18.
  9. Skopinsky V.N. A Comparative Study of Three-dimensional and Two-dimensional Finite Element Analysis for Intersecting Shells. The Journal of Strain Analysis for Engineering Design. 2001, vol. 36. no. 3, pp. 313—322.
  10. Girling P.R. Geodesic Shells. Thesis of the Requirements for the Degree of M.A.Sc., the Department of Civil Engineering, University of British Columbia. 1957.
  11. Kubik M. Structural Analysis of Geodesic Domes. Final Year Project, Durham University, School of Engineering, April 29, 2009.
  12. Elkina V.N., Zagoruyko N.G., Timerkaev V.S. Algoritmy taksonomii v informatike [Algorithms of Taxonomy in Computer Science]. Informatika i ee problemy [Computer Science and its Problems]. 1972, no. 4, pp. 31—37.

Cкачать на языке оригинала

Using finite element method in the processof strength calculation for the pipeline supports in above-groundarea of "Zapolyar'e — NPS "PUR-PE" oil pipeline

Вестник МГСУ 1/2014
  • Surikov Vitaliy Ivanovich - Research Institute of Oil and Oil Products Transportation (NII TNN) Deputy Director General for the Technology of Oil and Oil Products Transportation, Research Institute of Oil and Oil Products Transportation (NII TNN), 9-5, 2 Verhniy Mikhaylovskiy proezd, 115419, Moscow, Rus- sian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Varshitskiy Viktor Mironovich - Research Institute of Oil and Oil Products Transportation (NII TNN) Candidate of Technical Sciences, head, Department of Strength and Stability Calculation of Pipelines and Main Oil Pipelines Equipment, Research Institute of Oil and Oil Products Transportation (NII TNN), 9-5, 2 Verhniy Mikhaylovskiy proezd, 115419, Moscow, Rus- sian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Bondarenko Valeriy Vyacheslavovich - Limited Liability Company "Konar" ("Konar") Candidate of Technical Sciences, director, Limited Liability Company "Konar" ("Konar"), 5 Hlebozavodskaya st, 454038, Chely- abinsk, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Korgin Andrey Valentinovich - Moscow State University of Civil Engineering (MGSU) Doctor of Technical Sciences, Professor, Academic Advisor, Scientific and Educational Center of Engineering Investigations and Building Struc- tures Monitoring of the Chair of the Test of Structures, Moscow State University of Civil Engineering (MGSU), ; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Bogach Andrey Anatol'evich - Research Institute of Oil and Oil Products Transportation (NII TNN) Candidate of Physical and Mathematical Sciences, chief specialist, Department of Strength and Stability Calculation of Pipelines and Main Oil Pipelines Equipment, Research Institute of Oil and Oil Products Transportation (NII TNN), 9-5, 2 Verhniy Mikhaylovskiy proezd, 115419, Moscow, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 66-74

The present article studies a procedure of calculating the strength of pipeline support constructions of the above-ground oil trunk pipeline system «Zapolyar'e — oil pumping station «Pur-pe». The calculations of the supports stress-strain state are performed with the use of computer complex Ansys v13, which applies the finite element method. The article provides a short description of the construction of fixed, linear-sliding and free-sliding supports of the oil pipeline of above-ground routing, developed for the installation in complex climatic and geologic conditions of the far north. According to the operation specification for design — the support constructions have to maintain the resistance power and bearing capacity under the influence of the pipeline stress without sagging and considering the possible sagging of the neighboring support. The support constructions represent space structures with a complex geometry. Together with the complex geometry, contacting elements are present in the construction of the supports. There is also an interaction of the pile foundation and the nonhomogeneous foundation. The enumerated peculiarities of the construction and operating conditions of the supports considerably complicate the strength calculations by engineering methods. The method of numerical modeling (finite element method) used in the article for the analysis of the supports’ operation under the stress is widely applied at the present time for calculations of space structures with a complex geometry. For the first time, while performing the supports’ strength calculations, the article considers the mutual deformation of the support, foundation grill and pile foundation in the ground, thus making it possible to consider real operation of the construction altogether. The main development stages of the calculation model “support — pile foundation — ground” in ANSYS, calculation and testing of the static strength of the support constructions are discussed in the article. The authors provide the calculation examples of the supports' stress-strain state for unfavorable combination of loads with maximum bending moment for a fixed support and maximum vertical force and maximum longitudinal-lateral displacement of the top part for a free-sliding support. The use of modern approaches to the operation modeling of the support constructions allows avoiding the excessive conservatism in estimating the stress-strain state of the supports and allows developing the construction optimal for metal intensity, while meeting the requirements for allowable stresses according to the actual normative documents.

DOI: 10.22227/1997-0935.2014.1.66-74

Библиографический список
  1. Kazakevich M.I., Lyubin A.E. Proektirovanie metallicheskikh konstruktsiy nadzemnykh promyshlennykh truboprovodov [Metal Structures Design for Above-ground Industrial Pipelines]. 2nd Edition. Kiev, Budivel'nik Publ., 1989, 160 p.
  2. Petrov I.P., Spiridonov V.V. Nadzemnaya prokladka truboprovodov [Above-ground Pipelining]. Moscow, Nedra Publ., 1973, 472 p.
  3. Bykov L.I., Avtakhov Z.F. Otsenka vliyaniya usloviy na rabotu balochnykh truboprovodnykh sistem [Estimating the Conditions Influence on the Beam Pipelines Operation]. Izvestiya vuzov. Neft' i gaz [News of the Universities of Higher Education. Oil and Gas]. 2003, no. 5, pp. 79—85.
  4. Basov K.A. ANSYS: spravochnik pol'zovatelya [ANSYS. The User's Guide]. Moscow, DMK Press Publ., 2005, 640 p.
  5. Lawrence K.L. ANSYS Tutorial Release 13. Schroff Development Corporation, 2011.
  6. Seleznev V.E., Aleshin V.V., Pryalov S.N. Osnovy chislennogo modelirovaniya magistral'nykh truboprovodov [Intro to Numerical Simulations of Major Pipelines]. Moscow, KomKniga Publ., 2005, 496 p.
  7. Seleznev V.E., Aleshin V.V., Pryalov S.N. Matematicheskoe modelirovanie magistral'nykh truboprovodnykh sistem: dopolnitel'nye glavy [Mathematic Simulation of Major Pipelines Systems: Additional Chapters]. Moscow, MAKS Press Publ., 2009, 356 p.
  8. Lawrence K.L. ANSYS Workbench Tutorial, Structural&Thermal Analysis Using the ANSYS Workbench Release 13. Enviroment, Schroff Development Corporation, 2011.
  9. Crisfield M.A. Non-linear Finite Element Analysis of Solids and Structures. In two volumes. John Wiley & Sons, Chichester, 2000, 2 vols.
  10. Erdogan Madenci and Ibrahim Guven. The Finite Element Method and Applications in Engineering Using ANSYS, Springer, 2005, 686 p.
  11. Podgornyy A.N., Gontarovskiy P.P., Kirkach B.N. Zadachi kontaktnogo vzaimodeystviya elementov konstruktsiy [The Tasks of Contact Interaction of a Construction Elements]. Kiev, Naukova dumka Publ., 1989, 232 p.

Cкачать на языке оригинала

Resistance of i-beams in warping torsion with account for the development of plasticdeformations

Вестник МГСУ 1/2014
  • Tusnin Aleksandr Romanovich - Moscow State University of Civil Engineering (MGSU) Doctor of Technical Sciences, Professor, Chair, Department of Metal Structures, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
  • Prokic Milan - Moscow State University of Civil Engineering (MGSU) postgraduate student, Department of Metal Structures, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 75-82

Torsion of thin-walled open-section beams due to restrained warping displacements of cross-section is causing additional stresses, which make a significant contribution to the total stress. Due to plastic deformation there are certain reserves of bearing capacity, identification of which is of significant practical interest. The existing normative documents for the design of steel structures in Russia do not include design factor taking into account the development of plastic deformation during warping torsion. The analysis of thin-walled open-section members with plastic deformation will more accurately determine their load-bearing capacity and requires further research. Reserves of the beams bearing capacity due to the development of plastic deformations are revealed when beams are influenced by bending, as well as tension and compression. The existing methodology of determining these reserves and the plastic shape factor in bending was reviewed. This has allowed understanding how it was possible to solve this problem for warping torsion members and outline possible ways of theoretical studies of the bearing capacity in warping torsion. The authors used theoretical approach in determining this factor for the symmetric I-section beam under the action of bimoment and gave recommendations for the design of torsion members including improved value of plastic shape factor.

