Методика определения внешних дефектов сооружения путем анализа серии его изображений в системе мониторинга
- система видеомониторинга;
- метод характерных точек;
- распознавание объектов;
- оптический поток;
- детектор Харриса-Лапласа;
- геометрические параметры;
- угловые точки;
- размытие пикселей;
- обследование сооружения;
- Othonos A., Kalli K. Fiber Bragg gratings: fundamentals and applications in telecommunications and sensing. London : Artech House, 1999. 422 р.
- Ivanov V.S., Kravtsov V.E., Tikhomirov S.V. Problems of metrological support of measurements in fiber-optic transmission systems // Proc. of SPIE. 2002. Vol. 4900. Pр. 430-440.
- Nielsen C.K., Andersen T.V., Keiding S.R. Stability analysis of an all-fiber coupled cavity Fabry-Perot additive pulse modelocked laser // J. Quantum Electronics. 2005. Vol. 41. No. 2. Pp. 198-204.
- Бахтин В.Ф., Черников И.Ю., Локтев А.А. Расчет на динамическое воздействие мачты сотовой системы связи и плиты перекрытия, на которую она опирается // Вестник МГСУ. 2012. № 8. С. 66-75.
- Akimov D., Vatolin D., Smirnov M. Single-image depth map estimation using blur information // 21st GraphiCon International Conference on Computer Graphics and Vision. Conference Paper. Moscow, 2011. Pp. 12-15.
- Churin P., Poddaeva O.I. Aerodynamic testing of bridge structures // Applied Mechanics and Materials. 2014. Vol. 477-478. Pp. 817-821.
- Gaspar T., Oliveira P. New dynamic estimation of depth from focus in active vision systems // Preprints of the 18th IFAC World Congress, Milano (Italy), August 28 - September 2, 2011. Pp. 9470-9475.
- Loktev A.A. Non-elastic models of interaction of an impactor and an Uflyand - Mindlin Plate // International Journal of Engineering Science. 2012. Vol. 50. No. 1. Pp. 46-55.
- Kuhnert K.-D., Langer M., Stommel M., Kolb A. Dynamic 3D-Vision // Vision Systems: Applications. June 2007. Pp. 311-334.
- Levin A., Fergus R., Durand Fr., Freeman W.T. Image and depth from a conventional camera with a coded aperture // ACM Transactions on Graphics. 2007. Vol. 26. No. 3. Art. 70. Pp. 124-132.
- Nagata T., Koyanagi M., Tsukamoto H., Saeki S., Isono K., Shichida Y., Tokunaga F., Kinoshita M., Arikawa K., Terakita A. Depth perception from image defocus in a jumping spider // Science. 2012. Vol. 335. No. 6067. Pp. 469-471.
- Bruhn A., Weickert J., SchnЕorr C. Lucas-Kanade meets Horn-Schunck: Combining local and global optic flow methods // International Journal of Computer Vision. 2005. Vol. 61. No. 3. Pp. 211-231.
- Cremers D., Soatto S. Motion competition: A variational framework for piecewise parametric motion segmentation // International Journal of Computer Vision. 2005. Vol. 62. No. 3. Pp. 249-265.
- Elder J.H., Zucker S.W. Local scale control for edge detection and blur estimation // IEEE Transaction on Pattern Analysis and Machine Intelligence. 1998. Vol. 20. No. 7. Pp. 120-127.
- Hahne Uw. Real-time depth imaging // Tu Berlin, Fakultät Iv, Computer Graphics. 2012. 108 p.
- Somaiya A.H. High speed automatic depth map generation for 3D television // European Scientific Journal December edition. 2012. Vol. 8. No. 30. Pp. 127-142.
- Jiwani M.A., Dandare S.N. Single image fog removal using depth estimation based on blur estimation // International Journal of Scientific and Research Publications. 2013. Vol. 3. No. 6. Pp. 1-6.
- Kowdle A., Snavely N., Chen T. Recovering depth of a dynamic scene using real world motion prior. Proceedings of Computer Vision and Pattern Recognition (CVPR). 2011. Pp. 14-20.
- Robinson Ph., Roodt Yu., Nel A. Gaussian blur identification using scale-space theory // Faculty of Engineering and Built Environment University of Johannesburg, South Africa. 2007. Pp. 68-73.
- Wang H., Cao F., Fang Sh., Yang Cao, Fang Ch. Effective improvement for depth estimated based on defocus images // Journal of computers. April 2013. Vol. 8. No. 4. Pp. 888-894.