ISSN 2304-6600 (Online)
ISSN 1997-0935 (Print)



Проектирование и конструирование строительных систем. Проблемы механики в строительстве

О ВЛИЯНИИ НАКЛОНА ПОДВИЖНОЙ ОПОРЫ НА ЖЕСТКОСТЬ БАЛОЧНОЙ ФЕРМЫ

  • Кирсанов Михаил Николаевич - Национальный исследовательский университет «МЭИ» (НИУ «МЭИ»)
DOI: 10.22227/1997-0935.2016.10.35-44
Страницы: 35-44
Для плоской, статически определимой упругой фермы с параллельными поясами методом индукции с применением системы компьютерной математики Maple получены аналитические выражения для прогиба в зависимости от числа панелей при равномерной и сосредоточенной нагрузке. Показано, что угол наклона подвижной опоры существенно влияет на жесткость конструкции. Кривые зависимости прогиба от числа панелей при фиксированной длине пролета и заданной нагрузке обнаруживают экстремум. Найдены асимптотические характеристики прогиба и выражения для усилий в наиболее сжатых и растянутых стержнях.
  • Maple;
  • truss;
  • deflection;
  • induction;
  • rake of a support;
  • analytical solution;
  • ферма;
  • прогиб;
  • индукция;
  • наклон опоры;
  • аналитическое решение;
Литература
  1. Клюев С.В., Клюев А.В., Лесовик Р.В. Оптимальное проектирование стальной пространственной фермы // Вестник Томского государственного архитектурно-строительного университета. 2008. № 1. С. 74-79.
  2. Pholdee N., Bureerat S. Comparative performance of meta-heuristic algorithms for mass minimisation of trusses with dynamic constraints // Advances in Engineering Software. 2014. Vol. 75. Pp. 1-13.
  3. Farshi B., Alinia-ziazi A. Sizing optimization of truss structures by method of centers and force formulation // International Journal of Solids and Structures. 2010. Vol. 47. issues 18-19. Pp. 2508-2524.
  4. Toklu Y.C., Bekdas G., Temur R. Analysis of trusses by total potential optimization method coupled with harmony search // Structural Engineering and Mechanics. 2013. Vol. 45. No. 2. Pp. 183-199.
  5. Heyman J. Design of a simple steel truss // Proceedings of the Institution of Civil Engineers: Structures and Buildings. 2010. Vol. 163. No. 1. Pp. 53-56.
  6. Biegus A. Trapezoidal sheet as a bracing preventing flat trusses from out-of-plane buckling // Archives of Civil and Mechanical Engineering. 2015. Vol. 15. No. 3. Pp. 735-741.
  7. Игнатьев В.А., Игнатьев А.В., Галишникова В.В., Онищенко Е.В. Нелинейная строительная механика стержневых систем. Основы теории. Примеры расчета. Волгоград : ВолгГАСУ, 2014. 96 с.
  8. Bacinskas D., Kamaitis Z., Jatulis D., Kilikevicius A. Field testing of old narrow-gauge railway steel truss bridge // Procedia Engineering. 2013. Vol. 57. Pp. 136-143.
  9. Игнатьев А.В., Игнатьев В.А., Онищенко Е.В. Возможность использования метода конечных элементов в форме классического смешанного метода для геометрически нелинейного анализа шарнирно-стержневых систем // Вестник МГСУ. 2015. № 12. С. 47-58.
  10. Алексейцев А.В., Серпик И.Н. Оптимизация плоских ферм на основе генетического поиска и итеративной процедуры триангуляции // Строительство и реконструкция. 2011. № 2 (34). С. 3-8.
  11. Еремин К.И., Матвеюшкин С.А., Арутюнян Г.А. Методика экспериментальных исследований блоков покрытий промышленных зданий при аварийных воздействиях // Вестник МГСУ. 2015. № 12. С. 34-46.
  12. Василькин А.А., Щербина С.В. Построение системы автоматизированного проектирования при оптимизации стальных стропильных ферм // Вестник МГСУ. 2015. № 2. С. 21-37.
  13. Hutchinson R.G., Fleck N.A. The structural performance of the periodic truss // Journal of the Mechanics and Physics of Solids. 2006. Vol. 54. No. 4. Pp. 756-782.
  14. Hutchinson R.G., Fleck N.A. Microarchitectured cellular solids - the hunt for statically determinate periodic trusses // ZAMM Z. Angew. Math. Mech. 2005. Vol. 85. No. 9. Pp. 607-617.
  15. Тиньков Д.В. Анализ влияния условий закрепления на прогиб плоской балочной фермы с нисходящими раскосами // Trends in Applied Mechanics and Mechatronics. М. : Инфра-М, 2015. Т. 1. С. 52-56.
  16. Комарова А.Р. Аналитическое исследование горизонтального смещения опоры балочной фермы // Научный альманах. 2016. № 4-3 (18). С. 251-253.
  17. Хоанг Х.Ч. Зависимость смещения подвижной опоры фермы типа «Butterfly» от числа панелей // Научный альманах. 2016. № 6-2 (19). С. 305-308.
  18. Тиньков Д.В. Сравнительный анализ аналитических решений задачи о прогибе ферменных конструкций // Инженерно-строительный журнал. 2015. № 5 (57). С. 66-73.
  19. Тиньков Д.В. Анализ точных решений прогиба регулярных шарнирно-стержневых конструкций // Строительная механика инженерных конструкций и сооружений. 2015. № 6. С. 21-28.
  20. Кийко Л.К. Аналитическая оценка прогиба арочной фермы под действием ветровой нагрузки // Научный вестник. 2016. № 1 (7). С. 247-254.
  21. Kirsanov M.N. Analytical calculation, marginal and comparative analysis of a flat girder // Scientific Herald of the Voronezh State University of Architecture and Civil Engineering // Construction and Architecture. 2016. No. 1 (29). Pp. 84-105. Режим доступа: http://vestnikvgasu.wmsite.ru/ftpgetfile.php?id=519.
  22. Кирсанов М.Н. Формулы для расчета плоской балочной фермы с произвольным числом панелей // Строительная механика и конструкции. 2016. Т. 1. № 12. С. 19-24.
  23. Леонов П.Г., Кирсанов М.Н. Аналитический расчет и анализ пространственной стержневой конструкции в системе Maple // Информатизация инженерного образования ИНФОРИНО-2014 : тр. междунар. науч.-метод. конф. (г. Москва, 15-16 апреля 2014 г.). М., 2014. С. 239-242.
  24. Кирсанов М.Н. Расчет пространственной стержневой системы, допускающей мгновенную изменяемость // Строительная механика и расчет сооружений. 2012. № 3. С. 48-51.
  25. Кирсанов М.Н. Maple и Maplet. Решения задач механики. СПб. : Лань, 2012. 510 с.
  26. Голоскоков Д.П. Курс математической физики с использованием пакета Maple. 2-е изд., испр. СПб. : Лань, 2015. 575 с.
СКАЧАТЬ (RUS)