ISSN 2304-6600 (Online)
ISSN 1997-0935 (Print)



Гидравлика. Инженерная гидрология. Гидротехническое строительство

Методика определения фильтрационной неоднородности скальных массивов основания гидросооружения

  • Чернышев Сергей Николаевич - Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ)
  • Зоммер Татьяна Валентиновна - Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ)
  • Лаврусевич Андрей Александрович - Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ)
DOI: 10.22227/1997-0935.2016.2.116-125
Страницы: 116-125
Предложена авторская методика определения фильтрационной неоднородности скальных массивов основания гидросооружения. Уточнен способ выделения инженерно-геологических элементов на основе фильтрационной неоднородности скальных грунтов на примере Богучанской ГЭС на р. Ангаре. Исследована применимость авторской методики определения фильтрационной неоднородности скальных массивов основания гидросооружения в целях более точного выделения инженерно-геологических элементов на примере Богучанского гидроузла. Дан развернутый результирующий фильтрационный гидрогеологический разрез на основе анализа фактического материала, включающего результаты большого количества одиночных фильтрационных опытов.
  • гидротехнические сооружения;
  • скальные основания;
  • ГЭС;
  • фильтрационный режим;
  • фильтрационная неоднородность;
  • натурные наблюдения;
  • статистический анализ;
  • Богучанская ГЭС;
Литература
  1. Чернышев С.Н., Зоммер Т.В., Лаврусевич А.А. Определение фильтрационной неоднородности скальных массивов основания гидросооружения методом статистического анализа на примере Богучанской ГЭС // Вестник МГСУ. 2016. № 1. С. 150-160.
  2. Рац М.В., Чернышев С.Н., Слепцов Б.Г. Разработка критериев оптимальной глубины врезки бетонных плотин в скальные основания. Статистический анализ водопроницаемости основания Богучанской ГЭС. М. : ПНИИИС, 1975.
  3. Чернышев С.Н. Принципы классификации грунтовых массивов для строительства // Вестник МГСУ. 2013. № 9. С. 41-46.
  4. Chernyshev S.N., Paushkin G.A. Determination du module de deformabilite des roches en place. Symposium International // Reconnaissance des Sols et des Roches par Essais en Place. Paris, France, 1983.
  5. Chernyshev S.N. Estimation of the permeability of the jointy rocks in massif. Symp. on Percolation Through Fissured Rock, Proc, Sep 18-19 1972; Stuttgart, W Ger.
  6. П 54-90. Методика составления моделей водопроницаемости скальных массивов в основаниях гидротехнических сооружений. Пособие к СНиП 2.02.02-85. СПб. : ВНИИГ, 1992. 107 c.
  7. Газиев Э.Г., Речицкий В.И., Боровых Т.Н. Исследование фильтрационного потока в блочной среде применительно к проектированию сооружений в скальных массивах // Труды Гидропроекта. 1980. № 68. С. 137-147.
  8. Рассказов Л.Н., Анискин Н.А., Желанкин В.Г. Фильтрация в грунтовых плотинах в плоской и пространственной постановке // Гидротехническое строительство. 1989. № 11. С. 26-32.
  9. Рассказов Л.Н., Анискин Н.А. Фильтрационные расчеты гидротехнических сооружений и оснований // Гидротехническое строительство. 2000. № 11. С. 2-7.
  10. Анискин Н.А., Тхань То В. Прогноз фильтрационного режима грунтовой плотины Юмагузинского гидроузла и ее основания // Гидротехническое строительство. 2005. № 6. С. 19-25.
  11. Orekhov B.G., Zertsalov M.G. Fracture mechanics of engineering structures and rocks. Rotterdam, 2001.
  12. Aniskin N.A., Memarianfard M.E. Effect of filtration anisotropy of soils within the body of a dam on parameters of filtration flow and slope stability // Power Technology and Engineering. 2012. Vol. 45. No. 6. Pp. 422-426.
  13. Ходзинская А.Г., Зоммер Т.В. Гидравлика и гидрология транспортных сооружений. М., 2014. 92 с.
