ISSN 2304-6600 (Online)
ISSN 1997-0935 (Print)



Архитектура и градостроительство. Реконструкция и реставрация

Оценка естественного освещения зданий с учетом солнцезащитных конструкций при реальных состояниях облачности

  • Нгуен Тхи Хань Фыонг - Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ)
  • Соловьев Алексей Кириллович - Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ)
DOI: 10.22227/1997-0935.2020.2.180-200
Страницы: 180-200
Введение. Светотехника — комплексная научная область, которая требует обобщения знаний при оценке визуального комфорта, конструктивного, архитектурного решения, а также других областей, включая гуманитарные науки. Глобальные экологические проблемы и движение за устойчивое развитие требуют от архитектурного проектирования достижения максимальной энергоэффективности. Задачи проектирования систем естественного освещения (ЕО) в реальных условиях неба не могут быть решены без рассмотрения проблем инсоляции и солнцезащитных устройств (СЗУ). В российских и зарубежных стандартах давно поставлены вопросы совершенствования методики расчета ЕО с учетом дополнительного света, отраженного от прилегающих поверхностей при ясном и частично облачном небе. Цель исследования — анализ и совершенствование методики расчета систем ЕО с учетом СЗУ в условиях промежуточного неба. Материалы и методы. Использованы методы поиска и отбора соответствующей литературы в международных реферативных базах, имеющих проработанные инструменты для тематического поиска, а также аналитические методы. Результаты. Предложена методика расчета системы ЕО с учетом СЗУ в условиях промежуточного неба. Анализ полученных формул подтвердил предлагаемую теорию: под влиянием прямого освещения солнца отражение от прилегающих поверхностей значительно повышает уровень ЕО в помещении. Выводы. Оценка ЕО в помещении при промежуточном небе должна учитывать отражение прямой солнечной освещенности. Корректирование задачи при пасмурном небе в расчете связано с доступностью базы данных о световом климате. Это позволяет сформулировать критерии динамической оценки ЕО. Сочетание системы искусственного освещения с режимом автоматического управления гарантирует внутреннюю освещенность и экономию энергии.
  • системы естественного освещения;
  • солнцезащитное устройство;
  • промежуточное небо;
  • отражение естественного освещения;
  • световой климат;
  • коэффициент неравномерной яркости;
  • коэффициент естественного освещения;
  • моделирование естественного освещения;
  • энергосбережение;
Литература
  1. Tomczuk P. Prace naukowe. Transport. Modelowanie, badania eksperymentalne i ocena jakości oświetlenia sylwetki pieszego na przejściu dla pieszych. Warszawa : Oficyna wydaw. Politech. Warszawskiej, 2013. 185 p.
  2. Kittler R., Kocifaj M., Darula S. Simulation of seasonal variations in the local daylight climate // Daylight Science and Daylighting Technology. 2011. Pp. 155–186. DOI: 10.1007/978-1-4419-8816-4_6
  3. Kittler R. Daylight prediction and assessment: theory and design practice // Architectural Science Review. 2007. Vol. 50. Issue 2. Pp. 94–99. DOI: 10.3763/asre.2007.5014
  4. Tregenza P., Wilson M. Daylighting: architecture and lighting design. London : Routledge, 2013. Pp. 59–77. DOI: 10.4324/9780203724613
  5. Amirifard F., Sharif S.A., Nasiri F. Application of passive measures for energy conservation in buildings — a review // Advances in Building Energy Research. 2019. Vol. 13. Issue 2. Pp. 282–315. DOI: 10.1080/17512549.2018.1488617
  6. Lou S., Li D.H.W., Lam J.C., Lee E.W.M. Estimation of obstructed vertical solar irradiation under the 15 CIE Standard Skies // Building and Environment. 2016. Vol. 103. Pp. 123–133. DOI: 10.1016/j.buildenv.2016.04.005
  7. Boyce P.R. Human factors in lighting. Boca Raton : CRC Press, 2014. 703 p. DOI: 10.1201/b16707
  8. Tregenza P., Mardaljevic J. Daylighting buildings: Standards and the needs of the designer // Lighting Research & Technology. 2018. Vol. 50. Issue 1. Pp. 63–79. DOI: 10.1177/1477153517740611
  9. Budak V.P., Smirnov P.A. A physical model of the firmament to calculate daylight // Light and Engineering. 2013. Vol. 21. Issue 3. Pp. 17–23.