DOI: 10.22227/1997-0935.2014.1.75-82

Библиографический список
  1. Vlasov V.Z. Tonkostennye uprugie sterzhni [Thin-walled Elastic Beams]. Moscow, Fizmatgiz Publ., 1959, 568 p.
  2. Timoshenko S.P., Gere J.M. Theory of Elastic Stability. 2nd Ed. McGraw-Hill, New York, 1961, 541 p.
  3. Farwell Jr.C.R., Galambos T.V. Nonuniform Torsion of Steel Beams in Elastic Range. Journal of Structural Engineering, ASCE, 1969, vol. 95(12), pp. 2813—2829.
  4. Dinno K.S., Merchant W. A Procedure for Calculating the Plastic Collapse of I-sections under Bending and Torsion. The Structural Engineer. 1965, vol. 43(7), pp. 219—221.
  5. Pi Y.L., Trahair N.S. Inelastic Torsion of Steel I-beams. Research Report no. R679. The University of Sydney, 1993.
  6. Trahair N.S. Plastic Torsion Analysis of Monosymmetric and Point-symmetric Beams. Journal of Structural Engineering, ASCE. 1999, vol. 125, no. 2, pp. 175—182.
  7. Trahair N.S., Bradford M.A., Nethercot D.A., Gardner L. The Behaviour and Design of Steel Structure to EC3. 4th Ed. Taylor & Francis, New York, 2008, 490 p.
  8. Sokolovskiy V.V. Teoriya plastichnosti [Theory of Plasticity]. Moscow, Vysshaya Shkola Publ., 1969, 608 p.
  9. Belenya E.I. Metallicheskie konstruktsii [Metal Structures]. Moscow, Stroyizdat Publ., 1986, 560 p.
  10. Bychkov D.V. Stroitel'naya mekhanika sterzhnevykh tonkostennykh konstruktsiy [Structural Mechanics of Bar Thin-walled Systems]. Moscow, Gosstroyizdat Publ., 1962, 475 p.

Cкачать на языке оригинала

Reliable and adequateengineering surveys for construction: the rule of two D

Вестник МГСУ 1/2014
  • Rakitina Natal'ya Nikolaevna - Mosgorgeotrest geologist, Geologic Supervi- sion Services, Mosgorgeotrest, 11 Leningradskiy Prospekt, Moscow, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Potapov Aleksandr Dmitrievich - Moscow State University of Civil Engineering (MGSU) Doctor of Technical Sciences, Professor, Head, Department of Engineering Geology and Geoecology, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 90-97

In the article the current state of quality supply of engineering surveys for construction is discussed. The main criteria for improving the design quality of buildings and structures for industrial, civil and other purposes is the reliability and adequacy of the results of engineering-geological surveys. The authors show the examples of inadequate study of engineering-geological conditions in the design of structures that led to emergency situations. Consideration of the reasons of accidents in structures showed that they are caused by lack of research conducted, the underestimation of the complexity of geological conditions. In the process of conducting geotechnical investigations the works were focused directly in the enclosure of a designed building, and the features of geological and hydrogeological conditions of the off-site were much more complex. In the process of construction during the sinking of the pit activation suffusion processes occurred, which led to an accident. Underestimation of the use of these geological funds in this example shows that even in the presence of fund materials, which are currently almost not increased, errors may occur due to the notorious savings for research. The requirements to ensuring the reliability and adequacy of engineering-geological surveys, which the authors call "The Rule of two D" (in Russian — Reliability and Adequacy), lie in the existing legal acts. The practice of fulfilling requirements to a large extend shows that the desire to save money at the stage of design and exploration works results in additional costs for additional design, recovery from accidents and works on a new project. The authors critically evaluated the development of engineering and geotechnical engineering instead of geological survey, which is not methodologically and theoretically substantiated and leads to the excluding from engineering surveys the consideration of the off-site geotechnical conditions directly below the designed structure. The authors give the recommendations for improving the examination quality of the results of surveys and recommendations on obligatory increase of geological funds.

DOI: 10.22227/1997-0935.2014.1.90-97

Библиографический список
  1. Osipov V.I., Medvedev O.P., editors. Moskva. Geologiya i gorod [Moscow. Geology and the City]. Moscow, Moskovskie uchebniki i kartolitografiya Publ., 1997, 400 p.
  2. Platov N.A., Potapov A.D., Lavrova N.A., Potapov I.A., Kalashnikov M.A. Inzhenernogeologicheskie izyskaniya v slozhnykh usloviyakh [Geotechnical Investigations in Complicated Conditions]. Moscow, MGSU Publ, 2011, 130 p.
  3. Bryukhan' A.F., Bryukhan' F.F., Potapov A.D. Inzhenerno-ekologicheskie izyskaniya dlya stroitel'stva TES [Engineering and Ecological Studies for the Construction of Thermal Power Plants]. Moscow, ASV Publ., 2008, 193 p.
  4. Potapov A.D. Geotekhnika, est' li povod dlya diskussii [Geotechnics, is There a Reason for Debate]. Inzhenernaya geologiya [Engineering Geology]. 2009, no. 11, pp. 15—19.
  5. Kashperyuk P.I., Potapov A.D. Predmet geotekhniki — osnovaniya sooruzheniy?! [Is the Base of Structures the Subject of Geotechnics?!]. Inzhenernaya geologiya [Engineering Geology]. 2010, no. 1, pp. 12—15.
  6. Kalashnikov M.A., Kashperyuk P.I., Potapov I.A., Khomenko V.P., Potapov A.D. K voprosu o neobkhodimosti modernizatsii normativnykh dokumentov po inzhenerno-geologicheskim izyskaniyam v rayonakh rasprostraneniya karstovykh i suffozionnykh protsessov [On the Question of the Need of Normative Documents Modernization on Engineering and Geological Surveys in the Areas of Karst and Suffusion Processes]. Inzhenernye izyskaniya [Engineering Surveys]. 2010, no. 10, pp. 8—10.
  7. Ziangirov R.S., Potapov A.D. Eshche raz o pravil'nom ponimanii terminov «geotekhnika» i «inzhenerno-geotekhnicheskie izyskaniya» [Once More on the Correct Definition of the Terms "Geotechnics" and "Engineering and Geotechnical Surveys]. Inzhenernye izyskaniya [Engineering Surveys]. 2012, no. 9, pp. 9—12.

Cкачать на языке оригинала

Defining regulatory requirements for water supply systems in Vietnam

Вестник МГСУ 1/2014
  • Deryushev Leonid Georgiyevich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Associated Professor, Department of Water Supply, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Pham Ha Hai - Moscow State University of Civil Engineering (MGSU) postgraduate student, Department of Water Supply, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Deryusheva Nadezhda Leonidovna - Moscow State University of Civil Engineering (MGSU) ostgraduate student, Department of Water Disposal and Aquatic Ecology, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 125-132

In the article the authors offer their suggestions for improving the reliability of the standardization requirements for water supply facilities in Vietnam, as an analog of building regulations of Russia 31.13330.2012. In Russia and other advanced countries the reliability of the designed water supply systems is usual to assess quantitatively. Guidelines on the reliability assessment of water supply systems and facilities have been offered by many researchers, but these proposals are not officially approved. Some methods for assessing the reliability of water supply facilities are informally used in practice when describing their quality. These evaluation methods are simple and useful. However, the given estimations defy common sense and regulatory requirements used by all the organizations, ministries and departments, for example, of Russia, in the process of allowances for restoration and repair of water supply facilities. Inadequacy of the water supply facilities assessment is shown on the example of assessing the reliability of pipeline system. If we take MTBF of specific length of the pipeline as reliability index for a pipeline system, for example, 5 km, a pipeline of the similar gauge, material and working conditions with the length of 5 m, according to the estimation on the basis of non-official approach, must have a value of MTBF 1000 times greater than with the length of 5 km. This conclusion runs counter to common sense, for the reason that all the pipes in the area of 5 km are identical, have the same load and rate of wear (corrosion, fouling, deformation, etc.). It was theoretically and practically proved that products of the same type in the same operating conditions (excluding determined impact of a person), work as an entity, which MTBF is equal to the average lifetime. It is proposed to take the average service life as a reliability indicator of a pipeline. Durability, but not failsafety of the pipe guarantees pipeline functioning. It is proved that not a specific pipeline length should be taken for an element of a pipeline system, but the repair area, which is in two sides limited by isolation valve and is completely disconnected for the time of recovery or any other need.

