ISSN 2304-6600 (Online)
ISSN 1997-0935 (Print)



ГИДРАВЛИКА. ГЕОТЕХНИКА. ГИДРОТЕХНИЧЕСКОЕ СТРОИТЕЛЬСТВО

Каменно-набросные плотины с железобетонным экраном: опыт исследований напряженно-деформированного состояния

  • Сорока Владислав Борисович - Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ)
  • Саинов Михаил Петрович - Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ)
  • Королев Денис Викторович - Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ)
DOI: 10.22227/1997-0935.2019.2.207-224
Страницы: 207-224
Введение. В настоящее время актуальной научной проблемой гидротехнического строительства является установление причин образования трещин в противофильтрационных железобетонных экранах ряда каменно-набросных плотин. На решение этой задачи направлены исследования напряженно-деформированного состояния (НДС) каменно-набросных плотин с железобетонным экраном, которые проводятся различными методами. Материалы и методы. Проведен обзор и анализ результатов исследований напряженно-деформированного состояния каменно-набросных плотин с железобетонным экраном, выполненных разными авторами за последние 15 лет. Рассмотрены результаты аналитических, экспериментальных и численных исследований. Описаны модели, использованные для воспроизведения нелинейного характера деформируемости каменной наброски при численном моделировании НДС плотин. Результаты. Анализ показал, что решение задачи о НДС каменно-набросных плотин с железобетонным экраном вызывает целый ряд методологических трудностей. На данный момент единственным методом, который позволяет изучать НДС каменно-набросных плотин с железобетонным экраном, является численное моделирование. Остальные методы не позволяют учесть влияние на НДС экрана важных факторов. Большие затруднения вызывает слабая изученность деформативных свойств каменной наброски в реальных плотинах. Выводы. Выявлено, что НДС железобетонных экранов изучено недостаточно. Результаты проведенных исследований не дают полного и адекватного представления об условиях работы железобетонных экранов. Не изучено влияние различных факторов на НДС экрана. Существуют противоречия в результатах исследований, полученных разными авторами. Различия в результатах имеют в своей основе объективные и субъективные причины. Значительным препятствием для численных исследований является сложность моделирования поведения жесткого тонкостенного железобетонного экрана при больших деформациях, присущих каменной наброске. Получаемые результаты исследований часто не позволяют провести полноценный анализ НДС железобетонных экранов каменно-набросных плотин.
  • каменно-набросная плотина с железобетонным экраном;
  • напряженно-деформированное состояние;
  • экспериментальные исследования;
  • численное моделирование;
  • метод конечных элементов;
Литература
  1. Радченко В.Г., Глаговский В.Б., Кассирова Н.А., Курнева Е.В., Дружинин М.А. Современное научное обоснование строительства каменнонабросных плотин с железобетонными экранами // Гидротехническое строительство. 2004. № 3. С. 2-8.
  2. Pinto N.L.S., Marques F.P. Estimating the maximum face deflection in CFRDs // International Journal on Hydropower and Dams. 1998. Vol. 5. No. 6. Pp. 28-31.
  3. Xavier L.V., Albertoni S.C., Pereira R.F., Antunes J. Campos Novos dam during second impounding // The International Journal on Hydropower & Dams. 2008. No. 15 (4). Pp. 53-58.
  4. Johannesson P., Tohlang S.L. Lessons learned from Mohale // The International Water Power & Dam Construction. 2007. Vol. 59. Issue 8. Pp. 16-18, 20-22, 24-25.
  5. Ma H.Q., Cao K.M. Key technical problems of extra-high concrete faced rock-fill dam // Science in China. Series E: Technological Sciences. 2007. Vol. 50. Issue S1. Pp. 20-33. DOI: 10.1007/s11431-007-6007-5
  6. Freitas M.S.Jr. Concepts on CFRDs leakage control - cases and current experiences // ISSMGE Bulletin. 2009. Vol. 3. Issue 4. Pp. 11-18.
