ИССЛЕДОВАНИЕ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ НЕОДНОРОДНЫХ ТЕЛ МЕТОДОМ ГРАНИЧНЫХ УРАВНЕНИЙ
- неоднородность;
- граничные уравнения;
- граничные элементы;
- полуплоскость;
- контактная линия;
- фундаментальное решение;
- грунтовая плотина;
- плоское деформированное состояние;
- система разрешающих уравнений;
- Андреев В.И. Некоторые задачи и методы механики неоднородных тел. М. : Изд-во АСВ, 2002. 288 с.
- Определение напряжений в упругом полупространстве со сферической полостью с учетом неоднородности среды / В.И. Андреев, А.Б. Золотов, В.И. Прокопьев, В.Н. Сидоров // Строительная механика и расчет сооружений. 1980. № 6.
- Андреев В.И., Гасилов В.А., Смолов А.В. Расчет термоупругих напряжений в неоднородном цилиндре // Вычислительные методы и математическое моделирование : тезисы докладов. Шушенское, 1986.
- Андреев В.И. Об одном методе решения в перемещениях плоской задачи теории упругости для радиально-неоднородного тела // Прикладная механика. 1987. Т. 23. № 4. С. 16-23.
- Андреев В.И. Приближенный метод решения смешанной краевой задачи для неоднородного цилиндра // Строительная механика и расчет сооружений. 1989. № 2. С. 8-11.
- Андреев В.И., Керимов К.А., Смолов А.В. Численно-аналитическое решение плоской задачи для неоднородного упругого кольца // Сопротивление материалов и теория сооружений. Вып. 53. Киев, 1989. С. 62-67.
- Киселев А.П., Гуреева Н.П., Киселева Р.З. Использование трехмерных конечных элементов в расчетах прочности многослойных панелей // Строительная механика инженерных конструкций и сооружений. 2009. № 4. С. 37-40.
- Определение напряжений в зоне пересечения пластин при плоском нагружении на основе МКЭ / А.П. Киселев, Н.П. Гуреева, Р.З. Киселева, В.В. Леонтьева // Строительная механика инженерных конструкций и сооружений. 2012. № 2. С. 55-62.
- Низомов Д.Н. Метод граничных уравнений в решении статических и динамических задач строительной механики. М. : Изд-во АСВ, 2000. 282 с.
- Новацкий В. Теория упругости. М. : Мир, 1975. 872 с.