DOI: 10.22227/1997-0935.2014.1.125-132

Библиографический список
  1. Regulations 31.13330.2012. Vodosnabzhenie. Naruzhnye seti i sooruzheniya «Aktualizirovannaya redaktsiya SNiP 2.04.02—84» (utv. Prikazom Minregiona Rossii ot 29.12.2011 ¹ 635/14) [Water Supply. External Supply Lines and Constructions “Revised Edition of Construction Regulations 2.04.02—84” (Approved by the Directive of the Ministry of Regional Development of Russia 29.12.2011 ¹ 635/14]. Moscow, 2012.
  2. Regulations 32.13330.2012. Kanalizatsiya. Naruzhnye seti i sooruzheniya. «Aktualizirovannaya redaktsiya SNiP 2.04.03—85» (utv. Prikazom Minregiona Rossii ot 29.12.2011 ¹ 635/11) [Conduit. External Supply Lines and Constructions “Revised Edition of Construction Regulations 2.04.02—85” (Approved by the Directive of the Ministry of Regional Development of Russia 29.12.2011 ¹ 635/11). Moscow, 2012.
  3. RF Government Regulation from 16.02.2008 # 87 (Edition from 08.08.2013) «O sostave razdelov proektnoy dokumentatsii i trebovaniyakh k ikh soderzhaniyu» (s izmeneniyami i dopolneniyami, vstupayushchimi v silu s 01.01.2014) [On the Composition of the Chapters of Planning Documentation and Requirements to their Content].
  4. TCVN Vietnam 33—2006. Water Supply — Distribution System and Facilities — Design Standard.
  5. GOST 27.002—89. Nadezhnost' v tekhnike. Terminy i opredeleniya [All Union State Standard 27.002—89. Reliability of Technology. Terms and Definitions]. Moscow, 1989.
  6. GOST R 53480—2009. Nadezhnost' v tekhnike. Terminy i opredeleniya [All Union State Standard R 53480—2009. Reliability of Technology. Terms and Definitions]. Moscow, 2009.
  7. GOST 27.003—83. Vybor i normirovanie pokazateley nadezhnosti [All Union State Standard 27.003—83. Choice and Standardization of Reliability Index]. Moscow, 2009.
  8. Methodical Guidelines 3-69. Metodika vybora nomenklatury normiruemykh pokazateley nadezhnosti tekhnicheskikh ustroystv [Choice Procedure of the List of Standardized Reliability Index of Technical Devices]. Moscow, 1970.
  9. Gnedenko B.V., Belyaev Yu.K., Solov'ev A.D. Matematicheskie metody v teorii nadezhnosti [Mathematical Methods in the Reliability Theory]. Moscow, Nauka Publ., 1965.
  10. Barlou R., Proshan F. Matematicheskaya teoriya nadezhnosti [Mathematical Reliability Theory]. Moscow, Sovetskoe radio Publ., 1969, pp. 36—37.
  11. Skotnikov Yu.A. Statistika povrezhdeniy vodoprovodnykh setey [Statistics of Water Supply Systems Damages]. Problemy nadezhnosti sistem vodosnabzheniya: Tezisy dokladov Vsesoyuznoy konferentsii po nadezhnosti sistem vodosnabzheniya [Problems of Water Supply Systems Reliability: Reports of All-Union Conference on Water Supply Systems Reliability]. Moscow, 1973, pp. 53—60.
  12. Normy amortizatsionnykh otchisleniy na polnoe vosstanovlenie osnovnykh fondov narodnogo khozyaystva SSSR: Postanovlenie Soveta Ministrov SSSR 22.10.1990 g. ¹ 1072 [Norms of Amortization on Full Recovery of the Main Funds of National Economy of the USSR from 22.10.1990 ¹ 1072]. Available at: http://www.consultant.ru/document/cons_doc_LAW_1927/?frame=2. Date of access: 15.11.2013.
  13. ASTM D2992—96. Standard Practice for Obtaining Hydrostatic or Pressure Design Basis for Fiberglass (Glass-Fiber-Reinforced Thermosetting-Resin) Pipe and Fittings. Available at: http://www.astm.org/DATABASE.CART/HISTORICAL/D2992-96E1.htm. Date of access: 20.11.2013.
  14. Abramov N.N. Nadezhnost' sistem vodosnabzheniya [Reliability of Water Supply Systems]. Moscow, Stroyizdat Publ., 1979.
  15. Deryushev L.G., Minaev A.V. Otsenka nadezhnosti sistem vodosnabzheniya [Reliability Estimation of Water Supply Systems]. Vodosnabzhenie i sanitarnaya tekhnika [Water Supply and Sanitary Engineering]. 1988, no. 11, pp. 4—5.
  16. Deryushev L.G. Pokazateli nadezhnosti truboprovodnykh sistem vodosnabzheniya i vodootvedeniya [Reliability Index of Water Supply and Water Disposal Systems]. Vodosnabzhenie i sanitarnaya tekhnika [Water Supply and Sanitary Engineering]. 2000, no. 12, pp. 6—9.
  17. Herz R.K. Protsess stareniya i neobkhodimost' vosstanovleniya vodoprovodnykh setey [Ageing Processes and Rehabilitation Needs of Drinking Water Distribution Networks]. AKVA Publ., 1996, no. 9, pp. 6—8.
  18. Haviland R.P. Inzhenernaya nadezhnost' i raschet na dolgovechnost' [Engineering Reliability and Long Life Design]. Moscow, Energiya Publ., 1966.

Cкачать на языке оригинала

Efficient methods of piping cleaning

Вестник МГСУ 1/2014
  • Orlov Vladimir Aleksandrovich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Technical Sciences, Professor, Head of the Department of Water Supply and Waste Water Treatment, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Nechitaeva Valentina Anatol'evna - Moscow State University of Civil Engineering (MGSU) Associate Professor, Department of Water Sup- ply, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Bogomolova Irina Olegovna - Moscow State University of Civil Engineering (MGSU) Assistant, Department of Water Supply, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Shaykhetdinova Yuliya Aleksandrovna - Moscow State University of Civil Engineering (MGSU) student, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Daminova Yuliya Farikhovna - Moscow State University of Civil Engineering (MGSU) student, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 133-138

The article contains the analysis of the efficient methods of piping cleaning of water supply and sanitation systems. Special attention is paid to the ice cleaning method, in course of which biological foil and various mineral and organic deposits are removed due to the ice crust buildup on the inner surface of water supply and drainage pipes. These impurities are responsible for the deterioration of the organoleptic properties of the transported drinking water or narrowing cross-section of drainage pipes. The co-authors emphasize that the use of ice compared to other methods of pipe cleaning has a number of advantages due to the relative simplicity and cheapness of the process, economical efficiency and lack of environmental risk. The equipment for performing ice cleaning is presented, its technological options, terms of cleansing operations, as well as the volumes of disposed pollution per unit length of the water supply and drainage pipelines. It is noted that ice cleaning requires careful planning in the process of cooking ice and in the process of its supply in the pipe. There are specific requirements to its quality. In particular, when you clean drinking water system the ice applied should be hygienically clean and meet sanitary requirements.In pilot projects, in particular, quantitative and qualitative analysis of sediments ad- sorbed by ice is conducted, as well as temperature and the duration of the process. The degree of pollution of the pipeline was estimated by the volume of the remote sediment on 1 km of pipeline. Cleaning pipelines using ice can be considered one of the methods of trenchless technologies, being a significant alternative to traditional methods of cleaning the pipes. The method can be applied in urban pipeline systems of drinking water supply for the diameters of 100—600 mm, and also to diversion collectors. In the world today 450 km of pipelines are subject to ice cleaning method.Ice cleaning method is simple, quick, effective, economical and environmentally safe compared to other methods, allowing to remove the growths of biofilms and other pollution and maintain the hydraulic performance of pipeline operation at the expense of drawing on the internal surface of pipes of ice crust.