  14. Рассказов Л.Н., Анискин Н.А., Бестужева А.С., Саинов М.П., Толстиков В.В. Сангтудинский гидроузел: напряженно-деформированное состояние и фильтрация в основании плотины и в обход гидроузла // Гидротехническое строительство. 2008. № 5. С. 45-58.
  15. Raymer J., Maerz N.H. Effect of variability on average rock-mass permeability // 48th US Rock Mechanics / Geomechanics Symposium, University of Minnesota, Twin Cities CampusMinneapolis; United States. 1-4 June 2014. 3. Pp. 1822-1829.
  16. Волынчиков А.Н., Газиев Э.Г. Анализ вертикальных смещений бетонной плотины Богучанской ГЭС в период первого заполнения водохранилища // Гидротехническое строительство. 2014. № 8. С. 13-17.
  17. Газиев Э.Г. Скальные основания бетонных плотин. М. : Изд-во АСВ, 2005. 280 с.
  18. Савич А.И., Речицкий В.И., Замахаев А.М., Пудов К.О. Комплексные исследования деформационных свойств массива долеритов в основании бетонной плотины Богучанской ГЭС // Гидротехническое строительство. 2011. № 3. С. 12-22.
  19. Чернышев С.Н. Экзогенные деформации траппов в долине р. Ангары // Известия высших учебных заведений. Геология и разведка. 1965. № 12. С. 78-85.
  20. Ильин Н.И., Чернышев С.Н., Дзекцер Е.С., Зильберг В.С. Оценка точности определения водопроницаемости горных пород / под ред. Л.Д. Белый. М. : Наука, 1971. 150 с.
  21. Чернышев С.Н. Движение воды по сетям трещин. М. : Недра, 1979. 142 с.
  22. Чернышев С.Н. Трещиноватость горных пород и ее влияние на устойчивость откосов. М. : Недра, 1984. 111 с.
  23. Chernyshev S.N., Dearman W. Rock fractures. London : Butterwort-Heinemann, 1991. 272 p.
  24. Чаповский А.Е., Перцовский В.В. Экспериментальное исследование неоднородности горных пород в плане // Разведка и охрана недр. 1972. № 1. С. 45-49.
  25. Самсонов Б.Г., Зильберштейн Б.М., Бурдакова О.Л. Определение гидрогеологических параметров при эффективной неоднородности водоносных горизонтов // Гидрология и инженерная геология. Экспресс-информация ВИЭМС, МГ СССР. 1972. № 4.
  26. Wu J.L., He J. Determination of volumetric joint count based on 3D fracture network and its application in engineering // Applied Mechanics and Materials. 2014. Vol. 580-583.Pp. 907-911.
  27. Gudmundsson A., Lo Tveit I.F. Sills as fractured hydrocarbon reservoirs: Examples and models // Geological Society Special Publication. 2014. Vol. 374 (1). Pp. 251-271.
  28. Mohajerani S., Baghbanan A., Bagherpour R., Hashemolhosseini H. Grout penetration in fractured rock mass using a new developed explicit algorithm // International Journal of Rock Mechanics and Mining Sciences. 2015. Vol. 80. Pp. 412-417.
  29. Zhou X.-P., Gu X.-B., Wang Y.-T. Numerical simulations of propagation, bifurcation and coalescence of cracks in rocks // International Journal of Rock Mechanics and Mining Sciences. 2015. Vol. 80. Pp. 241-254.
  30. Wei J., Weifeng S., Guiting H. Insights into the tectonic fractures in the yanchang formation interbedded sandstone-mudstone of the ordos basin based on core data and geomechanical models // Acta Geologica Sinica. 2015. 89 (6). Pp. 1986-1997.
  31. Nguyen T.K., Pouya A., Rohmer J. Integrating damage zone heterogeneities based on stochastic realizations of fracture networks for fault stability analysis. International Journal of Rock Mechanics and Mining Sciences. 2015. 80. Pp. 325-336.
  32. Akbardoost J., Ayatollahi M.R. Experimental analysis of mixed mode crack propagation in brittle rocks: The effect of non-singular terms // Engineering Fracture Mechanics. 2014. Vol. 129. Pp. 77-89.
  33. Meyer J.R., Parker B.L., Cherry J.A. Characteristics of high resolution hydraulic head pro-files and vertical gradients in fractured sedimentary rocks // Journal of Hydrology. 2014. Vol. 517. Pp. 493-507.
СКАЧАТЬ (RUS)