  7. Wen L., Chai J., Xu Z., Qin Y., Li Y. A statistical review of the behaviour of concrete-face rockfill dams based on case histories // Géotechnique. 2018. Vol. 68. Issue 9. Pp. 749-771. DOI: 10.1680/jgeot.17.p.095
  8. Seo M.-W., Ha I.S., Kim Y.-S., Olson S.M. Behavior of concrete-faced rockfill dams during initial impoundment // Journal of Geotechnical and Geoenvironmental Engineering. 2009. Vol. 135. Issue 8. Pp. 1070-1081. DOI: 10.1061/(ASCE)GT.1943-5606.0000021
  9. Hunter G., Fell R. Rockfill modulus and settlement of concrete face rockfill dams // Journal of Geotechnical and Geoenvironmental Engineering. 2003. Vol. 129. Issue 10. Pp. 909-917. DOI: 10.1061/(asce)1090-0241(2003)129:10(909)
  10. Park H.G., Kim Y.-S., Seo M.-W., Lim H.-D. Settlement behavior characteristics of CFRD in construction period. Case of Daegok dam // Journal of the Korean Geotechnical Society. 2005. Vol. 21. No. 7. Pp. 91-105.
  11. Won M.S., Kim Y.S. A case study on the post construction deformation of concrete face rockfill dams // Canadian Geotechnical Journal. 2008. Vol. 45. Issue 6. Pp. 845-852. DOI: 10.1139/t08-020
  12. Саинов М.П. Полуэмпирическая формула для оценки осадок однородных грунтовых плотин // Приволжский научный журнал. 2014. № 4. С. 108-115.
  13. Саинов М.П. Приближенная расчетная схема работы железобетонного экрана каменно-набросной плотины // Научное обозрение. 2016. № 18. С. 18-22.
  14. Hou Y.J., Xu Z.P., Liang J.H. Centrifuge modeling of cutoff wall for CFRD built in deep overburden // Proceedings of International Conference of Hydropower. 2004. Pp. 86-92.
  15. Arici Y. Investigation of the cracking of CFRD face plates // Computers and Geotechnics. 2011. Vol. 38. Issue 7. Pp. 905-916. DOI: 10.1016/j.compgeo.2011.06.004
  16. Arici Y., Özel H.F. Comparison of 2D versus 3D modeling approaches for the analysis of the concrete faced rock-fill Cokal dam // Earthquake Engineering & Structural Dynamics. 2013. Vol. 42. Issue 15. Pp. 2277-2295. DOI: 10.1002/eqe.2325
  17. Velásquez J.D.A., Sánchez A.P., Lesso S.V. Geotechnical studies and design of La Yesca Dam // 14th PanAmerican Conference on Soil Mechanics and Geotechnical Engineering. 2011. URL: http://geoserver.ing.puc.cl/info/conferences/PanAm2011/panam2011/pdfs/EO11Paper813.pdf
  18. Bin Xu, Degao Zou, Huabei Liu. Three-dimensional simulation of the construction process of the Zipingpu concrete face rockfill dam based on a generalized plasticity model // Computers and Geotechnics. 2012. Vol. 43. Pp. 143-154. DOI: 10.1016/j.compgeo.2012.03.002
  19. Dakoulas P., Thanopoulos Y., Anastasopoulos K. Non-linear 3D simulation of the construction and impounding of a CFRD // The International Journal on Hydropower and Dams. 2008. No. 15 (2). Pp. 95-101.