DOI: 10.22227/1997-0935.2014.1.133-138

Библиографический список
  1. Khramenkov S.V. Strategiya modernizatsii vodoprovodnoy seti [The Modernization Strategy of Water Supply Systems]. Moscow, Stroyizdat Publ., 2005, 398 p.
  2. Kuliczkowski A., Kuliczkowska E., Zwierzchowska A. Technologie beswykopowe w inzeynierii srodowiska. Wydawnictwo Seidel-Przywecki Sp. Kielce, 2010, 735 p.
  3. Pinguet J.-F., Meynardie G. Reseaux d'assainissement: du diagnostic a la rehabilitation. Eau, Industry, Nuisances. 2006, no. 295, pp. 39—43.
  4. Zwierzchowska A. Technologie bezwykopowej budowy sieci gazowych, wodociagowych i kanalizacyjnych. Politechnika swietokrzyska. Kielce, 2006, 180 p.
  5. Rameil M. Handbook of Pipe Bursting Practice. Vulkan verlag. Essen, 2007, 351 p.
  6. Orlov V.A., Meshkova N.I. Ul'trazvukovaya sistema Piglet. Vnutrenniy osmotr i prochistka truboprovodov [Ultrasound System Piglet. Internal Inspection and Cleaning of Pipelines]. Tekhnologii Mira [Technologies of the World]. 2012, no. 5, pp. 43—44.
  7. Stephenson M. Ice Pigging — a NO-DIG Technique for Cleaning Pressurized Pipes. NO-DIG 2013, Sydney (Australia). Available at: www.nodigdownunder.com. Date of access: 19.11.2013.
  8. Khramenkov S.V., Orlov V.A., Khar'kin V.A. Optimizatsiya vosstanovleniya vodootvodyashchikh setey [Restoration Optimization of Gravity Systems]. Moscow, Stroyizdat Publ., 2002, pp. 160.
  9. Santiago A., Durango M. Most Advanced Technology for Pipeline Inspection in the World: See, Measure and Navigate in 3D through Pipes and Manholes. NO-DIG 2012, Sao Paulo (Brasil). Available at: www.nodigsaupaulo2012.com. Date of access: 22.02.2013.
  10. Orlov V.A., Orlov E.V., Zverev P.V. Tekhnologii mestnogo bestransheynogo remonta vodootvodyashchikh truboprovodov [Technologies for Sectional Trenchless Repair of Water Discharge Pipelines]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2013, no. 7, pp. 86—95.

Cкачать на языке оригинала

Features of internal water supply and water disposal of shopping centers

Вестник МГСУ 1/2014
  • Orlov Evgeniy Vladimirovich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Scienc- es, Associate Professor, Department of Water Supply, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 139-145

Pipeline from an external system should be inlet in the part of the building where a large number of water folding devices will be concentrated. As a rule, for shopping cen- ters with a lot of water consumers it is necessary to make not less than three inputs, each of them should be connected to different areas of an external ring water supply system in order to make the work of the system more reliable.The places for water folding fittings in shopping centers are the following. The water folding devices: mixers are placed in sanitary cabins of shopping centers. Usually, for for water saving in buildings with a big pass-through capacity per hour it is reasonable to use contactless mixers, which are turned on upon raising a hand with a help of motion sensor or light sensor. Another important argument in favor of such mixers is prevention of infections spread for the reason that the consumer doesn't touch the device, so, the risk of bacteria transmission via the device decreases. Such mixer supplies water with a demanded expense and temperature. As a rule, water for such mixers moves from the centralized internal water supply system of hot water, mixing up with cold water. If there is no centralized hot water supply system, it is possible to use hot water storage heaters in case of a small number of visitors or to reject mixers at all in favor of the cranes giving water of only one temperature (cold), which is also practiced.For the branch of economic and household the water receivers are used, which are present in sanitary cabins in most cases by toilet bowls, wash basins, urinals.

DOI: 10.22227/1997-0935.2014.1.139-145

Библиографический список
  1. Shonina N.A. Vodosnabzhenie i vodootvedenie v usloviyakh kraynego severa [Water Supply and Water Disposal in the Far North]. Santekhnika [Sanitary Engineering]. 2012, no. 5, pp. 32—44.
  2. Brodach M.M. Zelenoe vodosnabzhenie i vodootvedenie [Green Water Supply and Water Disposal]. Santekhnika [Sanitary Engineering]. 2009, no. 4, pp. 6—10.
  3. Orlov E.V. Vodo- i resursosberezhenie. Zhilye zdaniya kottedzhnykh i dachnykh poselkov [Water and Rresource-saving. Residential Buildings of Cottage and Housing Estates]. Tekhnologii mira [Technologies of the World]. 2012, no. 10, pp. 35—41.
  4. Isaev V.N. Sotsial'no-ekonomicheskie aspekty vodosnabzheniya i vodootvedeniya [Social and Economic Aspects of Water supply and Water Disposal]. Santekhnika [Sanitary Engineering]. 2007, no. 1, pp. 8—17.
  5. Naumov A.L., Brodach M.M. Resursosberezhenie v sistemakh vodosnabzheniya i vodootvedeniya [Resource-saving in Water Supply and Water Disposal Systems]. Santekhnika [Sanitary Engineering]. 2012, no. 1, pp. 14—20.
  6. Isaev V.N., Chukhin V.A., Gerasimenko A.V. Resursosberezhenie v sisteme khozyaystvenno-pit'evogo vodoprovoda [Resource-saving in the System of Utility and Drinking Water Supply]. Santekhnika [Sanitary Engineering]. 2011, no, 3, pp. 14—17.
  7. Brodach M.M. Ot vodosberezheniya k zdaniyu s nulevym vodopotrebleniem [From Water Savings to a Building with Zero Water Consumption]. Santekhnika [Sanitary Engineering]. 2010, no. 6, pp. 32—37.
  8. Shonina N.A. Osobennosti proektirovaniya sistem vodosnabzheniya i kanalizatsii maloetazhnykh zdaniy [Design Features of Water supply and Sewerage Systems of Low-rise Buildings]. Santekhnika [Sanitary Engineering]. 2010, no. 3, pp. 56—58.
  9. Peter-Varbanets M., Zurbr?gg C., Swartz C., Pronk W. Decentralized Systems for Potable Water and the Potential of Membrane Technology. Water Research. 2009, vol. 43, no. 2, pp. 245—265.
  10. Tabunshchikov Yu.A., Naumov A.L., Miller Yu.V. Kriterii energoeffektivnosti v «zelenom» stroitel'stve [Criteria of Enerfy Efficiency in “Green” Engineering]. Energosberezhenie [Energy Saving]. 2012, no. 1, pp. 23—26.
  11. Pugachev E.A., Isaev V.N. Effektivnoe ispol'zovanie vody [Efficient Use of Water]. Moscow, ASV Publ., 2012, 432 p.

Cкачать на языке оригинала

Probability and statistical correlation of the climatic parameters for estimatingenergy consumption of a building

Вестник МГСУ 1/2014
  • Samarin Oleg Dmitrievich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Assistant Professor, Department of the Heating and Ventilation, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoye shosse, Moscow, 129337, Russian Federa- tion; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 146-152

The problem of the most accurate estimation of energy consumption by ventilation and air conditioning systems in buildings is a high-priority task now because of the decrease of energy and fuel sources and because of the revision of building standards in Russian Federation. That’s why it is very important to find simple but accurate enough correlations of the climatic parameters in heating and cooling seasons of a year.Therefore the probabilistic and statistical relationship of the parameters of external climate in warm and cold seasons are considered. The climatic curves for cold and warm seasons in Moscow showing the most probable combinations between the external air temperature and the relative air humidity are plotted using the data from the Design Guidelines to the State Building Code “Building Climatology”. The statistical relationship of the enthalpy and the external air temperature for climatic conditions of Moscow are determined using these climatic curves and formulas connecting relative air humidity and other parameters of the air moisture degree.The mean value of the external air enthalpy for the heating season is calculated in order to simplify the determination of full heat consumption of ventilating and air conditioning systems taking into account the real mean state of external air. The field of ap- plication and the estimation of accuracy and standard deviation for the presented dependences are found. The obtained model contains the only independent parameter namely the external air temperature and therefore it can be easily used in engineering practice especially during preliminary calculation.