  10. Mirrahimi S., Mohamed M.F., Haw L.C., Ibrahim N.L.N., Yusoff W.F.M., Aflaki A. The effect of building envelope on the thermal comfort and energy saving for high-rise buildings in hot–humid climate // Renewable and Sustainable Energy Reviews. 2016. Vol. 53. Pp. 1508–1519. DOI: 10.1016/j.rser.2015.09.055
  11. Al-Tamimi N.A., Fadzil S.F.S. The potential of shading devices for temperature reduction in high-rise residential buildings in the tropics // Procedia Engineering. 2011. Vol. 21. Pp. 273–282. DOI: 10.1016/j.proeng.2011.11.2015
  12. Kirimtat A., Koyunbaba B.K., Chatzikonstantinou I., Sariyildiz S. Review of simulation modeling for shading devices in buildings // Renewable and Sustainable Energy Reviews. 2016. Vol. 53. Pp. 23–49. DOI: 10.1016/j.rser.2015.08.020
  13. Abdullah F.H., Majid N.H.A., Othman R. Defining issue of thermal comfort control through urban mosque faсade design // Procedia — Social and Behavioral Sciences. 2016. Vol. 234. Pp. 416–423. DOI: 10.1016/j.sbspro.2016.10.259
  14. Cheong K.H., Teo Y.H., Koh J.M., Acharya U.R., Yu S.C.M. A simulation-aided approach in improving thermal-visual comfort and power efficiency in buildings // Journal of Building Engineering. 2020. Vol. 27. P. 100936. DOI: 10.1016/j.jobe.2019.100936
  15. Mettanant V., Chaiwiwatworakul P. Automated vertical blinds for daylighting in tropical region // Energy Procedia. 2014. Vol. 52. Pp. 278–286. DOI: 10.1016/j.egypro.2014.07.079
  16. Lim Y.-W., Heng C.Y.S. Dynamic internal light shelf for tropical daylighting in high-rise office buildings // Building and Environment. 2016. Vol. 106. Pp. 155–166. DOI: 10.1016/j.buildenv.2016.06.030
  17. Lee H., Kim K., Seo J., Kim Y. Effectiveness of a perforated light shelf for energy saving // Energy and Buildings. 2017. Vol. 144. Pp. 144–151. DOI: 10.1016/j.enbuild.2017.03.008
  18. Al-Masrani S.M., Al-Obaidi K.M., Zalin N.A., Isma M.I.A. Design optimisation of solar shading systems for tropical office buildings: Challenges and future trends // Solar Energy. 2018. Vol. 170. Pp. 849–872. DOI: 10.1016/j.solener.2018.04.047
  19. Ibrahim N.L.N., Hayman S. Latitude variation and its influence on rules of thumb in daylighting // Architectural Science Review. 2010. Vol. 53. Issue 4. Pp. 408–414. DOI: 10.1080/00038628.2010.9685341
  20. Darula S., Christoffersen J., Malikova M. Sunlight and insolation of building interiors // Energy Procedia. 2015. Vol. 78. Pp. 1245–1250. DOI: 10.1016/j.egypro.2015.11.266
  21. Valíček P., Novák T., Vaňuš J., Sokanský K., Martinek R. Illuminance evaluation in automatically dimmed interior lighting systems // 2016 IEEE Lighting Conference of the Visegrad Countries (Lumen V4). 2016. 5 p. DOI: 10.1109/LUMENV.2016.7745513
  22. Nabil A., Mardaljevic J. Useful daylight illuminance: a new paradigm for assessing daylight in buildings // Lighting Research & Technology. 2005. Vol. 37. Issue 1. Pp. 41–57. DOI: 10.1191/1365782805li128oa
  23. Sokół N., Martyniuk-Pęczek J. Daylight recommendation for building interiors in the selected national building and lighting regulations in the EU // XXVI Krajowa Konferencja Oświetleniowa Technika Świetlna 2017. 2017. Pp. 175–191.