  20. He Yu, Shouju Li, Yingxi Liu, Jun Zhang. Non-linear analysis of stress and strain of concrete-faced rockfill dam for sequential impoundment process // Mathematical and Computational Applications. 2010. Vol. 15. Issue 5. Pp. 796-801. DOI: 10.3390/mca15050796
  21. Hu K., Chen J., Wang D. Shear stress analysis and crack prevention measures for a concrete-face rockfill dam, advanced construction of a first-stage face slab, and a first-stage face slab in advanced reservoir water storage // Advances in Civil Engineering. 2018. Vol. 2018. Pp. 1-10. DOI: 10.1155/2018/2951962
  22. Kim Y.-S., Seo M.-W., Lee C.-W., Kang G.-C. Deformation characteristics during construction and after impoundment of the CFRD-type Daegok Dam, Korea // Engineering Geology. 2014. Vol. 178. Pp. 1-14. DOI: 10.1016/j.enggeo.2014.06.009
  23. Özkuzukiran S., Özkan M.Y., Özyazicioğlu M., Yildiz G.S. Settlement behaviour of a concrete faced rock-fill dam // Geotechnical and Geological Engineering. 2006. Vol. 24. Issue 6. Pp. 1665-1678. DOI: 10.1007/s10706-005-5180-1
  24. Silva da A.F., Assis de A.P., Farias de M.M., Neto M.P.C. Three-dimensional analyses of concrete face rockfill dams: barra grande case study // Electronic Journal of Geotechnical Engineering. 2015. Vol. 20. Bund 14. Pp. 6407-6426.
  25. Ghadrdan M., Sadrnejad S.A., Shaghaghi T., Ghasimi K. Numerical evaluation of concrete-faced rockfill dam upon multiplane damage model // ROMAI Journal. 2015. Vol. 11. No. 1. Pp. 47-67.
  26. Escobar C.M., Posada A.M. Recent experience on design, construction and performance of CFRD dams // 6th International Conference on Case Histories in Geotechnical Engineering. 2008. Pp. 1-9.
  27. Sukkarak R., Pramthawee P., Jongpradist P., Kongkitkul W., Jamsawang P. Deformation analysis of high CFRD considering the scaling effects // Geomechanics and Engineering. 2018. Vol. 14. Issue 3. Pp. 211-224. DOI: 10.12989/gae.2018.14.3.211
  28. Li S., Shangguan Z., Wang J. Computer simulation of sequential impoundment process of concrete-faced rockfill dam // Journal of Computers. 2012. Vol. 7. Issue 8. Pp. 1801-1808. DOI: 10.4304/jcp.7.8.1801-1808
  29. Wu Y., Zhang J.W., Wang C. Time-dependent deformation and stress analyses of Xibeikou concrete face rockfill dam // Electronic Journal of Geotechnical Engineering. 2014. Vol. 19. Bund R. Pp. 6739-6747.
  30. Ye Zhu, Lu Lu. Nonlinear static analysis of Shuibuya dam in China - World’s Highest CFRD // Electronic Journal of Geotechnical Engineering. 2016. Vol. 21. Bund 04. Pp. 1527-1537.
  31. Zhang B., Wang J.G., Shi R. Time-dependent deformation in high concrete-faced rockfill dam and separation between concrete face slab and cushion layer // Computers and Geotechnics. 2004. Vol. 31. Issue 7. Pp. 559-573. DOI: 10.1016/j.compgeo.2004.07.004
  32. Zhou W., Hua J., Chang X., Zhou C. Settlement analysis of the Shuibuya concrete-face rockfill dam // Computers and Geotechnics. 2011. Vol. 38. Issue 2. Pp. 269-280. DOI: 10.1016/j.compgeo.2010.10.004
  33. Zhou M.-Z., Zhang B., Jie Y. Numerical simulation of soft longitudinal joints in concrete-faced rockfill dam // Soils and Foundations. 2016. Vol. 56. Issue 3. Pp. 379-390. DOI: 10.1016/j.sandf.2016.04.005
  34. Zhu Y., Chi S. The application of MsPSO in the rockfill parameter inversion of CFRD // Mathematical Problems in Engineering. 2016. Vol. 2016. Pp. 1-11. DOI: 10.1155/2016/1096967
  35. Jia Y., Xu B., Chi S., Xiang B., Zhou Y. Research on the particle breakage of rockfill materials during triaxial tests // International Journal of Geomechanics. 2017. Vol. 17. Issue 10. P. 04017085. DOI: 10.1061/(ASCE)GM.1943-5622.0000977
СКАЧАТЬ (RUS)