DOI: 10.22227/1997-0935.2014.1.146-152

Библиографический список
  1. Gagarin V.G., Kozlov V.V. Trebovaniya k teplozashchite i energeticheskoy effektivnosti v proyekte aktualizirovannogo SNiP “Teplovaya zashchita zdaniy” [The Requirements to the Thermal Performance and Energy Efficiency in the Project of Actualized State Building Code «Thermal Performance of the Buildings»]. Zhilishchnoye stroitel’stvo [House Construction]. 2011, no. 8, pp. 2—6.
  2. Gagarin V.G., Kozlov V.V. O trebovaniyakh k teplozashchite i energeticheskoy effektivnosti v proyekte aktualizirovannoy redaktsii SNiP “Teplovaya zashchita zdaniy” [On the Requirements to the Thermal Performance and Energy Efficiency in the Project of Actualized State Building Code «Thermal Performance of the Buildings»]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2011, no. 7, pp. 59—66.
  3. Gagarin V.G. Makroekonomicheskiye aspekty obosnovaniya energosberegayushchikh meropriyatiy pri povyshenii teplozashchity ograzhdayushchikh konstruktsiy zdaniy [The Macroeconomic Factors of Energy Saving Measures Justification in Case of Increasing the Thermal Performance of Building Enclosures]. Stroitel’nye materialy [Construction Materials]. 2010, no. 3, pp. 8—16.
  4. ?liogerien? J., Kaklauskas A., Zavadskas E.K., Bivainis J., Seniut M. Environment Factors of Energy Companies and their Effect on Value: Analysis Model and Applied Method. Technological and Economic Development of Economy. 2009, vol. 15, no. 3, pp. 490—521.
  5. Uzsilaityte L., Martinaitis V. Impact of the Implementation of Energy Saving Measures on the Life Cycle Energy Consumption of the Building. Paper of the conference of VGTU. 2008, vol. 2, pp. 875—881.
  6. Wang J., Zhai Z., Jing Y., Zhang Ch. Influence Analysis of Building Types and Climate Zones on Energetic, Economic and Environmental Performances of BCHP Systems. Applied Energy. 2011, vol. 88, no. 9, pp. 3097—3112.
  7. Samarin O.D. Integral’nye kharakteristiki otopitel’nogo perioda [Integral Characteristics of the Heating Season]. SOK [Sanitary Engineering, Heating and Air Conditioning]. 2010, no. 2, pp. 38—40.
  8. Samarin O.D., Matveyeva E.G. Opredeleniye parametrov okhladitel’nogo perioda [Determination of the Parameters of the Cooling Season]. SOK [Sanitary Engineering, Heating and Air Conditioning], 2013, no. 1, pp. 120—122.
  9. Bulgakov S.N., Bondarenko V.M., Kuvshinov Yu.Ya. and oth. Teoriya zdaniya. T. 1. Zdanie — obolochka [Theory of a Building. Vol. 1. Building — Envelope]. Moscow, ASV Publ., 2007, 280 p.
  10. Savin V.K., editor. Stroitel’naya klimatologiya: Spravochnoye posobiye k SNiP 23-01—99* [Building Climatology: Design Guideline to State Building Code 23-01—99*]. Moscow, NIISF Publ., 2006, 250 p.

Cкачать на языке оригинала

Efficiency potential of management and technical solutions for a construction object

Вестник МГСУ 1/2014
  • Lapidus Azariy Abramovich - Moscow State University of Civil Engineering (National Research University) (MGSU) Professor, Doctor of Engineering, Chair, Department of Technology and Management of the Construction, Honored Builder of the Russian Federation, Recipient of the Prize of the Russian Federation Government in the field of Science and Technology, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 175-180

The authors investigate the models of efficiency potential of management and technical solutions for a construction object, which allows accounting for the influence of management-technological and administrative solutions in the process of implementing construction project. The solutions are represented by various factors – solitary integral potentials. The factors, which should be taken into account in the process of developing an integral model, are: development of general contracting structure, project decisions, management decisions, administrative decisions and ecological impact. In is necessary to develop the model, which will integrally put together the above mentioned factors of a construction project, observe and investigate other factors, create a model and get the opportunity not only to predict the endpoint of the future construction object on the stage of formulating technological requirements, but also to monitor the changes of this prognosis in time. The parameters of the integral potential will allow the system to obtain flexibility, which makes it possible to adjust to the changes usually taking place on a con- struction object and at the same time to aim for optimization of organizational, technological and administrative solutions in the process of reaching endpoint of construction.

DOI: 10.22227/1997-0935.2014.1.175-180

Библиографический список
  1. Lapidus A.A., Demidov L.P. Issledovaniya integral'nogo pokazatelya kachestva, uchityvayushchego vliyanie organizatsionno-tekhnologicheskikh resheniy pri formirovanii stroitel'noy ploshchadki [Investigation of the Integral Quality Parameter, which Takes into Account the Influence of Organizational and Technological Solutions in the Process of Developing Construction Site]. Tekhnologiya i organizatsiya stroitel'nogo proizvodstva [Technology and Management of Construction Operations]. 2013, no. 3, pp. 44—46.
  2. Lapidus A.A., Berezhnyy A.Yu. Matematicheskaya model' otsenki obobshchennogo pokazatelya ekologicheskoy nagruzki pri vozvedenii stroitel'nogo ob"ekta [Mathematical Estimation Model for a Composite Index of Environmental Impact in the Process of Construction]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2012, no. 3, pp. 149—153.
  3. Lapidus A.A., Saydaev Kh.L-A. Vliyanie parametrov formirovaniya organizatsionnoy struktury stroitel'noy kompanii na obobshchennyy pokazatel' ekologicheskoy nagruzki [Influence of the Parameters of a Construction Company Development on a Composite Index of Environmental Impact]. Tekhnologiya i organizatsiya stroitel'nogo proizvodstva [Technology and Management of the Construction Operations]. 2012, no. 1, pp. 50—52.
  4. Orlov K.O. Kompleksnyy pokazatel' rezul'tativnosti proektov massovoy maloetazhnoy zastroyki pri ispol'zovanii razlichnykh sovremennykh tekhnologiy modul'nogo domostroeniya [Complex Performance Indicator of the Mass Low-rise Building Development Projects Using Various Modern Technologies of Modular Housing]. Tekhnologiya i organizatsiya stroitel'nogo proizvodstva [Technology and Management of the Construction Operations]. 2013, no. 1, pp. 40—42.
  5. Gusakov A.A. Sistemotekhnika stroitel'stva [System Techniques of the Construction]. Moscow, ASV Publ., 2004.
  6. Marugin V.M., Azgal'dov G.G. Kvalimetricheskaya ekspertiza stroitel'nykh ob"ektov [Qualimetric Inspection of Construction Objects]. Saint Petersburg, Politekhnika Publ., 2008, 527 p.

Cкачать на языке оригинала

Computer modeling for investigating the stress-strainstate of beams with hybrid reinforcement

Вестник МГСУ 1/2014
  • Rakhmonov Ahmadzhon Dzhamoliddinovich - Volga State University of Technology (PGTU) postgraduate student, Department of Building Structures and Footings, Volga State University of Technology (PGTU), 3 Lenin sq., Yoshkar-Ola, 424000, Republic of Mari El, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Solovʹov Nikolai Pavlovich - Volga State University of Technology (PGTU) Candidate of Technical Sciences, Senior Lecturer, De- partment of Building Structures and Footings, Volga State University of Technology (PGTU), 3 Lenin sq., Yoshkar-Ola, 424000, Republic of Mari El, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Pozdeev Viktor Mikhailovich - Volga State University of Technology (PGTU) Candidate of Technical Sciences, Chair, Department of Building Structures and Footings, Volga State University of Technology (PGTU), 3 Lenin sq., Yoshkar-Ola, 424000, Republic of Mari El, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 187-195

In this article the operation of a continuous double-span beam with hybrid reinforcement, steel and composite reinforcement under the action of concentrated forces is considered. The nature of stress-strain state of structures is investigated with the help of computer modeling using a three-dimensional model. Five models of beams with different characteristics were studied. According to the results of numerical studies the data on the distribution of stresses and displacements in continuous beams was provided. The dependence of the stress-strain state on increasing the percentage of the top re- inforcement (composite) of fittings and change in the concrete class is determined and presented in the article. Currently, the interest in the use of composite reinforcement as a working reinforcement of concrete structures in Russia has increased significantly, which is reflected in the increase of the number of scientific and practical publications devoted to the study of the properties and use of composite materials in construction, as well as emerging draft documents for design of such structures. One of the proposals for basalt reinforcement application is to use it in bending elements with combined reinforcement. For theoretical justification of the proposed nature of reinforcement and improvement of the calculation method the authors conduct a study of stress-strain state of continuous beams with the use of modern computing systems. The software program LIRA is most often used compared to other programs representing strain-stress state analysis of concrete structures.

