ISSN 2304-6600 (Online)
ISSN 1997-0935 (Print)



Проектирование и конструирование строительных систем. Проблемы механики в строительстве

ЧИСЛЕННЫЙ ПРОГНОЗ ОСТАТОЧНЫХ НАПРЯЖЕНИЙ В ТОЛСТОСТЕННЫХ ДИАГОНАЛЬНЫХ НАМОТОЧНЫХ ЦИЛИНДРАХ ИЗ АРМИРОВАННЫХ ПОЛИМЕРОВ С ОТКРЫТЫМИ КОНЦАМИ

  • Турусов Роберт Алексеевич - Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ)
  • Мемарианфард Хамед - Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ)
DOI: 10.22227/1997-0935.2015.11.80-89
Страницы: 80-89
Трехмерный анализ методом конечных элементов использован для прогнозирования поля термических остаточных напряжений на свободных краях толстостенных намоточных цилиндров с диагональным расположением нитей в процессе охлаждения. Внутренний радиус композита - 50 мм, внешний радиус - 75 мм и толщина стального сердечника - 3 мм. Результаты показали, что радиальные напряжения вблизи свободных концов цилиндра выросли в два раза по сравнению с радиальными напряжениями в средине цилиндра. Межслойные напряжения сдвига превысили 6 МПа около свободных краев. Таким образом, двумерный анализ напряжений не отражает в полной мере сложное напряженное состояние толстостенных намоточных цилиндров с диагональным расположением нитей.
  • слой;
  • поперечное расположение;
  • армирующие волокна;
  • метод намотки волокном;
  • межслойные напряжения;
  • свободный край;
  • толстостенный;
  • кольцевые трещины;
  • охлаждение;
Литература
  1. Casari P., Jacquemin F., Davies P. Characterization of Residual Stresses in Wound Composite Tubes. Applied Science and Manufacturing. February 2006, vol. 37, no. 2, pp. 337-343. DOI: http://dx.doi.org/10.1016/j.compositesa.2005.03.026.
  2. Korotkov V.N., Turusov R.A., Andreevska G.D., Rosenberg B.A. Temperature Stresses in polymers and composites. Mechanics of composites. NY, March 1981, pp. 290-295.
  3. Korotkov V.N., Turnsov R.A., Rozenberg B.A. Thermal Stresses in Cylinders Made of Composite Material During Cooling and Storing. Mechanics of Composite Materials. March 1983, vol. 19, no. 2, pp. 218-222. DOI: http://dx.doi.org/10.1007/BF00604228.
  4. Korotkov V.N., Turusov R.A., Dzhavadyan É.A., Rozenberg B.A. Production Stresses During the Solidification of Cylindrical Articles Formed from Polymer Composite Materials. Mechanics of Composite Materials. January 1986, vol. 22, no. 1, pp. 99-103.
  5. Afanas’ev Yu.A., Ekel’chik V.S., Kostritskii S.N. Temperature Stresses in Thick-Walled Orthotropic Cylinders of Reinforced Polymeric Materials on Nonuniform Cooling. Mechanics of Composite Materials. July 1981, vol. 16, no. 4, pp. 451-457. DOI: http://dx.doi.org/10.1007/BF00604863.
  6. Hyer M.W., Rousseau C.Q. Thermally Induced Stresses and Deformations in Angle-Ply Composite Tubes. Journal of Composite Materials. 1987, vol. 21, no. 5, pp. 454-480. DOI: http://dx.doi.org/10.1177/002199838702100504.
  7. Roos R., Kress G., Barbezat M., Ermanni P. Enhanced Model For Interlaminar Normal Stress In Singly Curved Laminates. Composite Structures. 2007, vol. 80, no. 3, pp. 327-333. DOI: http://dx.doi.org/10.1016/j.compstruct.2006.05.022.
  8. Liu K.S, Tsai S.W. A Progressive Quadratic Failure Criterion for a Laminate. Composites Science and Technology. 1998, vol. 58, no. 7, pp. 1023-1032. DOI: http://dx.doi.org/10.1016/S0266-3538(96)00141-8.
  9. Puppo A.H, Evensen H.A. Interlaminar Shear in Laminated Composite under Generalized Plane Stress. J Compos Mater. 1970, vol. 4, pp. 204-220.
  10. Pipes R.B., Pagano N.J. Interlaminar Stresses in Composite Laminates under Uniform Axial Extension. Journal of Composite Materials. 1970, vol. 4, pp. 538-548.
  11. Rybicki E.F. Approximate Three-Dimensional Solutions for Symmetric Laminates under In-Plane Loading. Journal of Composite Materials. 1971, vol. 5, no. 3, pp. 354-360. DOI: http://dx.doi.org/10.1177/002199837100500305.
  12. Wang A.S.D., Crossman F.W. Calculation of Edge Stresses in Multi-Layered Laminates by Sub-Structuring. Journal of Composite Materials. April 1978, vol. 12, no. 1, pp. 76-83. DOI: http://dx.doi.org/10.1177/002199837801200106.
  13. Murthy P.L.N., Chamis C.C. Free-Edge Delamination: Laminate Width and Loading Conditions Effects. Journal of Composites, Technology and Research. 1989, vol. 11 (1), pp. 15-22. DOI: http://dx.doi.org/10.1520/CTR10144J.
  14. Dong S.B., Pister K.S., Taylor R.L. On the Theory of Laminated Anisotropic Shells and Plates. Journal of the Aerospace Sciences. 1962, vol. 29, no. 8, pp. 969-975.
  15. Turusov R.A., Korotkov V.N., Rogozinskii A.K., Kuperman A.M., Sulyaeva Z.P., Garanin V.V., Rozenberg B.A. Technological Monolithic Character of Shells Formed from Polymeric Composition Materials. Mechanics of Composite Materials. 1988, vol. 23, no. 6, pp. 773-777. DOI: http://dx.doi.org/10.1007/BF00616802.
  16. Autar K. Kaw. Mechanics of Composite Materials. Second Edition, CRC Press, November 2, 2005, p. 96.
  17. Zienkiewicz O.C., Taylor R.L. The Finite Element Method for Solid and Structural Mechanics. Sixth Edition, Butterworth-Heinemann, 2005, p. 8.
  18. Bathe Klaus-Jürgen. Finite Element Procedures. Prentice Hall, 1996, p. 171.
  19. René De Borst, Mike A. Crisfield, Joris J.C. Remmers, Clemens V. Verhoosel, Nonlinear Finite Element Analysis of Solids and Structures. Wiley, 2012, 540 p.
  20. Zienkiewicz O.C., Taylor R.L. The Finite Element Method: Its Basis and Fundamentals. Sixth Edition, Butterworth-Heinemann, 2005, p. 121.
СКАЧАТЬ (RUS)