Исследование динамических характеристик оболочек с отверстиями и присоединенной массой
- собственные колебания;
- цилиндрические оболочки;
- технические отверстия;
- присоединенная масса;
- динамические характеристики;
- Дышко А.Л., Павленко И.Д., Селиванов Ю.М. Исследование резонансных колебаний оболочек с отверстиями // Смешанные задачи механики деформируемых сред : сб. науч. тр. Днепропетровск : Вид-во ДДУ, 1995. С. 58-66.
- Заруцкий В.А., Телалов А.И. Колебания тонкостенных оболочек с конструктивными особенностями. Обзор экспериментальных исследований // Прикладная механика. 1991. Т. 278. № 4. С. 3-9.
- Кубенко В.Д., Ковальчук П.С., Краснопольская Т.С. Нелинейное взаимодействие форм изгибных колебаний цилиндрических оболочек. Киев ; М. : Наукова думка, 1984. 220 с.
- Лейзерович Г.С., Тарануха Н.А. Неочевидные особенности динамики круговых цилиндрических оболочек // Изв. РАН МТТ. 2008. № 2. С. 96-105.
- Лейзерович Г.С., Приходько Н.Б., Серегин С.В. О влиянии малой присоединенной массы на колебания разнотолщинного кругового кольца // Строительство и реконструкция. 2013. № 4. С. 38-41.
- Лейзерович Г.С., Приходько Н.Б., Серегин С.В. О влиянии малой присоединенной массы на расщепление частотного спектра кругового кольца с начальными неправильностями // Строительная механика и расчет сооружений. 2013. № 6. С. 49-51.
- Михлин С.Г. Вариационные методы в математической физике. М., 1957. 440 с.
- Тарануха Н.А., Лейзерович Г.С. О влиянии начальных отклонений от идеальной круговой формы цилиндрических оболочек на собственные изгибные колебания // Прикладная математика и техническая физика. 2001. Т. 42. № 2. С. 180-187.
- Тарануха Н.А., Лейзерович. Г.С. Новые решения в динамике «неправильных» оболочек. Владивосток : Дальнаука, 2007. 203 с.
- Amabili M., Garziera R., Carra S. The effect of rotary inertia of added masses on vibrations of empty and fluid-filled circular cylindrical shells // Journal of Fluids and Structures. 2005. Vol. 21. No. 5-7. Рp. 449-458.
- Amabili M., Garziera R. Vibrations of circular cylindrical shells with nonuniform constraints, elastic bed and added mass; Part III: steady viscous effects on shells conveying fluid // Journal of Fluids and Structures. 2002. Vol. 16. No. 6. Рр. 795-809.
- Avramov K.V., Pellicano F. Dynamical instability of cylindrical shell with big mass at the end // Reports of the National Academy of Science of Ukraine. 2006. № 5. Рр. 41-46.
- Mallon N.J. Dynamic stability of a thin cylindrical shell with top mass subjected to harmonic base-acceleration // International Journal of Solids and Structures. 2008. 45 (6). Рp. 1587-1613.
- Mallon N.J., Fey R.H.B., Nijmeijer H. Dynamic stability of a base-excited thin orthotropic cylindrical shell with top mass: simulations and experiments // Journal of Sound and Vibration 329. 2010. Vol. 329. No. 15. Рр. 3149-3170.
- Tobjas S.A. A theory of imperfection for the vibration of elastic bodies of revolution // Engineering. 1951. Vol. 44. No. 70. Рp. 409-420.