DOI: 10.22227/1997-0935.2014.1.187-195

Библиографический список
  1. Stepanova V.F., Stepanov F.Yu. Nemetallicheskaya kompozitnaya armatura dlya betonnykh konstruktsiy [Non-metallic Composite Reinforcement for Concrete Structures]. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering]. 2013, no. 1, pp. 45—47.
  2. Zyuzin R.S. Konstruktivnye osobennosti armirovaniya betonnykh konstruktsiy korrozionnostoykoy nemetallicheskoy kompozitnoy armatury [Design Features of Concrete Structures Reinforcement Using Corrosion Resistant Nonmetallic Composite Reinforcement]. Beton i zhelezobeton [Concrete and Reinforced Concrete]. 2009, no. 5, pp. 9—11.
  3. Kiba I. Vtoroe rozhdenie kompozitnoy armatury [The Second Birth of Composite Reinforcement]. Stroitel'nye materialy, oborudovanie, tekhnologii XXI veka [Building Materials, Equipment, Technologies of the 21st Century]. 2013, no. 8 (175), pp. 28—29.
  4. Madatiyan S.A. Perspektivy razvitiya stal'noy i nemetallicheskoy armatury zhelezobetonnykh konstruktsiy [Prospects of the Development of Steel and Non-metallic Reinforcing of Concrete Structures]. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering]. 2002, no. 9, pp. 16—19.
  5. Rakhmonov A.D., Solov'ev N.P. Predlozheniya po primeneniyu kompozitnoy armatury v karkasakh zdaniy [Proposals on Composite Reinforcement Application in the Framework of Buildings]. Vestnik SiBADI [Proceedings of Siberian State Automobile and Highway Academy]. 2013, no. 5, pp. 69—74.
  6. Rakhmonov A.D., Solov'ev N.P. Patent RF 134965, MPK E04S 3/20 U1. Balka monolitnogo zhelezobetonnogo mezhduetazhnogo perekrytiya. Zayavitel' i patentoobladatel' Povolzhskiy gosudarstvennyy tekhnologicheskiy universitett. Zayav. 03.06.2013, opubl. 27.11.2013, Byul. ¹ 1 [RF Patent 134965, IPC E04S 3/20 U1. Monolithic Reinforced Concrete Beam of Floor Structure. Applicant and patentee Volga State University of Technology. Appl. 03.06.2013, published 27.11.2013, Bulletin no. 1]. 2 p.
  7. Zaikin V.G., Valuyskikh V.P. Regulirovanie usiliy v nerazreznykh konstruktsiyakh v sostave kompleksnogo rascheta PK LIRA [Regulation of Strains in Continuous Structures as Part of Complex Calculation Using Software LIRA]. Beton i zhelezobeton [Concrete and Reinforced Concrete]. 2011, no. 6, no. 13—15.
  8. Zaikin V.G. Primenenie metoda avtomatizirovannogo pereraspredeleniya usiliy komp'yuternogo rascheta dlya monolitnykh plit perekrytiy bezrigel'nogo karkasa [Application of the Method of Computer Aided Redistribution of Computer Calculation Efforts for Monolithic Floor Slabs of the Frame without Collar Beams]. Beton i zhelezobeton [Concrete and Reinforced Concrete]. 2013, no. 3, pp. 25—28.
  9. Rakhmonov A.D., Solov'ev N.P. Vliyanie kombinirovannogo armirovaniya na napryazhenno-deformirovannoe sostoyanie izgibaemykh zhelezobetonnykh elementov [Combined Influence of Reinforcement on Stress-strain State of Bending Reinforced Concrete Elements]. Trudy Povolzhskogo gosudarstvennogo tekhnologicheskogo universiteta: Ezhegodnaya nauchno-tekhnicheskaya konferentsiya professorskogo sostava, doktorantov, aspirantov i sotrudnikov PGTU [Works of the Volga State Technological University: Annual Scientific and Technical Conference of PGTU Professors, Doctoral Students, Postgraduate Students and Staff]. Yoshkar-Ola, 2013, pp. 271—276.
  10. Jankowaik I., Madaj A. Numerical Modelling of the Composite Concrete — Steel Beam Inter—layer Bond. 8th Conference of Composite Structures. Zielona Gora, 2008. pp. 131—148.
  11. Floros D., Ingason O.A. Modeling and Simulation of Reinforced Concrete Beams. Chalmers University of Technology, Sweden, 2013, 78 p.
  12. Belakhdar K. Nonlinear Finite Element Analysis of Reinforced Concrete Slab Strengthened With Shear Bolts. Jordan Journal of Civil Engineering. 2008, vol. 2, no 1, pp. 32—44.

Скачать статью

Logistic description of investment and construction management

Вестник МГСУ 1/2014
  • Sborshchikov Sergey Borisovich - Moscow State University of Civil Engineering (National Research University) (MGSU) Doctor of Economic Sciences, Professor, acting chair, Department of Technology, Organization and Management in the Construction, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Lazareva Natal'ya Valer'evna - Moscow State University of Civil Engineering (MGSU) assistant, Department of Organization Technology and Management in Construction, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 196-201

The article is devoted to the questions of defining dynamic behavior of investment and construction activity as a technical and economic system and its formalized description. It is offered to use the term "condition vector" as one of the main characteristics while describing investment and construction activity. Logistic interpretation of a sustainable development of investment and construction defines the concept of optimum trajectory, which considers various dependencies of its components (construction operations, their preparation, design, material, technique, personnel, information, investment, etc.). It is necessary to point out that this state is homeostatic, which means, the managing system must provide continuous monitoring of each system component of investment and construction activities in accordance with the sustainable development pathway. The concept of dynamic balance used in logistics is identical to the concept of homeostatic balance, which is accepted in system engineering. It is defined as a property of technical and economic system, which implies that its deviations from the development pathway lie within admissible values.

DOI: 10.22227/1997-0935.2014.1.196-201

Библиографический список
  1. Sborshchikov S.B. Teoreticheskie zakonomernosti i osobennosti organizatsii vozdeystviy na investitsionno-stroitel'nuyu deyatel'nost' [Theoretical Patterns and Characteristics of the Impacts Organization on Investment and Construction Activity]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2009, no. 4, pp.183—187.
  2. Zharov Ya.V. Uchet organizatsionnykh aspektov pri planirovanii stroitel'nogo proizvodstva v energetike [Accounting for the Organizational Aspects in the Process of Planning Building Operations in the Power Industry]. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering]. 2013, no. 5, pp. 69—71.
  3. Sborshchikov S.B. Teoreticheskie osnovy formirovaniya novykh organizatsionnykh skhem realizatsii investitsionno-stroitel'nykh proektov v energeticheskom sektore na osnove integratsii printsipov inzhiniringa i logistiki [The Theoretical Basis of the Formation of New Organizational Schemes in Investment and Construction Projects in the Energy Sector Basing on the Integration of Engineering and Logistics Principles]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2009, no. 1, pp. 146—150.
  4. Pobegaylov O. A., Shemchuk A.V. Sovremennye informatsionnye sistemy planirovaniya v stroitel'stve [Modern Information Systems of Planning in Construction]. Inzhenernyy vestnik Dona [Engineering Proceedings of Don]. 2012, no. 2, pp. 20—25.
  5. Song Y., Chua D.K.H. Modeling of Functional Construction Requirements for Constructability Analysis. Journal of Construction Engineering and Management. 2006, vol. 132, no. 12, pp.1314—1326.
  6. Aleksanin A.V. Kontseptsiya upravleniya stroitel'nykh otkhodov na baze kompleksnykh i informatsionnykh logisticheskikh tsentrov [The Concept of Construction Waste Management on the Basis of Complex and Informational Logistics Centers]. Nauchnoe obozrenie [Scientific Review]. 2013, no. 7, pp. 132—136.
  7. Shevchenko V.S. Osobennosti upravleniya i motivatsii personala v usloviyakh innovatsionnoy deyatel'nosti stroitel'nogo predpriyatiya [Features of Staff Management and Motivation in Case of Innovation Activity in a Building Enterprise]. Novyy universitet. Seriya: ekonomika i pravo [New University. Series: Economics and Law]. 2012, no.12, pp. 39—42.
  8. A. Georges L. Romme, Endenburg G. Design: Construction Principles and Design Rules in the Case of Circular Design. Organization Science. 2006, March/April, vol. 17, no. 2, pp. 287—297.
  9. May R.C., Puffer S.M., McCarthy D.J. Transferring Management Knowledge to Russia: a Culturally Based Approach. Academy of Management. 2009, vol. 19, no. 2, pp. 24—35.
  10. Dossick C.S., Neff G. Messy Talk and Clean Technology: Communication, Problemsolving and Collaboration Using Building Information Modelling. Engineering Project Organization Journal. 2011, vol. 1, no. 2, ðð. 83—93. Online publication date: 1.07.2011.

Cкачать на языке оригинала

Сохранение городских объектов историко-архитектурного наследия

Вестник МГСУ 1/2014
  • Бальзанникова Екатерина Михайловна - Самарский государственный архитектурно-строительный университет (ФГБОУ ВПО «СГАСУ») ассистент кафедры архи- тектуры, Самарский государственный архитектурно-строительный университет (ФГБОУ ВПО «СГАСУ»), 443001, г. Самара, ул. Молодогвардейская, д. 194; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 15-24

Рассмотрена проблема сохранения городских объектов, обладающих значительной исторической и архитектурной ценностью. Приведены примеры использования таких объектов в современных условиях. Описан авторский комплексный метод по обеспечению сохранения ценных городских объектов историко-архитектурного наследия.

