Численное моделирование процесса осадконакопления терригенного материала в устьевых областях рек
- параллельные вычисления;
- метод сглаженных частиц;
- численное моделирование;
- устьевые области;
- судоходство;
- экологическая безопасность;
- Арктика;
- Anderson J.D., Jr. Computational Fluid Dynamics. The basics with applications. 1 edition. McGraw-Hill Science/ Engineering/Math, February 1, 1995. 574 p.
- Takeda H., Miyama S., Sekiya M. Numerical simulation of viscosity using SPH // Prog. Theor. Phys. 1994. Vol. 92. Pp. 939-960.
- Verlet L. Computer Experiments on Classical Fluids I: Thermodynamical Properties of Lennard-Jones Molecules // Physics Review. 1967. Vol. 159. Pp. 98-103.
- Kelager M. Lagrangian Fluid Dynamics Using Smoothed Particle Hydrodynamics. University of Copenhagen : Department of Computer Science, 2006. 81 p.
- Kruger J., Westermann R. Linear algebra operators for GPU implementation of numerical algorithms // ACM Transactions on Graphics. 2003. Vol. 22. No. 3. Pp. 908-916.
- Liu G.R., Liu M.B. Smoothed particles hydrodynamics. A meshfree particle method. National University of Singapore : World Scientific Publishing, 2003. 473 p.
- Monaghan J.J. Particle methods for hydrodynamics // Comput. Phys. 1985. Rep. 3. Pp. 71-124.
- Monaghan J.J. SPH and Riemann solvers // J. Comput. Phys. 1997. Vol. 136. No. 2. Pp. 298-307.
- Monaghan J.J. SPH without a tensile instability // J. Comput. Phys. 2000. Vol. 159. No. 2. Pp. 290-311.
- Monaghan J.J. Smoothed particles hydrodynamics. Monash University, Australia : School of Mathematical Sciences, 1992. 68 p.
- Muller M., Solenthaler B., Keiser R., Gross M. Particle-based fluid-fluid interaction // Proc. of SIGGRAPH Symposium on Computer Animation. 2005. Pp. 237-244.
- Rapaport D.C. The art of molecular dynamics simulation. Cambridge University Press, 1995. 564 p.
- Hernquist L., Katz N. TREESPH - A unification of SPH with the hierarchical tree method // Astrophys. J. (Suppl.). 1989. Vol. 70. Pp. 419-446.
- Harlow F.H. The particle-in-cell method for numerical solution of problems in fluid dynamics // Proceedings of Symposia in Applied Mathematics. 1963. Vol. 15. No. 10. Pp. 269-288.
- Balsara D.S. Von Neumann stability analysis of smooth particle hydrodynamics - suggestions for optimal algorithms // J. Comput. Phys. 1995. Vol. 121. No. 2. Pp. 357-372.
- Hoower W.G. Isomorphism linking smooth particles and embedded atoms // Physica A: Statistical Mechanics and its Applications. 1998. Vol. 260. No. 3-4. Pp. 244-254.
- Hoower W.G. Computational Statistical Mechanics. Amsterdam : Elsevier Science Publisher, 1991. 324 p.
- Johnson G.R., Beissel S.R. Normalized smoothed functions for SPH impact computations // International Journal for Numerical Methods in Engineering. 1996. Vol. 39. No. 16. Pp. 2725-2741.
- Harlow F.H. The particle-in-cell computing method for fluid dynamics // Methods in Computational Physics, Vol. 3 : Numerical Methods in Hydrodynamics. New York : Academic Press, 1964. Pp. 319-343.
- Harris M. Fast fluid dynamics simulation on the GPU // GPU Gems. NVIDIA,