  24. Darula S. Review of the current state and future development in standardizing natural lighting in interiors // Light & Engineering. 2018. Vol. 26. Issue 4. Pp. 5–26.
  25. Vajkay F., Zizka L. Assessment of daylighting design tools against test cases included in CIE’s 171:2006 Report // Advanced Materials Research. 2014. Vol. 899. Pp. 352–355. DOI: 10.4028/www.scientific.net/AMR.899.352
  26. Li G.-Z., Wang Q.-Q., Wang J.-L. Chinese standard requirements on indoor environmental quality for assessment of energy-efficient buildings // Indoor and Built Environment. 2014. Vol. 23. Issue 2. Pp. 194–200. DOI: 10.1177/1420326X13507793
  27. Mardaljevic J., Roy N. The sunlight beam index // Lighting Research & Technology. 2016. Vol. 48. Issue 1. Pp. 55–69. DOI: 10.1177/1477153515621486
  28. Lee J., Boubekri M., Liang F. Impact of building design parameters on daylighting metrics using an analysis, prediction, and optimization approach based on statistical learning technique // Sustainability. 2019. Vol. 11. Issue 5. P. 1474. DOI: 10.3390/su11051474
  29. Juslén H., Tenner A. Mechanisms involved in enhancing human performance by changing the lighting in the industrial workplace // International Journal of Industrial Ergonomics. 2005. Vol. 35. Issue 9. Pp. 843–855. DOI: 10.1016/j.ergon.2005.03.002
  30. Boubekri M. Daylighting, architecture and health: building design strategies. London : Routledge, 2008. 160 p. DOI: 10.4324/9780080940717
  31. Mardaljevic J., Christoffersen J., Raynham P. A proposal for a European standard for daylight in buildings // Lux Europa 2013: 12th European Lighting Conference. 2013. Pp. 237–250.
  32. Darula S., Maliková M. New European standard criteria for daylight assessment // Proc. Conf. Lighting Engineering 2015. 2015. Pp. 69–74.
  33. Darula S. Hodnotenie denného svetla v Európe (Evaluation of daylight in Europe) // Světlo. 2018. Vol. 21. Issue 2. Pp. 40–42.
  34. Sokol N., Martyniuk-Peczek J. The review of the selected challenges for an incorporation of daylight assessment methods into urban planning in Poland // Procedia Engineering. 2016. Vol. 161. Pp. 2191–2197. DOI: 10.1016/j.proeng.2016.08.814
  35. Deroisy B., Deneyer A. A new standard for daylight: towards a daylight revolution? // Lighting for modern society: proceedings of the Lux Europa 2017. 2017. Pp. 340–343.
  36. Marjaba G.E., Chidiac S.E. Sustainability and resiliency metrics for buildings — Critical review // Building and Environment. 2016. Vol. 101. Pp. 116–125. DOI: 10.1016/j.buildenv.2016.03.002
  37. Heschong L., Wymelenberg V.D., Andersen M., Digert N., Fernandes L., Keller A. et al. Approved method: IES Spatial Daylight Autonomy (sDA) and Annual Sunlight Exposure (ASE). New York : IES — Illuminating Engineering Society, 2012. 14 p.
  38. Reinhart C.F., Weissman D.A. The daylit area — Correlating architectural student assessments with current and emerging daylight availability metrics // Building and Environment. 2012. Vol. 50. Pp. 155–164. DOI: 10.1016/j.buildenv.2011.10.024
  39. Mardaljevic J., Heschong L., Lee E. Daylight metrics and energy savings // Lighting Research & Technology. 2009. Vol. 41. Issue 3. Pp. 261–283. DOI: 10.1177/1477153509339703
  40. Reinhart C.F., Mardaljevic J., Rogers Z. Dynamic daylight performance metrics for sustainable building design // Leukos. 2006. Vol. 3. Issue 1. Pp. 7–31. DOI: 10.1582/LEUKOS.2006.03.01.001
  41. Reinhard E., Heidrich W., Debevec P., Pattanaik S., Ward G., Myszkowski K. High dynamic range imaging: acquisition, display, and image-based lighting. Morgan Kaufmann, 2010. 672 p.