DOI: 10.22227/1997-0935.2014.1.15-24

Библиографический список
  1. Рыбальченко Ю.Д., Самогоров В.А. Градостроительные преобразования в провинциальных городах России XVIII — начала XX вв. // Приволжский научный журнал. 2009. № 2. С. 65—71.
  2. Бальзанникова Е.М. Градостроительное формирование Самары и развитие промышленности города в конце XIX — начале XX в. // Вестник СГАСУ. Градостроительство и архитектура. 2011. № 1. С. 44—48.
  3. Самогоров В.А., Иванов М.О. Архитектура Александра и Петра Щербачевых в Самаре. Самара, 2004. 119 с.
  4. Вавилонская Т.В. Задачи системного планирования в условиях архитектурно-исторической среды // Вестник МГСУ. 2009. № 2. С. 14—17.
  5. Вавилонская Т.В. Стратегия обновления архитектурно-исторической среды : монография. Самара : Самарский гос. архит.-строит. ун-т, 2008. 368 с.
  6. Каркарьян В.Г. Деревянное зодчество Самары, или Осень патриархов. Самара : Агни, 2002. 152 с.
  7. Baranova T.V., Kosenkova N.A. Synthetic image of orthodox architecture in the Middle Volga // Sacred architecture in shaping the identity of place. Politechnika Lubelska, Lublin, 2006, pp. 149—157.
  8. Cevat Erder. Our architectural heritage: from consciousness to conversation. UNESCO, United Kingdom, 1986, 236 p.
  9. Бальзанников М.И., Приворотский Д.С. Решение вопросов зрительного восприятия при строительстве храма св. Георгия Победоносца в Самаре // Architektura sakralna w ksztaltovaniu tozsamosci kulturowej miejsca. Lublin: Wydawnictwo Politechniki Lubelskiej. 2006, pp. 345—357.
  10. Bernard Feilden, Perek Linstrum. A European view // New uses for old buildings. Architectural conservation in Europe / Edited by Sherban Cantacuzino. Watson-Guptill Publications, New York, 1975, pр. 127—130.
  11. Bernard Feilden. Conservation of Historical Buildings // London, Butterworth and Co (Publishers) Ltd., 1982, pp. 6—12.
  12. Dennis Rodwell. Conversation legislation // New uses for old buildings. Architectural conservation in Europe / Edited by Sherban Cantacuzino. Watson-Guptill Publications, New York, 1975, pp. 127—136.
  13. Рыбачева О.С., Самогоров В.А. Понятие «Самарский двор» в системе правоустанавливающих и градорегулирующих документов // Вестник Томского гос. архит.-строит. ун-та. 2012. № 4 (37). С. 65—74.
  14. Самогоров В.А., Бальзанникова Е.М. Предприятия по производству строительных материалов в Самарском крае в конце XIX — начале XX веков // Вестник Волжского регионального отделения РААСН. 2013. № 16. С. 122—126.
  15. Бальзанникова Е.М. История развития предприятий мукомольной промышленности в Самаре в конце XIX — начале XX веков // Вестник СГАСУ. Градостроительство и архитектура. 2012. № 3. С. 6—10.
  16. Бальзанникова Е.М. Реконструкция промышленной застройки по принципу организации лофтов // Традиции и инновации в строительстве и архитектуре : Материалы 69-й Всеросс. науч-техн. конф. Самара : СГАСУ, 2012. Часть 1. С. 401—404.
  17. Указания по технологии ремонтно-строительного производства и технологические карты на работы при капитальном ремонте жилых домов. 2-е изд., перераб. и доп. Кн. 1. Общественные работы / под общ. ред. С.Д. Химунина. Л. : Стройиздат, Ленинградское отд., 1977. 432 с.
  18. Самогоров В.А., Рыбачева О.С. Реконструкция исторической части Самары с учетом сложившихся границ участков землепользования (дворовых пространств) // Вестник Волгогр. гос. архит-строит. ун-та. Сер.: Стр-во и архит. 2013. № 31 (50). Ч. 1. Города России. Проблемы проектирования и реализации. С. 300—304.
  19. Самогоров В.А., Рыбачёва О.С. Новое строительство в условиях исторически сложившейся застройки Самары с учетом границ дворовладений // Вестник СГАСУ. Градостроительство и архитектура. 2011. № 3. С. 70—72.
  20. Вавилонская Т.В. Стратегия обновления архитектурно-исторической среды (на примере г. Самары) // Известия ОрелГТУ. Серия: Строительство и транспорт. 2009. № 3/23. С. 68—72.

Скачать статью

Реакция конструкции здания с оконным блоком на взрывное воздействие на основе решения уравнения динамики

Вестник МГСУ 1/2014
  • Доронин Федор Леонидович - Московский государственный университет (ФГБОУ ВПО «МГСУ») кандидат технических наук, доцент кафедры гидравлики и водных ресурсов, Московский государственный университет (ФГБОУ ВПО «МГСУ»), 129337, г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Труханова Людмила Николаевна - Московский государственный университет (ФГБОУ ВПО «МГСУ») кандидат технических наук, доцент кафе- дры физики, Московский государственный университет (ФГБОУ ВПО «МГСУ»), 129337, г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Фомина Марина Васильевна - Московский государственный университет (ФГБОУ ВПО «МГСУ») кандидат технических наук, профессор кафедры физики, Московский государственный университет (ФГБОУ ВПО «МГСУ»), 129337, г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 33-40

При проектировании жилых зданий и непроизводственных помещений часто не предусматриваются дополнительные меры по обеспечению прочности от динамического воздействия внутри помещения. Крепления стен сооружения в каркас оказываются не рассчитаны на ударную волну, возникающую вследствие взрыва бытового газа или газового баллона. Обычно при проектировании здания задача на специальную динамическую нагрузку сводится к расчету безопасного ударного давления, превышение которого приводит к разрушению сооружения. Стена с оконным проемом при динамическом воздействии на нее является своего рода легкосбрасываемой конструкцией, уменьшающей значения избыточного давления внутри помещения. Окна с установленными в них стеклопакетами обладают достаточной прочностью, что лишает конструкцию этого преимущества при сопротивлении на ударную нагрузку. Предложенная методика расчета конструкции с оконным блоком позволяет определить динамическую реакцию стены сооружения на взрывной импульс и возникающее при этом деформационное состояние конструкции.

DOI: 10.22227/1997-0935.2014.1.33-40

Библиографический список
  1. Абросимов А.А., Комаров А.А. Мероприятия, обеспечивающие безопасные нагрузки при аварийных взрывах в зданиях со взрывоопасными технологиями // Сейсмостойкое строительство. Безопасность сооружений. 2002. № 4. С. 48—51.
  2. Комаров А.А. Разрушение зданий при аварийных взрывах бытового газа // Пожаробезопасность. 2004. Т. 13. № 5. С. 15—23.
  3. Пилюгин Л.П. Обеспечение взрывоустойчивости зданий с помощью предохранительных конструкций. М. : Пожнаука, 2000. 224 с.
  4. Мишуев А.В., Комаров А.А., Хуснутдинов Д.З. Общие закономерности развития аварийных взрывов и методы снижения взрывных нагрузок до безопасного уровня // Пожаровзрывобезопасность. 2001. Т. 10. № 6. С. 8—19.
  5. Комаров А.А. Анализ последствий аварийного взрыва природного газа в жилом доме // Пожаробезопасность. 1999. Т. 8. № 4. С. 49—53.
  6. Newmark Natan M., Rosenblueth Emilio. Fundamentals of earthquake Engineering. Prentice-Hall, Inc. Englewood Cliffs. New York, 1971, 344 p.
  7. Справочник проектировщика. Динамический расчет специальных инженерных сооружений и конструкций / Ю.К. Амбриашвили, А.И. Ананьин, А.Г. Барченков и др. М. : Стройиздат, 1986. 462 с.
  8. Clough Ray W., Penzien Josepf. Dynamics of Structures. World Book Company. New York. 1977, 320 p.
  9. Korn G.A. and Korn T.M. Mathematical Handbook for Scientists and Engineers, Second Edition, Dover. New York, 2000, 943 p.
  10. Доронин Ф.Л., Ляпин А.Ю. Расчет конструкций сооружений на взрывную нагрузку на основе численного решения уравнения движения // Вестник МГСУ. 2010. № 4. С. 72—78.

Скачать статью

Расчет фундаментов зданий и сооружений с двумя упругими характеристиками основания с использованием свойств изображений Фурье финитных функций

Вестник МГСУ 1/2014
  • Курбацкий Евгений Николаевич - Московский государственный университет путей сообщения (ФГБОУ ВПО «МИИТ») доктор технических наук, про- фессор, заведующий кафедрой подземных сооружений, Московский государственный университет путей сообщения (ФГБОУ ВПО «МИИТ»), 127994, г. Москва, ул. Образцова, д. 9, стр. 9; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Май Дык Минь. - Московский государственный университет путей сообщения (ФГБОУ ВПО «МИИТ») аспирант кафедры подземных сооружений, Московский государственный университет путей сообщения (ФГБОУ ВПО «МИИТ»), 127994, г. Москва, ул. Образцова, д. 9, стр. 9; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 41-51

Представлен метод решения ленточных фундаментов, рассматриваемых как балки конечной длины на основании с двумя упругими характеристиками. Метод основан на свойствах изображений Фурье финитных функций.

DOI: 10.22227/1997-0935.2014.1.41-51

Библиографический список
  1. Коренев Б.Г. Вопросы расчета балок и плит на упругом основании. М. : Госстройиздат, 1954. 231 с.
  2. Горбунов-Посадов М.И, Маликова Т.А. Расчет конструкций на упругом основании. 2-е изд., перераб. и доп. М. : Стройиздат, 1973. 627 с.
  3. Пастернак П.Л. Основы нового метода расчета фундаментов на упругом основании при помощи двух коэффициентов постели. М., 1954. 55 с.
  4. Celep Z., Demir F. Symmetrically loaded beam on a two-parameter tensionless foundation. Structural Engineering and Mechanics. 2007, vol. 27, no. 5, рр. 555—574.
  5. Eisenberger M., Bielak J. Finite beams on infinite two-parameter elastic foundations. Computers & Structures. 1992, vol. 42, no. 4, рр. 661—664.
  6. Sapountzakis E.J., Kampitsis A.E. Inelastic analysis of beams on two-parameter tensionless elastoplastic foundation. Engineering Structures. 2013, no. 48, рр. 389—401.
  7. Ma X., Butterworth J.W., Clifton G.C. Static analysis of an infinite beam resting on a tensionless Pasternak foundation. European Journal of Mechanics—A/Solids. 2009, vol. 28, no. 4, рр. 697—703.
  8. Razaqpur A., Shah K. Exact analysis of beams on two-parameter elastic foundations. International Journal of Solids and Structures. 1991, vol. 27, no. 4, рр. 435—454.
  9. Morfidis K., Avramidis I.E. Formulation of a generalized beam element on a two- parameter elastic foundation with semi-rigid connections and rigid offsets. Computers & Structures. 2002, vol. 80, no. 25, рр. 1919—1934.
  10. Курбацкий Е.Н. Метод решения задач строительной механики и теории упругости, основанный на свойствах изображений Фурье финитных функций : дисс. … д-ра техн. наук. М. : МИИТ, 1995. 205 с.
  11. Май Дык Минь. Расчет тоннелей, расположенных в упругопластических грунтах, пересекающих зоны разлома, на сейсмические воздействия // Строительство и реконструкция. 2013. № 1 (45). С. 19—25.
  12. Клепиков С.Н. Расчет конструкций на упругом основании. М. : Киев, 1967. 185 с.

Скачать статью

Исследование работы СПА и БПА на сжатие

Вестник МГСУ 1/2014
  • Лапшинов Андрей Евгеньевич - Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ) аспирант и ассистент кафедры железобетонных и каменных конструкций, Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ), 129337, г. Москва, Ярославское шоссе, д. 26; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 52-57

Приведены результаты исследования работы стеклопластиковой (СПА) и базальтопластиковой (БПА) арматур на сжатие при испытаниях с различной рабочей зоной. Проанализированы результаты испытаний и механизмы разрушения образцов. Даны выводы и предложения об использовании композитной арматуры.

DOI: 10.22227/1997-0935.2014.1.52-57

Библиографический список
  1. ACI 440.1R—06. Guide for the Design and Construction of Structural Concrete Reinforced with FRP Bars. ACI Committee 440, American Concrete Institute, Farmington Hills, Mich. 2006, 44 p.
  2. ACI 440.3R—04. Guide for Test Methods for Fiber Reinforced Polymers (FRP) for Reinforcing and Strengthening Concrete Structures. ACI Committee 440, American Concrete Institute, Farmington Hills, Mich. 2004, 40 p.
  3. CNR-DT 203/2006, 2006. Istruzioni per la Progettazione, l’Esecuzione e il Controllo di Strutture di Calcestruzzo armato con Barre di Materiale Composito Fibrorinforzato (in Italian).
  4. CAN/CSA-S6-02, 2002. Design and Construction of Building Components with Fibre-Reinforced Polymers, CAN/CSA S806-02, Canadian Standards Association, Rexdale, Ontario, Canada, 177 p.
  5. Fib Bulletin #40. FRP reinforcement in RC structures. 147 p.
  6. ASTM D6641 / D6641M—09. Standard Test Method for Compressive Properties of Polymer Matrix Composite Materials Using a Combined Loading Compression (CLC) Test Fixture.
  7. ASTM D3410 / D3410M—03, 2008. Standard Test Method for Compressive Properties of Polymer Matrix Composite Materials with Unsupported Gage Section by Shear Loading.
  8. ASTM D695—10. Standard Test Method for Compressive Properties of Rigid Plastics.
  9. ГОСТ 4651—82 (СТ СЭВ 2896—81). Пластмассы. Метод испытания на сжатие.
  10. Исследование прочности и устойчивости однонаправленных стеклопластиковых стержней при осевом сжатии / А.Н. Блазнов, В.Ф. Савин, Ю.П. Волков, В.Б. Тихонов // Механика композиционных материалов и конструкций. 2007. Т. 13.

Скачать статью

Приближенный способ определения максимальных растягивающих напряжений в стержнях двухконтурных геодезических куполов системы «Р»от воздействия собственного веса

Вестник МГСУ 1/2014
  • Лахов Андрей Яковлевич - Нижегородский государственный архитектурно-строительный университет (ФГБОУ ВПО «ННГАСУ») кандидат технических наук, доцент ка- федры информационных систем и технологий, Нижегородский государственный архитектурно-строительный университет (ФГБОУ ВПО «ННГАСУ»), 603950, г. Н. Новгород, ул. Ильинская, д. 65, (831)430-54-92; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 58-65

Основываясь на результатах численных решений в среде Patran/Nastran задачи определения напряженно-деформированного состояния геодезических двухконтурных куполов (оболочек) системы «Р» (по классификации профессора Г.Н. Павлова), строятся эмпирические формулы для вычисления глобального максимума напряжений во втором контуре от воздействия собственного веса.

DOI: 10.22227/1997-0935.2014.1.58-65

Библиографический список
  1. Павлов Г.Н. Основные концепции автоматизации архитектурного проектирования геодезических куполов и оболочек // Изв. вузов. Сер. «Строительство». 2005. № 10. С. 104—108.
  2. Павлов Г.Н., Супрун А.Н. Геодезические купола — проектирование на современном уровне // САПР и графика. 2006. № 3. С. 25—27.
  3. Туполев М.С. Геометрия сборных сферических куполов // Архитектура СССР. 1969. № 1. С. 9—11.
  4. Fuller R.B. Geodesic dome // Perspecta. 1952, no. 1, pр. 30—33.
  5. Виноградов Г.Г. Расчет строительных пространственных конструкций. М. : Стройиздат, Ленинградское отд., 1990. 264 с.
  6. Автоматизированное проектирование и расчет на прочность одноконтур- ных геодезических оболочек из плоских элементов / А.Н. Супрун, Л.М. Дыскин, А.Ю. Платов, А.Я. Лахов // Вестник МГСУ. 2012. № 8. С. 226—233.
  7. Andres M., Harte R. Buckling of concrete shells: a simplified numerical approach // Journal of the International association for shell and spatial structures: IASS. 2006, vol. 47, no. 3, December n. 152, pр. 163—175.
  8. Лахов А.Я. Приближенный способ определения максимальных напряжений в геодезических одноконтурных куполах системы «П» от воздействия собственного веса // Приволжский научный журнал. 2013. № 3. С. 13—18.
  9. Skopinsky V.N. A comparative study of three-dimensional and two-dimensional finite element analysis for intersecting shells // The Journal of strain analysis for Engineering Design. 2001, vol. 36, no. 3, pр. 313—322.
  10. Girling P.R. Geodesic Shells. Thesis of the requirements for the degree of M.A.Sc., the department of Civil Engineering, University of British Columbia. 1957.
  11. Kubik M. Structural Analysis of Geodesic Domes. Final Year Project. Durham University, School of Engineering. April 29, 2009.
  12. Елкина В.Н., Загоруйко Н.Г., Тимеркаев В.С. Алгоритмы таксономии в информатике // Информатика и ее проблемы. 1972. № 4. С. 31—37.

Скачать статью

Результаты 1 - 20 из 309