  42. Jakubiec J.A., Reinhart C.F. The ‘adaptive zone’ — A concept for assessing discomfort glare throughout daylit spaces // Lighting Research & Technology. 2012. Vol. 44. Issue 2. Pp. 149–170. DOI: 10.1177/1477153511420097
  43. Iringová A. Impact of external shading on light comfort and energy efficiency in apartment buildings // Applied Mechanics and Materials. 2017. Vol. 861. Pp. 485–492. DOI: 10.4028/www.scientific.net/AMM.861.485
  44. Nabil A., Mardaljevic J. Useful daylight illuminances: A replacement for daylight factors // Energy and Buildings. 2006. Vol. 38. Issue 7. Pp. 905–913. DOI: 10.1016/j.enbuild.2006.03.013
  45. Lindelöf D., Morel N. Bayesian estimation of visual discomfort // Building Research & Information. 2008. Vol. 36. Issue 1. Pp. 83–96. DOI: 10.1080/09613210701544061
  46. Souza D.F., Scarazzato P.S., Pedrini H. Classifying skies from images: A multidimensional approach to detecting high dynamic range imaging attributes // Lighting Research & Technology. 2016. Vol. 48. Issue 5. Pp. 559–572. DOI: 10.1177/1477153516637231
  47. Manzan M., Clarich A. FAST energy and daylight optimization of an office with fixed and movable shading devices // Building and Environment. 2017. Vol. 113. Pp. 175–184. DOI: 10.1016/j.buildenv.2016.09.035
  48. Mardaljevic J. Verification of program accuracy for illuminance modelling: assumptions, methodology and an examination of conflicting findings // Lighting Research & Technology. 2004. Vol. 36. Issue 3. Pp. 217–239. DOI: 10.1191/1477153504li120oa
  49. Mardaljevic J. Validation of a lighting simulation program under real sky conditions // International Journal of Lighting Research and Technology. 1995. Vol. 27. Issue 4. Pp. 181–188. DOI: 10.1177/14771535950270040701
  50. Li D.H.W., Lau C.C.S., Lam J.C. Predicting daylight illuminance by computer simulation techniques // Lighting Research & Technology. 2004. Vol. 36. Issue 2. Pp. 113–128. DOI: 10.1191/1365782804li108oa
  51. Michael A., Heracleous C. Assessment of natural lighting performance and visual comfort of educational architecture in Southern Europe: The case of typical educational school premises in Cyprus // Energy and Buildings. 2017. Vol. 140. Pp. 443–457. DOI: 10.1016/j.enbuild.2016.12.087
  52. № US 9,078,299 B2. Predictive daylight harvesting system / I. Ashdown; Suntracker technologies ltd. Appl.: No. 13/446,577, 13.04.2012. Publ. 07.07.2015.
  53. Keller A., Wächter C., Raab M., Seibert D., van Antwerpen D., Korndörfer J. et al. The iray light transport simulation and rendering system // SIGGRAPH ‘17: ACM SIGGRAPH 2017 Talks. 2017. P. 34. DOI: 10.1145/3084363.3085050
  54. Sun Y., Wu Y., Wilson R. Analysis of the daylight performance of a glazing system with Parallel Slat Transparent Insulation Material (PS-TIM) // Energy and Buildings. 2017. Vol. 139. Pp. 616–633. DOI: 10.1016/j.enbuild.2017.01.001
  55. Ritschel T., Dachsbacher C., Grosch T., Kautz J. The state of the art in interactive global illumination // Computer Graphics Forum. 2012. Vol. 31. Issue 1. Pp. 160–188. DOI: 10.1111/j.1467-8659.2012.02093.x
  56. Vera S., Uribe D., Bustamante W., Molina G. Optimization of a fixed exterior complex fenestration system considering visual comfort and energy performance criteria // Building and Environment. 2017. Vol. 113. Pp. 163–174. DOI: 10.1016/j.buildenv.2016.07.027
  57. Wu Y., Këmpf J.H., Scartezzini J.-L. Characterization of a quasi-real-time lighting computing system based on HDR imaging // Energy Procedia. 2017. Vol. 122. Pp. 649–654. DOI: 10.1016/j.egypro.2017.07.364
  58. Mardaljevic J. Sky model blends for predicting internal illuminance: a comparison founded on the BRE-IDMP dataset // Journal of Building Performance Simulation. 2008. Vol. 1. Issue 3. Pp. 163–173. DOI: 10.1080/19401490802419836
  59. Crawley D.B., Lawrie L.K., Winkelmann F.C., Buhl W.F., Huang Y.J., Pedersen C.O. et al. EnergyPlus: creating a new-generation building energy simulation program // Energy and buildings. 2001. Vol. 33. Issue 4. Pp. 319–331. DOI: 10.1016/S0378-7788(00)00114-6
  60. Zhang L. Simulation analysis of built environment based on design builder software // Applied Mechanics and Materials. 2014. Vol. 580–583. Pp. 3134–3137. DOI: 10.4028/www.scientific.net/AMM.580-583.3134
  61. Bustamante W., Uribe D., Vera S., Molina G. An integrated thermal and lighting simulation tool to support the design process of complex fenestration systems for office buildings // Applied Energy. 2017. Vol. 198. Pp. 36–48. DOI: 10.1016/j.apenergy.2017.04.046
  62. Lydon G.P., Hofer J., Svetozarevic B., Nagy Z., Schlueter A. Coupling energy systems with lightweight structures for a net plus energy building // Applied Energy. 2017. Vol. 189. Pp. 310–326. DOI: 10.1016/j.apenergy.2016.11.110
  63. Gentile N., Dubois M.-C. Field data and simulations to estimate the role of standby energy use of lighting control systems in individual offices // Energy and Buildings. 2017. Vol. 155. Pp. 390–403. DOI: 10.1016/j.enbuild.2017.09.028
  64. Chen Y., Liang X., Hong T., Luo X. Simulation and visualization of energy-related occupant behavior in office buildings // Building Simulation. 2017. Vol. 10. Issue 6. Pp 785–798. DOI: 10.1007/s12273-017-0355-2
  65. Khoroshiltseva M., Slanzi D., Poli I. A Pareto-based multi-objective optimization algorithm to design energy-efficient shading devices // Applied Energy. 2016. Vol. 184. Pp. 1400–1410. DOI: 10.1016/j.apenergy.2016.05.015
  66. Konstantoglou M., Tsangrassoulis A. Dynamic operation of daylighting and shading systems: A literature review // Renewable and Sustainable Energy Reviews. 2016. Vol. 60. Pp. 268–283. DOI: 10.1016/j.rser.2015.12.246
  67. Hoffmann S., Lee E.S., McNeil A., Fernandes L., Vidanovic D., Thanachareonkit A. Balancing daylight, glare, and energy-efficiency goals: An evaluation of exterior coplanar shading systems using complex fenestration modeling tools // Energy and Buildings. 2016. Vol. 112. Pp. 279–298. DOI: 10.1016/j.enbuild.2015.12.009
  68. Perez R., Seals R., Michalsky J. All-weather model for sky luminance distribution — Preliminary configuration and validation // Solar energy. 1993. Vol. 50. Issue 3. Pp. 235–245. DOI: 10.1016/0038-092X(93)90017-I
  69. Kittler R., Darula S. The simultaneous occurrence and relationship of sunlight and skylight under ISO/CIE standard sky types // Lighting Research & Technology. 2015. Vol. 47. Issue 5. Pp. 565–580. DOI: 10.1177/1477153514538883
  70. Kittler R., Darula S. The natural redistribution of sunlight and skylight due to the atmospheric turbidity of cloudless skies // Leukos. 2018. Vol. 14. Issue 2. Pp. 87–93. DOI: 10.1080/15502724.2017.1391704
  71. Nguyen T.K.P., Solovyov A., Pham T.H.H., Dong K.H. Confirmed method for definition of daylight climate for tropical Hanoi // International Scientific Conference Energy Management of Municipal Facilities and Sustainable Energy Technologies EMMFT 2018. 2018. Vol. 982. Pp. 35–47. DOI: 10.1007/978-3-030-19756-8_4
  72. Фыонг Н.Т.Х., Соловьев А.К., Тамразян А.Г. Комплексный подход к определению размеров светопроемов в зданиях с учетом требований безопасности // Промышленное и гражданское строительство. 2019. № 5. C. 20–25. DOI: 10.33622/0869-7019.2019.05.20-25
  73. Hens S.L.C.H. Building physics — heat, air and moisture: fundamentals and engineering methods with examples and exercises. Wilhelm Ernst & Sohn, 2017. 309 p. DOI: 10.1002/9783433608548
  74. Nasrollahi N., Shokri E. Daylight illuminance in urban environments for visual comfort and energy performance // Renewable and Sustainable Energy Reviews. 2016. Vol. 66. Pp. 861–874. DOI: 10.1016/j.rser.2016.08.052
  75. Wittkopf S.K., Soon L.K. Analysing sky luminance scans and predicting frequent sky patterns in Singapore // Lighting Research & Technology. 2007. Vol. 39. Issue 1. Pp. 31–51. DOI: 10.1177/1365782806070683
  76. Kittler R., Darula S. Determination of time and sun position system // Solar Energy. 2013. Vol. 93. Pp. 72–79. DOI: 10.1016/j.solener.2013.03.021
  77. Krasić S., Pejić P., Mitković P. Significance of daylight in the design and construction of buildings // GRAĐEVINAR. 2013. Vol. 65. Issue 9. Pp. 833–840. DOI: 10.14256/JCE.869.2013
  78. Solovyov A.K. Luminance distribution over the firmament: Taking it into account when designing natural illumination for building // Light & Engineering. 2009. Vol. 17. Issue 1. Pp. 59–73.
  79. Соловьев А.К. Учет распределения яркости безоблачного неба в расчетах естественного освещения зданий // Academia. Архитектура и строительство. 2010. № 3. С. 462–471.
  80. Zemtsov V.A., Solovyov A.K., Shmarov I.A. Luminance parameters of the standard CIE sky within natural room illumination calculations and their application under various light climate conditions in Russia // Light & Engineering. 2017. Vol. 25. Issue 1. Pp. 106–114.
  81. Phuong N.T.K. Luminance distributions in the tropical sky conditions // Magazine of Civil Engineering. 2018. Vol. 84. Issue 8. Pp. 192–204. DOI: 10.18720/MCE.84.18
  82. Phuong N.T.K., Solovyov A., Hoa N.T. Phương pháp xác định hệ số phân bố không đồng đều độ chói cho bầu trời nhiệt đới Việt Nam // Tạp chí Khoa học Công nghệ Xây dựng (KHCNXD) — ĐHXD. 2019. Vol. 13. Issue 3V. Pp. 136–147. DOI: 10.31814/stce.nuce2019-13(3V)-15
  83. Фам Нгок Данг. Тепловой режим здания в климатических условиях Вьетнама : дис. … д-ра техн. наук. М., 1978. 191 c.
  84. Фам Нгок Данг, Богословский В.Н. Расчет суммарного теплопоступления в помещение через окно // Водоснабжение и санитарная техника. 1973. № 1. С. 26–32.
  85. Ha P.T.H. Passive architectural solution based on energy efficiency method of sunshading divices for high-rise apartment buildings in Hanoi : thesis of Ph. D. Hanoi. National university of Civil Engineering, 2018. 151 p.
  86. Ha P.T.H. Energy efficiency faсade design in high-rise apartment buildings using the calculation of solar heat transfer through windows with shading devices // IOP Conference Series: Earth and Environmental Science. 2018. Vol. 143. P. 012055. DOI: 10.1088/1755-1315/143/1/012055
  87. Ha P.T.H. A concept for energy-efficient high-rise buildings in Hanoi and a calculation method for building energy efficiency factor // Procedia Engineering. 2016. Vol. 142. Pp. 154–160. DOI: 10.1016/j.proeng.2016.02.026
  88. Dang P.N., Ha P.H. Heat and architectural climatics. Hanoi : Construction Publisher, 2002.
СКАЧАТЬ (RUS)